Линейные однородные дифференциальные уравнения второго. Дифференциальные уравнения второго порядка и высших порядков. Линейные ДУ второго порядка с постоянными коэффициентами. Примеры решений. Теорема общего решения лдну

Рассмотрим систему 3-х уравнений с тремя неизвестными

Используя определители 3-го порядка, решение такой системы можно записать в таком же виде, как и для системы двух уравнений, т.е.

(2.4)

если 0. Здесь

Это есть правило Крамера решения системы трех линейных уравнений с тремя неизвестными .

Пример 2.3. Решить систему линейных уравнений при помощи правила Крамера:

Решение . Находим определитель основной матрицы системы

Поскольку 0, то для нахождения решения системы можно применить правило Крамера, но предварительно вычислим еще три определителя:

Проверка:

Следовательно, решение найдено правильно. 

Правила Крамера, полученные для линейных систем 2-го и 3-го порядка, наводят на мысль, что такие же правила можно сформулировать и для линейных систем любого порядка. Действительно имеет место

Теорема Крамера. Квадратная система линейных уравнений с отличным от нуля определителем основной матрицы системы (0) имеет одно и только одно решение и это решение вычисляется по формулам

(2.5)

где  – определитель основной матрицы ,  i определитель матрицы , полученной из основной, заменой i -го столбца столбцом свободных членов .

Отметим, что если =0, то правило Крамера не применимо. Это означает, что система либо не имеет вообще решений, либо имеет бесконечно много решений.

Сформулировав теорему Крамера, естественно возникает вопрос о вычислении определителей высших порядков.

2.4. Определители n-го порядка

Дополнительным минором M ij элемента a ij называется определитель, получаемый из данного путем вычеркивания i -й строки и j -го столбца. Алгебраическим дополнением A ij элемента a ij называется минор этого элемента, взятого со знаком (–1) i + j , т.е. A ij = (–1) i + j M ij .

Например, найдем миноры и алгебраические дополнения элементов a 23 и a 31 определителя

Получаем

Используя понятие алгебраического дополнения можно сформулировать теорему о разложении определителя n -го порядка по строке или столбцу .

Теорема 2.1. Определитель матрицы A равен сумме произведений всех элементов некоторой строки (или столбца) на их алгебраические дополнения:

(2.6)

Данная теорема лежит в основе одного из основных методов вычисления определителей, т.н. метода понижения порядка . В результате разложения определителя n -го порядка по какой-либо строке или столбцу, получается n определителей (n –1)-го порядка. Чтобы таких определителей было меньше, целесообразно выбирать ту строку или столбец, в которой больше всего нулей. На практике формулу разложения определителя обычно записывают в виде:

т.е. алгебраические дополнения записывают в явном виде через миноры.

Примеры 2.4. Вычислить определители, предварительно разложив их по какой-либо строке или столбцу. Обычно в таких случаях выбирают такой столбец или строку, в которой больше всего нулей. Выбранную строку или столбец будем обозначать стрелкой.

2.5. Основные свойства определителей

Разлагая определитель по какой-либо строке или столбцу, мы получим n определителей (n –1)-го порядка. Затем каждый из этих определителей (n –1)-го порядка также можно разложить в сумму определителей (n –2)-го порядка. Продолжая этот процесс, можно дойти до определителей 1-го порядка, т.е. до элементов матрицы, определитель которой вычисляется. Так, для вычисления определителей 2-го порядка придется вычислить сумму двух слагаемых, для определителей 3-го порядка – сумму 6 слагаемых, для определителей 4-го порядка – 24 слагаемых. Число слагаемых будет резко возрастать по мере увеличения порядка определителя. Это означает, что вычисление определителей очень высоких порядков становится довольно трудоемкой задачей, непосильной даже для ЭВМ. Однако вычислять определители можно и по-другому, используя свойства определителей.

Свойство 1 . Определитель не изменится, если в нем поменять местами строки и столбцы, т.е. при транспонировании матрицы :

.

Данное свойство свидетельствует о равноправии строк и столбцов определителя. Иначе говоря, любое утверждение о столбцах определителя справедливо и для его строк и наоборот.

Свойство 2 . Определитель меняет знак при перестановке двух строк (столбцов).

Следствие . Если определитель имеет две одинаковые строки (столбца), то он равен нулю.

Свойство 3 . Общий множитель всех элементов в какой-либо строке (столбце) можно вынести за знак определителя .

Например,

Следствие . Если все элементы некоторой строки (столбца) определителя равны нулю, то и сам определитель равен нулю .

Свойство 4 . Определитель не изменится, если к элементам одной строки (столбца), прибавить элементы другой строки (столбца), умноженной на какое-либо число .

Например,

Свойство 5 . Определитель произведения матриц равен произведению определителей матриц:

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = \frac{D_i}{D}$

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ - номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$...$D_n$, можно высчитать неизвестные переменные по формуле $x_i = \frac{D_i}{D}$.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей - со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$\begin{cases} a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \end{cases}$

Отобразим её в расширенной форме для удобства:

$A = \begin{array}{cc|c} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = \begin{array}{|cc|} a_1 & a_2 \\ a_3 & a_4 \\ \end{array} = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = \begin{array}{|cc|} b_1 & a_2 \\ b_2 & a_4 \\ \end{array} = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \begin{array}{|cc|} a_1 & b_1 \\ a_3 & b_2 \\ \end{array} = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = \frac {D_1}{D}$

$x_2 = \frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$\begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 - x_3 = 10 \\ \end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = \begin{array}{|ccc|} 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end{array} = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) - (-1) \cdot 2 \cdot 3 = - 12 – 8 -12 -32 – 6 + 6 = - 64$

А теперь три других детерминанта:

