Стандартизованный коэффициент уравнения применяется для. Уравнение регрессии в стандартизованном виде. Коэффициент регрессии показывает

Линейное программирование

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах -мерного векторного пространства , задаваемых системами линейных уравнений и неравенств.

Линейное программирование является частным случаем выпуклого программирования, которое в свою очередь является частным случаем математического программирования . Одновременно оно - основа нескольких методов решения задач целочисленного и нелинейного программирования . Одним из обобщений линейного программирования является дробно-линейное программирование .

Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким образом геометрически формулировать и доказывать их.

История

Метод внутренних точек был впервые упомянут И. И. Дикиным в 1967 году .

Задачи

Основной (стандартной) задачей линейного программирования называется задача нахождения минимума линейной целевой функции (линейной формы) вида :

при условиях

, .

Задача линейного программирования будет иметь канонический вид , если в основной задаче вместо первой системы неравенств имеет место система уравнений :

,

Основную задачу можно свести к канонической путём введения дополнительных переменных.

Задачи линейного программирования наиболее общего вида (задачи со смешанными ограничениями: равенствами и неравенствами, наличием переменных, свободных от ограничений) могут быть приведены к эквивалентным (имеющим то же множество решений) заменами переменных и заменой равенств на пару неравенств .

Легко заметить, что задачу нахождения максимума можно заменить задачей нахождения минимума, взяв коэффициенты с обратным знаком.

Примеры задач

Максимальное паросочетание

Рассмотрим задачу о максимальном паросочетании в двудольном графе : есть несколько юношей и девушек, причём для каждых юноши и девушки известно, симпатичны ли они друг другу. Нужно поженить максимальное число пар со взаимной симпатией.

Введём переменные , которые соответствуют паре из -того юноши и -той девушки и удовлетворяют ограничениям:

с целевой функцией . Можно показать, что среди оптимальных решений этой задачи найдётся целочисленное. Переменные, равные 1, будут соответствовать парам, которые следует поженить.

Максимальный поток

Пусть имеется граф (с ориентированными рёбрами), в котором для каждого ребра указана его пропускная способность. И заданы две вершины: сток и исток. Нужно указать для каждого ребра, сколько через него будет протекать жидкости (не больше его пропускной способности) так, чтобы максимизировать суммарный поток из истока в сток (жидкость не может появляться или исчезать во всех вершинах, кроме стока и истока).

Возьмём в качестве переменных - количество жидкости, протекающих через -тое ребро. Тогда

,

где - пропускная способность -того ребра. Эти неравенства надо дополнить равенством количества втекающей и вытекающей жидкости для каждой вершины, кроме стока и истока. В качестве функции естественно взять разность между количеством вытекающей и втекающей жидкости в истоке.

Обобщение предыдущей задачи - максимальный поток минимальной стоимости. В этой задаче даны стоимости для каждого ребра и нужно среди максимальных потоков выбрать поток с минимальной стоимостью. Эта задача сводится к двум задачам линейного программирования: сначала нужно решить задачу о максимальном потоке, а потом добавить к этой задаче ограничение , где - величина максимального потока, и решить задачу с новой функцией - стоимостью потока.

Эти задачи могут быть решены быстрее, чем общими алгоритмами решения задач линейного программирования, за счёт особой структуры уравнений и неравенств.

Транспортная задача

Имеется некий однородный груз, который нужно перевести с складов на заводов. Для каждого склада известно, сколько в нём находится груза , а для каждого завода известна его потребность в грузе. Стоимость перевозки пропорциональна расстоянию от склада до завода (все расстояния от -го склада до -го завода известны). Требуется составить наиболее дешёвый план перевозки.

Решающими переменными в данном случае являются - количества груза, перевезённого из -го склада на -й завод. Они удовлетворяют ограничениям:

Целевая функция имеет вид: , которую надо минимизировать.

Игра с нулевой суммой

Есть матрица размера . Первый игрок выбирает число от 1 до , второй - от 1 до . Затем они сверяют числа и первый игрок получает очков, а второй очков ( - число, выбранное первым игроком, - вторым). Нужно найти оптимальную стратегию первого игрока.

Пусть в оптимальной стратегии, например, первого игрока число нужно выбирать с вероятностью . Тогда оптимальная стратегия является решением следующей задачи линейного программирования:

, , (),

в которой нужно максимизировать функцию . Значение в оптимальном решении будет математическим ожиданием выигрыша первого игрока в наихудшем случае.

Алгоритмы решения

Наиболее известным и широко применяемым на практике для решения общей задачи линейного программирования (ЛП) является симплекс-метод . Несмотря на то, что симплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач ЛП, он является алгоритмом с экспоненциальной сложностью . Причина этого состоит в комбинаторном характере симплекс-метода, последовательно перебирающего вершины многогранника допустимых решений при поиске оптимального решения.

Первый полиномиальный алгоритм , метод эллипсоидов , был предложен в 1979 году советским математиком Л. Хачияном , разрешив таким образом проблему, долгое время остававшуюся нерешённой. Метод эллипсоидов имеет совершенно другую, некомбинаторную, природу, нежели симплекс-метод. Однако в вычислительном плане этот метод оказался неперспективным. Тем не менее, сам факт полиномиальной сложности задач привёл к созданию целого класса эффективных алгоритмов ЛП - методов внутренней точки , первым из которых был алгоритм Н. Кармаркара, предложенный в 1984 году . Алгоритмы этого типа используют непрерывную трактовку задачи ЛП, когда вместо перебора вершин многогранника решений задачи ЛП осуществляется поиск вдоль траекторий в пространстве переменных задачи, не проходящих через вершины многогранника. Метод внутренних точек, который, в отличие от симплекс-метода, обходит точки из внутренней части области допустимых значений, использует методы логарифмических барьерных функций нелинейного программирования , разработанные в 1960-х годах Фиако (Fiacco) и МакКормиком (McCormick).

См. также

  • Графический метод решения задачи линейного программирования

Примечания

Литература

  • Томас Х. Кормен и др. Глава 29. Линейное программирование // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. - 2-е изд. - М .: «Вильямс», 2006. - С. 1296. - ISBN 5-8459-0857-4
  • Акулич И.Л. Глава 1. Задачи линейного программирования, Глава 2. Специальные задачи линейного программирования // Математическое программирование в примерах и задачах. - М .: Высшая школа, 1986. - 319 с. - ISBN 5-06-002663-9
  • Карманов В. Г. Математическое программирование. - 3-е издание. - М .: Наука, 1986. - 288 с.
  • Данциг Джордж Бернард «Воспоминания о начале линейного программирования»

Ссылки

  • - Бесплатный оптимизационный пакет, предназначенный для решения задач линейного, целочисленного и целевого программирования.
  • Вершик А. М. «O Л. В. Канторовиче и линейном программировании »
  • Большакова И. В., Кураленко М. В. «Линейное программирование. Учебно-методическое пособие к контрольной работе ».
  • Барсов А. С. «Что такое линейное программирование », Популярные лекции по математике , Гостехиздат, 1959.
  • М. Н. Вялый Линейные неравенства и комбинаторика . - МЦНМО , 2003.

Wikimedia Foundation . 2010 .

  • Зальтен, Феликс
  • Глагов, Мартина

Смотреть что такое "Линейное программирование" в других словарях:

    линейное программирование - — линейное программирование Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между… … Справочник технического переводчика

    Линейное программирование

    Линейное программирование - область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… … Экономико-математический словарь

Аннотация: Данная лекция раскрывает ряд вопросов, посвященных линейному программированию как одному из разделов математического программирования; в частности, формулирует основные виды задач линейного программирования, раскрывает отличия данных задач от классических задач математического анализа; знакомит с различными формами записи данных задач, осуществляет их постановку и исследование структуры. Наиболее полно раскрыт вопрос о решении задач линейного программирования симплекс-методом.

1. Понятие математического программирования

– это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина " математическое программирование ". Термин "программирование" в названии дисциплины ничего общего с термином "программирование (т.е. составление программы) для ЭВМ" не имеет, т.к. дисциплина " линейное программирование " возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин " линейное программирование " возник в результате неточного перевода английского " linear programming ". Одно из значений слова "programming" - составление планов, планирование. Следовательно, правильным переводом английского " linear programming " было бы не " линейное программирование ", а "линейное планирование", что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Т.е. все переменные в любом допустимом решении задачи должны принимать неотрицательные значения (такие переменные принято называть неотрицательные в отличие от так называемых свободных переменных, на область значений которых подобное ограничение не накладывается). Отличие же между этими формами состоит в том, что в одном случае I 2 = 0 , а в другом - I 1 = 0 .

Задача ЛП в канонической форме.

В долях среднего квадратического отклонения факторного и результативного признаков;

6. Если параметр а в уравнении регрессии больше нуля, то:

7. Зависимость предложения от цен характеризуется уравнением вида у = 136·х 1,4 . Что это означает?

С увеличением цен на 1 %, предложение увеличивается в среднем на 1,4%;

8. В степенной функции параметр b является:

Коэффициентом эластичности;

9. Остаточное среднее квадратическое отклонение определяется по формуле:

10. Уравнение регрессии, построенное по 15 наблюдениям, имеет вид: у = 4 + 3х +?6значение t - критерия равно 3,0 Коэффициент детерминации для этого уравнения равен:

На стадии формирования модели, в частности в процедуре отсева факторов, используют

Частные коэффициенты корреляции.

12. «Структурными переменными» называются :

Фиктивные переменные.

13. Дана матрица парных коэффициентов корреляции:

У xl х2 х3

У 1,0 - - -

Xl 0,7 1,0 - -

Х2 -0,5 0,4 1,0 -

Х3 0,4 0,8 -0,1 1,0

Какие факторы являются коллинеарными?

14. Автокорреляционная функция временного ряда - это:

последовательность коэффициентов автокорреляции уровней временного ряда;

15. Прогнозное значение уровня временного ряда в аддитивной модели - это:

Сумма трендовой и сезонной компонент.

16. Одним из методов тестирования гипотезы о коинтеграции временных рядов является:

Критерий Энгеля-Грангера;

17. Коинтеграция временных рядов - это:

Причинно - следственная зависимость в уровнях двух (или более) временных рядов;

18. Коэффициенты при экзогенных переменных в системе уравнений обозначаются:



19. Уравнение сверхидентифицируемо, если:

20.Модель считается неидентифицируемой, если:

Хотя бы одно уравнение модели неидентифицируемо;

ВАРИАНТ 13

1. Первым этапом эконометрического исследования является:

Постановка проблемы.

При какой зависимости разным значениям одной переменной соответствуют разные распределения значений другой переменной?

Статистической;

3. Если коэффициент регрессии больше нуля, то:

Коэффициент корреляции больше нуля.

4. Классический подход к оцениванию коэффициентов регрессии основан на:

Методе наименьших квадратов;

F-критерий Фишера характеризует

Соотношение факторной и остаточной дисперсий, рассчитанных на одну степень свободы.

6. Стандартизованным коэффициентом регрессии является:

Множественный коэффициент корреляции;

7. Для оценки значимости коэффициентов нелинейной регрессии рассчитывают:

F - критерий Фишера;

8. Методом наименьших квадратов определяются параметры:

Линейной регрессии;

9. Случайная ошибка коэффициента корреляции определяется по формуле:

M= √(1-r 2)/(n-2)

10. Дано: Dфакт = 120;Docт = 51. Чему будет равно фактическое значение F-критерия Фишера?

11.Частный F-критерий Фишера оценивает:

Статистическую значимость присутствия соответствующего фактора в уравнении множественной регрессии;

12. Несмещенность оценки означает, что :

Математическое ожидание остатков равно нулю.

13. При расчете модели множественной регрессии и корреляции в Ехсеl для вывода матрицы парных коэффициентов корреляции используется:

Инструмент анализа данных Корреляция;

14. Сумма значений сезонной компоненты по всем кварталам в аддитивной модели должна быть равна:

15. Прогнозное значение уровня временного ряда в мультипликативной модели - это:

Произведение трендовой и сезонной компонент;

16. Ложная корреляция вызвана наличием:

Тенденции.

17. Для определения авто корреляции остатков используют:

Критерий Дарбина- Уотсона;

18. Коэффициенты при эндогенных переменных в системе уравнений обозначаются :

19 . Условие, что ранг матрицы, составленной из коэффициентов при переменных. отсутствующих в исследуемом уравнении не меньше числа эндогенных переменных системы на единицу-это:

Дополнительное условие идентификации уравнения в системе уравнений

20. Косвенный метод наименьших квадратов применяется для решения:

Идентифицируемой системы уравнений.

ВАРИАНТ 14

1. Математико-статистическими выражениями, количественно характеризующими экономические явления и процессы и обладающими достаточно высокой степенью надежности, называются:

Эконометрические модели.

2. Задачей регрессионного анализа является:

Определение тесноты связи между признаками;

3. Коэффициент регрессии показывает:

Среднее изменение результата с изменением фактора на одну единицу его измерения.

4. Средняя ошибка аппроксимации - это:

Среднее отклонение расчетных значений результативного признака от фактических;

5. Неправильный выбор математической функции относится к ошибкам:

Спецификации модели;

6. Если параметр а в уравнении регрессии больше нуля, то :

Вариация результата меньше вариации фактора;

7. Линеаризация какой функции происходит путем замены переменных: x=x1, x2=x2

Полинома второй степени;

8. Зависимость спроса от цен характеризуется уравнением вида у = 98 х - 2,1. ЧТО это означает?

С увеличением цен на 1 %, спрос снижается в среднем на 2,1 %;

9. Средняя ошибка прогноза определяется по формуле:

- σост=√(∑(у-ỹ) 2 / (n-m-1))

10. Пусть имеется уравнение парной регрессии: у = 13+6*x, построенное по 20 наблюдениям, при этом r = 0,7. Определить стандартную ошибку для коэффициента корреляции:

11. Стандартизованные коэффициенты регрессии показывают:

На сколько сигм изменится в среднем результат, если соответствующий фактор изменится на одну сигму при неизменном среднем уровне других факторов;

12. Одной ИЗ пяти предпосылок метода наименьших квадратов является:

Гомоскедастичность;

13. Для расчета множественного коэффициента корреляции в Excel используется :

Инструмент анализа данных Регрессия.

14. Сумма значений сезонной компоненты по всем периодам в мультипликативной модели в цикле должна быть равна:

Четырем.

15. При аналитическом выравнивании временного ряда в качестве независимой переменной выступает:

16. Автокорреляция в остатках - это нарушение предпосылки МНК о:

Случайности остатков, полученных по уравнению регрессии;

Бета-коэффициент равный 0,074 (табл. 3.2.1) показывает, что если реальная заработная плата изменится на величину своего среднеквадратического отклонения (σх1), то коэффициент естественного прироста населения изменится в среднем на 0,074 σу. Бета-коэффициент равный 0,02 показывает, что если общий коэффициент брачности изменится на величину своего среднеквадратического отклонения (на σх2), то коэффициент естественного прироста населения изменится в среднем на 0,02 σу. Аналогично, изменение количества преступлений на 1000 человек на величину своего среднеквадратического отклонения (на σх3) приведет к изменению результативного признака в среднем на 0,366 σу, а изменение в вводе кв.м жилых помещений на человека в год на величину своего среднеквадратического отклонения (на σх4) ведет к изменению результативного признака в среднем на 1,32σу.

Коэффициент эластичности показывает, на сколько процентов в среднем изменяется y с изменением признака-фактора на 1%. Из анализа рядов динамики известно, что значение 1% прироста результативного признака отрицательно, так как во всех единицах совокупности наблюдается естественная убыль населения. Поэтому прирост фактически означает сокращение убыли. А значит, отрицательные коэффициенты эластичности в данном случае отражают то, что с увеличением каждого из факторных признаков на 1%, коэффициент естественной убыли сократится на соответствующее число процентов. При увеличении реальной заработной платы на 1%, коэффициент естественной убыли сократится на 0,219%, при увеличении общего коэффициента брачности на 1% - сократится на 0,156%. Увеличение количества преступлений на 1000 человек населения на 1% характеризуется сокращением естественной убыли населения на 0,564. Конечно, это не означает, что увеличивая преступность, можно поправить демографическую ситуацию. Полученные результаты говорят о том, что чем больше людей сохраняется на 1000 населения, тем соответственно больше преступлений приходится на эту тысячу. Увеличение ввода кв.м. жилья на человека в год на 1% ведет к сокращению естественной убыли на 0,482%

Анализ коэффициентов эластичности и бета–коэффициентов показывает, что наибольшее влияние на коэффициент естественного прироста населения оказывает фактор ввода кв.м жилья на душу населения, так как ему соответствует наибольшее значение бета – коэффициента (1,32). Однако, это не означает, что наибольшие возможности в изменении коэффициента естественного прироста населения связаны с изменением данного из рассмотренных факторов. Полученный результат отражает то, что спрос на рынке жилья соответствует предложению, то есть чем больше естественный прирост населения, тем больше потребность этого населения в жилье и тем больше его строят.

Второй по величине бета–коэффициент (0,366) соответствует показателю количества преступлений на 1000 человек. Конечно, это не означает, что, увеличивая преступность, можно поправить демографическую ситуацию. Полученные результаты говорят о том, что чем больше людей сохраняется на 1000 населения, тем соответственно больше преступлений приходится на эту тысячу.

Больший из оставшихся признаков бета–коэффициент (0,074) соответствует показателю реальной заработной платы. Наибольшие возможности в изменении коэффициента естественного прироста населения связаны с изменением данного из рассмотренных факторов. Показатель общего коэффициента брачности уступает в этом отношении реальной заработной плате в связи с тем, что естественная убыль населения в России обусловлена, прежде всего, высокой смертностью население, сократить темпы роста которой возможно скорее материальным обеспечением, чем увеличением фактов вступления в брак.

3.3 Комбинированная группировка областей по величине реальной заработной платы и общему коэффициенту брачности

Комбинированная или многомерная группировка – это группировка по двум или нескольким признакам. Ценность этой группировки заключается в том, что она показывает не только влияние каждого из факторов на результат, но и влияние их сочетания.

Определим влияние величины реальной заработной платы и общего коэффициента брачности на коэффициент рождаемости на 1000 чел населения.

Выделим типические группы по намеченным признакам. Для этого построим и проанализируем ранжированный и интервальный ряды по факторному признаку (величина заработной платы), определим число групп и величину интервала; затем внутри каждой группы построим ранжированный и интервальный ряды по второму признаку (брачности) и также установим число групп и интервал. Порядок проведения этой работы представлен в главе 2, поэтому, опуская расчеты, приведем результаты. Для величины реальной заработной платы выделено 3 типические группы, для общего коэффициента брачности – 2 группы.

Составим макет комбинационной таблицы, в которой предусмотрим подразделение совокупности на группы и подгруппы, а также графы для записи числа областей и коэффициента рождаемости на 1000 чел населения. По выделенным группам и подгруппам подсчитаем коэффициенты рождаемости (табл.3.3.1)

Таблица 3.3.1

Влияние величины реальной заработной платы и общего коэффициента брачности на коэффициент рождаемости.

Проанализируем полученные данные зависимости коэффициента рождаемости от реальной заработной платы и коэффициента брачности. Так как изучается один признак – коэффициент рождаемости, то данные о нем запишем в шахматную комбинационную таблицу следующей формы (табл. 3.3.2)

Комбинированная группировка позволяет оценить степень влияния на коэффициент рождаемости каждого фактора в отдельности и их взаимодействие.

Таблица 3.3.2

Зависимость коэффициента рождаемости от реальной заработной платы и коэффициента брачности

Изучим вначале влияние на коэффициент рождаемости величины реальной заработной платы при фиксированном значении другого группировочного признака – коэффициента брачности. Так, при коэффициенте брачности от 13,2 до 25,625 средний коэффициент рождаемости повышается по мере увеличения заработной платы с 9,04 в 1-ой группе до 9,16 во 2-ой группе и 9,56 в 3-й группе; прибавка коэффициента рождаемости от заработной платы в 3-й группе по сравнению с 1-й составляет: 9,56-9,04=0,52 чел на 1000 населения. При коэффициенте брачности 25,625-38,05 прибавка от той же величины заработной платы равна: 10,27-9,49=0,78 чел на 1000 населения. Прибавка от взаимодействия факторов равна: 0,78-0,52=0,26 чел на 1000 населения. Из этого следует вполне естественный вывод: увеличение благосостояния мотивирует, а вернее позволяет с уверенностью в завтрашнем дне реализовать желание человека вступить в брак и создать семью с детьми. В этом проявляется взаимодействие факторов.

Таким же образом оценим влияние на коэффициент рождаемости коэффициента брачности при фиксированном уровне заработной платы. Для этого сравним коэффициент рождаемости по группам «а» и «б» в пределах каждой группы по величине реальной заработной платы. Увеличение коэффициента рождаемости с ростом коэффициента брачности до 25,625-38,05 на 1000 населения по сравнению с группой «а» составляет: в 1-й группе при величине заработной платы 5707,9 – 6808,7 руб. в месяц – 9,49-9,04=0,45 чел на 1000 населения, во 2-й группе – 10,01-9,16=0,85 чел на 1000 населения и в 3-й - 10,27-9,56=0,71 чел на 1000 населения. Как видно, решение о рождение ребенка зависит от семейного положения, т.е. имеет место взаимодействие факторов, дающее прибавку 0,26 чел на 1000 населения.

При совместном увеличении обоих факторов коэффициент рождаемости увеличивается с 9,04 в подгруппе 1«а» до 10,27 чел на 1000 населения в подгруппе 3 «б».

Представители Европейской экономической комиссии ООН недавно заявили, что возраст вступления в первый брак в европейских странах увеличился на пять лет. Парни и девушки предпочитают жениться и выходить замуж после 30. Россияне же не решаются связать себя узами брака раньше 24-26 лет. Также общей для Европы и России стала тенденция к сокращению количества брачных союзов. Молодые люди все чаще предпочитают карьеру и личную свободу. Отечественные эксперты усматривают в этих процессах признаки глубокого кризиса традиционной семьи. По их мнению, она доживает буквально последние дни. Социологи утверждают, что частная жизнь сейчас переживает период перестройки. Семья в привычном понимании этого слова, живущая по схеме "мама-папа-дети", постепенно уходит в прошлое. В частной жизни россияне все чаще экспериментируют, изобретая все новые и новые формы семьи, которые бы отвечали запросам времени. "Сейчас человек чаще меняет работу, профессию, интересы, место жительства, - рассказал "Новым известиям" директор Центра демографии и экологии человека Анатолий Вишневский. - Также часто он меняет и супругов, что еще 20 лет назад считалось неприемлемым".

Социологи отмечают, что одна из причин роста разводов в России – низкий уровень жизни населения. «По статистике, в России примерно на 10–15 % больше разводов, чем в Европе, – сообщил «НИ» г-н Гонтмахер (научный руководитель центра социальных исследований и инноваций). – Но причины разводов у нас и у них разные. Наше первенство продиктовано в основном тем, что на жизни россиян все ощутимее сказываются экономические проблемы. Супруги чаще ссорятся, если у них стесненные жилищные условия. Молодым людям не всегда удается жить самостоятельно. Кроме того, в регионах многие мужчины пьют, не работают и не могут обеспечить семью. Это тоже служит причиной развода».

Заключение

В данной работе произведен статистико-экономический анализ влияния уровня жизни населения на процессы естественного прироста.

Анализ рядов динамики показал, что за последние 10 лет наблюдается рост реальной заработной платы и величины прожиточного минимума. В целом за эти 10 лет результативный признак – коэффициент естественного прироста - является стационарным. Стабильность наметившихся процессов изменения отобранных признаков такова, что построение прогноза возможно лишь для величины реальной заработной платы и коэффициента смертности. Согласно выстроенному тренду по параболе к 2010 году прогнозная величина средней реальной заработной платы составить 17473,5 руб., а коэффициент смертности снизится до 12,75 человек на 1000.

Аналитическая группировка показала прямую зависимость между показателями: с ростом величины заработной платы улучшается показатели естественного прироста.

Однако семья из двух работников со среднестатистической заработной платой может обеспечить минимальный уровень потребления 2 детям – в низшей типической группе, 3 детям – в средней и высшей типических группах. Учитывая, что двое детей «подменяют» в будущем жизни своих родителей, незначительный прирост населения возможен только в средней и высшей типических группах и то при условии низкого по сравнению с рождаемостью уровня смертности. Потенциал рождаемости, который несет в себе заработная плата в России, низок для улучшения демографической ситуации в стране. Это как раз и выявляет необходимость введенного демографического нацпроекта в России. Увеличение заработной платы более благоприятно влияет на показатель смертности, чем на рождаемость.

Построение корреляционно-регрессионной модели выявило, что одновременное влияние факторных признаков (заработной платы, коэффициента брачности, уровня преступности и ввода жилья) на результативный (естественный прирост), наблюдается со средней силой связи. Вариация коэффициента естественного прироста населения на 44,9% характеризуется влиянием отобранных факторов, а 55,1% – другими неучтёнными и случайными причинами. Наибольшие возможности в изменении коэффициента естественного прироста населения связаны с изменением величины реальной заработной платы.

Комбинированная группировка подтвердила то, что увеличение благосостояния мотивирует, а вернее позволяет с уверенностью в завтрашнем дне реализовать желание человека вступить в брак и создать семью с детьми.

И наконец, надо дать оценку эффективности решения проблемы демографии в нашей стране. В целом, положительное и эффективное влияние материальных стимулов на процесс естественного движения населения доказано. Другое дело, что есть комплекс социально-психологических проблем (алкоголизм, насилие, самоубийства), которые неумолимо сокращают численность нашего населения. Их основная причина – отношение человека к самому себе и окружающим. Но эти проблемы не под силу решить государству в одиночку, на помощь самому себе в проблеме вымирания должно прийти гражданское общество, формируя нравственные ценности, ориентированные на создание благополучной семьи.

А государство может и должно делать все, чтобы повысить уровень и качество жизни в стране. Нельзя сказать, что наше государство пренебрегает этими обязанностями. Оно делает все возможное, отыскивая и пробуя различные пути выхода из демографического кризиса.

Список использованной литературы

1)Борисов Е.Ф. Экономическая теория: учеб.-2-е изд., перераб. и доп. – М.: ТК Велби, Изд-во Проспект, 2005. – 544с.

2)Белоусова С. анализ уровня бедности.// Экономист.-2006, №10.-с.67

3)Давыдова Л. А. Теория статистики. Учебное пособие. Москва. Проспект. 2005. 155 стр.;

4)Демография: Учебник/ Под общ. ред. Н.А. Волгина. М.: Изд-во РАГС, 2003 – 384 с.

5)Ефимова Е. П. Социальная статистика. Москва. Финансы и статистика. 2003. 559стр.;

6)Ефимова Е. П., Рябцев В.М. Общая теория статистики. Учебное издание. Москва. Финансы и статистика. 1991. 304 стр.;

7)Зинченко А.П. Практикум по общей теории статистики и с/х статистике. Москва. Финансы и статистика. 1988. 328 стр.;

8)Кадомцева С. Социальная политика и население.// Экономист.-2006, №7.-с.49

9)Козырев В.М. Основы современной экономики: Учебник. -2-е изд., перераб. и доп. –М.: Финансы и статистика, 2001.-432с.

10)Коныгина Н. Бринцева Г. Демограф Анатолий Вишневский о том, что заставляет россиянина выбирать между детьми и комфортом.// Российская газета.-2006, 7ноября - № 249 -с. 7

11)Назарова Н.Г. Курс социальной статистики. Москва. Финстатинформ. 2000. 770 стр.;

13)Основы демографии: Учебное пособие/ Н.В. Зверева, И.Н. Веселкова, В.В. Елизаров.-М.: Высш. Шк., 2004.-374 с.: ил.

14)Послание Президента Российской Федерации Федеральному Собранию Российской Федерации от 26 апреля 2007 года.

15)Райсберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б. Современный экономический словарь. –4-е изд., перераб. и доп. -М.:ИНФРА-М, 2005.-480с.

16)Рудакова Р.П, Букин Л.Л., Гаврилов В.И. Практикум по статистике. -СПб.: Питер, 2007.-288стр.

17)Сайт федеральной службы статистики www.gks.ru

18)Шайкин Д.Н. Перспективная оценка численности населения России в среднесрочном периоде.// Вопросы статистики.-2007, №4 –с.47

СИСТЕМА ПОКАЗАТЕЛЕЙ (КЛЮЧ К ФИШКАМ)

1-среднемесячная номинальная заработная плата в 2006 году (в рублях)

2-индексы потребительских цен на все виды товаров и платные услуги в 2006 году в процентах к декабрю прошлого года

3- среднемесячная реальная заработная плата в 2006 году(в рублях)

4 – численность населения на начало 2006 года

5 – численность населения на конец 2006 года

6 – среднегодовая численность населения в 2006 году

7 – количество родившихся за 2006 год, человек

8 – количество умерших за 2006 год, человек

9 – коэффициент рождаемости в 2006 году на 1000 человек населения

10 –коэффициент смертности в 2006 году на 1000 человек населения

11 – коэффициент естественного прироста в 2006 году на 1000 человек населения

12 – величина прожиточного минимума за 2006 год (в рублях)

13 – количество преступлений, совершенных на 1000 челок населения

14 – ввод кв.м жилья на человека за год

15 – общий коэффициент брачности на 1000 человек населения

Приложение 1

Таблица

Реальная заработная плата, руб.

Приложение 2

Величина прожиточного минимума, руб.

Приложение 3

Задание.

  1. Для заданного набора данных постройте линейную модель множественной регрессии. Оцените точность и адекватность построенного уравнения регрессии.
  2. Дайте экономическую интерпретацию параметров модели.
  3. Рассчитайте стандартизованные коэффициенты модели и запишите уравнение регрессии в стандартизованном виде. Верно ли утверждение, что цена блага оказывает большее влияние на объем предложения блага, чем заработная плата сотрудников?
  4. Для полученной модели (в естественной форме) проверьте выполнение условия гомоскедастичности остатков, применив тест Голдфельда-Квандта .
  5. Проверьте полученную модель на наличие автокорреляции остатков с помощью теста Дарбина-Уотсона .
  6. Проверьте, адекватно ли предположение об однородности исходных данных в регрессионном смысле. Можно ли объединить две выборки (по первым 8 и остальным 8 наблюдениям) в одну и рассматривать единую модель регрессии Y по X ?

1. Оценка уравнения регрессии. Определим вектор оценок коэффициентов регрессии с помощью сервиса Уравнение множественной регрессии . Согласно методу наименьших квадратов, вектор s получается из выражения: s = (X T X) -1 X T Y
Матрица X

1 182.94 1018
1 193.45 920
1 160.09 686
1 157.99 405
1 123.83 683
1 152.02 530
1 130.53 525
1 137.38 418
1 137.58 425
1 118.78 161
1 142.9 242
1 99.49 226
1 116.17 162
1 185.66 70

Матрица Y
4.07
4
2.98
2.2
2.83
3
2.35
2.04
1.97
1.02
1.44
1.22
1.11
0.82

Матрица X T
1 1 1 1 1 1 1 1 1 1 1 1 1 1
182.94 193.45 160.09 157.99 123.83 152.02 130.53 137.38 137.58 118.78 142.9 99.49 116.17 185.66
1018 920 686 405 683 530 525 418 425 161 242 226 162 70

Умножаем матрицы, (X T X)
Находим обратную матрицу (X T X) -1
2.25 -0.0161 0.00037
-0.0161 0.000132 -7.0E-6
0.00037 -7.0E-6 1.0E-6

Вектор оценок коэффициентов регрессии равен

Y(X) =
2,25 -0,0161 0,00037
-0,0161 0,000132 -7,0E-6
0,00037 -7,0E-6 1,0E-6
*
31,05
4737,044
18230,79
=
0,18
0,00297
0,00347

Уравнение регрессии (оценка уравнения регрессии)
Y = 0.18 + 0.00297X 1 + 0.00347X 2

2. Матрица парных коэффициентов корреляции R. Число наблюдений n = 14. Число независимых переменных в модели равно 2, а число регрессоров с учетом единичного вектора равно числу неизвестных коэффициентов. С учетом признака Y, размерность матрицы становится равным 4. Матрица, независимых переменных Х имеет размерность (14 х 4).
Матрица, составленная из Y и X

1 4.07 182.94 1018
1 4 193.45 920
1 2.98 160.09 686
1 2.2 157.99 405
1 2.83 123.83 683
1 3 152.02 530
1 2.35 130.53 525
1 2.04 137.38 418
1 1.97 137.58 425
1 1.02 118.78 161
1 1.44 142.9 242
1 1.22 99.49 226
1 1.11 116.17 162
1 0.82 185.66 70

Транспонированная матрица.

1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.07 4 2.98 2.2 2.83 3 2.35 2.04 1.97 1.02 1.44 1.22 1.11 0.82
182.94 193.45 160.09 157.99 123.83 152.02 130.53 137.38 137.58 118.78 142.9 99.49 116.17 185.66
1018 920 686 405 683 530 525 418 425 161 242 226 162 70

Матрица A T A.

14 31.05 2038.81 6471
31.05 83.37 4737.04 18230.79
2038.81 4737.04 307155.61 995591.55
6471 18230.79 995591.55 4062413

Полученная матрица имеет следующее соответствие:

∑n ∑y ∑x 1 ∑x 2
∑y ∑y 2 ∑x 1 y ∑x 2 y
∑x 1 ∑yx 1 ∑x 1 2 ∑x 2 x 1
∑x 2 ∑yx 2 ∑x 1 x 2 ∑x 2 2

Найдем парные коэффициенты корреляции.
Признаки x и y ∑{x i } ∑{y i } ∑{x i y i }
Для y и x 1 2038.81 145.629 31.05 2.218 4737.044 338.36
Для y и x 2 6471 462.214 31.05 2.218 18230.79 1302.199
Для x 1 и x 2 6471 462.214 2038.81 145.629 995591.55 71113.682
Признаки x и y
Для y и x 1 731.797 1.036 27.052 1.018
Для y и x 2 76530.311 1.036 276.641 1.018
Для x 1 и x 2 76530.311 731.797 276.641 27.052

Матрица парных коэффициентов корреляции R:
- y x 1 x 2
y 1 0.558 0.984
x 1 0.558 1 0.508
x 2 0.984 0.508 1

Для отбора наиболее значимых факторов x i учитываются следующие условия:
- связь между результативным признаком и факторным должна быть выше межфакторной связи;
- связь между факторами должна быть не более 0.7. Если в матрице есть межфакторный коэффициент корреляции r xjxi > 0.7, то в данной модели множественной регрессии существует мультиколлинеарность.;
- при высокой межфакторной связи признака отбираются факторы с меньшим коэффициентом корреляции между ними.
В нашем случае все парные коэффициенты корреляции |r| Модель регрессии в стандартном масштабе Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:

где х ji - значение переменной х ji в i-ом наблюдении.

Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение S .
Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:
t y = ∑β j t xj
Для оценки β-коэффициентов применим МНК. При этом система нормальных уравнений будет иметь вид:
r x1y =β 1 +r x1x2 β 2 + ... + r x1xm β m
r x2y =r x2x1 β 1 + β 2 + ... + r x2xm β m
...
r xmy =r xmx1 β 1 + r xmx2 β 2 + ... + β m
Для наших данных (берем из матрицы парных коэффициентов корреляции):
0.558 = β 1 + 0.508β 2
0.984 = 0.508β 1 + β 2
Данную систему линейных уравнений решаем методом Гаусса : β 1 = 0.0789; β 2 = 0.944;
Стандартизированная форма уравнения регрессии имеет вид:
y 0 = 0.0789x 1 + 0.944x 2
Найденные из данной системы β–коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:

Стандартизированные частные коэффициенты регрессии . Стандартизированные частные коэффициенты регрессии - β-коэффициенты (β j) показывают, на какую часть своего среднего квадратического отклонения S(у) изменится признак-результат y с изменением соответствующего фактора х j на величину своего среднего квадратического отклонения (S хj) при неизменном влиянии прочих факторов (входящих в уравнение).
По максимальному β j можно судить, какой фактор сильнее влияет на результат Y.
По коэффициентам эластичности и β-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.
Коэффициент β j может также интерпретироваться как показатель прямого (непосредственного) влияния j -ого фактора (x j) на результат (y). Во множественной регрессии j -ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).
Косвенное влияние измеряется величиной: ∑β i r xj,xi , где m - число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - r xj,y .
Так для нашего примера непосредственное влияние фактора x 1 на результат Y в уравнении регрессии измеряется β j и составляет 0.0789; косвенное (опосредованное) влияние данного фактора на результат определяется как:
r x1x2 β 2 = 0.508 * 0.944 = 0.4796