$D_1 = \begin{array}{|ccc|} 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end{array} = 21 \cdot 4 \cdot 1 + (-2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) - (-1) \cdot 2 \cdot 21 = - 84 – 40 – 36 – 160 – 18 + 42 = - 296$

$D_2 = \begin{array}{|ccc|} 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end{array} = 3 \cdot 9 \cdot (- 1) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = - 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = \begin{array}{|ccc|} 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end{array} = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 - (-2) \cdot 3 \cdot 10 - (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = - 60$

Найдём искомые величины:

$x_1 = \frac{D_1} {D} = \frac{- 296}{-64} = 4 \frac{5}{8}$

$x_2 = \frac{D_1} {D} = \frac{108} {-64} = - 1 \frac {11} {16}$

$x_3 = \frac{D_1} {D} = \frac{-60} {-64} = \frac {15} {16}$

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Решение

Вначале мы решаем однородное дифференциальное уравнение:
(2)

Это уравнение второго порядка.

Решаем квадратное уравнение :
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим производную :
.
Свяжем функции и уравнением:
(6) .
Тогда
.

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;



.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные :
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

.
.





;
.

Ответ

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Решение

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных - замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:


.

Дифференциальные уравнения 2-го порядка

§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="119" height="25 src="> (или Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1..gif" width="85" height="25 src=">.gif" width="85" height="25 src=">.gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src=">..gif" width="39" height="25 src=">.gif" width="265" height="28 src=">.

Таким образом, уравнение 2-го порядка https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="118" height="25 src=">.gif" width="117" height="25 src=">.gif" width="34" height="25 src=">. Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: https://pandia.ru/text/78/516/images/image020_23.gif" width="95" height="25 src=">.gif" width="76" height="25 src=">.

Решение.

Так как в исходном уравнении в явном виде отсутствует аргумент https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">.gif" width="35" height="25 src=">..gif" width="35" height="25 src=">.gif" width="82" height="38 src="> ..gif" width="99" height="38 src=">.

Так как при https://pandia.ru/text/78/516/images/image029_18.gif" width="85" height="25 src=">.gif" width="42" height="38 src=">.gif" width="34" height="25 src=">.gif" width="68" height="35 src=">..gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">..gif" width="161" height="25 src=">.gif" width="34" height="25 src=">.gif" width="33" height="25 src=">..gif" width="225" height="25 src=">..gif" width="150" height="25 src=">.

Пример 2. Найти общее решение уравнения: https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="107" height="25 src=">..gif" width="100" height="27 src=">.gif" width="130" height="37 src=">.gif" width="34" height="25 src=">.gif" width="183" height="36 src=">.

3. Порядок степени понижается, если удается преобразовать его к такому виду, что обе части уравнения становятся полными производными по https://pandia.ru/text/78/516/images/image052_13.gif" width="92" height="25 src=">..gif" width="98" height="48 src=">.gif" width="138" height="25 src=">.gif" width="282" height="25 src=">, (2.1)

где https://pandia.ru/text/78/516/images/image060_12.gif" width="42" height="25 src=">.gif" width="42" height="25 src="> – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2..gif" width="215" height="25 src="> (2.2)

Примем без доказательства, что (2..gif" width="82" height="25 src=">.gif" width="38" height="25 src=">.gif" width="65" height="25 src=">, то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций https://pandia.ru/text/78/516/images/image071_10.gif" width="93" height="25 src=">.gif" width="42" height="25 src=">.gif" width="195" height="25 src=">, (2.3)

то их линейная комбинация https://pandia.ru/text/78/516/images/image076_10.gif" width="182" height="25 src="> в (2.3) и покажем, что в результате получается тождество:

https://pandia.ru/text/78/516/images/image078_10.gif" width="368" height="25 src=">.

Поскольку функции https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при https://pandia.ru/text/78/516/images/image080_10.gif" width="77" height="25 src="> – решение уравнения (2..gif" width="97" height="25 src=">.gif" width="165" height="25 src="> называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций https://pandia.ru/text/78/516/images/image085_11.gif" width="119" height="25 src=">, т. е..gif" width="77" height="47 src=">.gif" width="187" height="43 src=">.gif" width="42" height="25 src=">. Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть https://pandia.ru/text/78/516/images/image091_10.gif" width="46" height="25 src=">.gif" width="42" height="25 src=">.gif" width="605" height="50">..gif" width="18" height="25 src="> удовлетворяют уравнению (2..gif" width="42" height="25 src="> – решение уравнения (3.1)..gif" width="87" height="28 src=">..gif" width="182" height="34 src=">..gif" width="162" height="42 src=">.gif" width="51" height="25 src="> получается тождество. Таким образом,

https://pandia.ru/text/78/516/images/image107_7.gif" width="18" height="25 src=">, в которой определитель для линейно независимых решений уравнения (2..gif" width="42" height="25 src=">.gif" height="25 src="> оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – линейно независимые решения уравнения (2..gif" width="19" height="25 src=">.gif" width="129" height="25 src=">есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка..gif" width="85" height="25 src=">.gif" width="19" height="25 src=">.gif" width="220" height="47">

Постоянные https://pandia.ru/text/78/516/images/image003_79.gif" width="19" height="25 src="> из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы https://pandia.ru/text/78/516/images/image006_56.gif" width="51" height="25 src=">:

https://pandia.ru/text/78/516/images/image116_7.gif" width="138" height="25 src=">.gif" width="19" height="25 src=">.gif" width="69" height="25 src=">.gif" width="235" height="48 src=">..gif" width="143" height="25 src="> (5..gif" width="77" height="25 src=">. Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер..gif" width="25" height="26 src=">, получим алгебраическое уравнение, которое называется характеристическим:

https://pandia.ru/text/78/516/images/image124_5.gif" width="59" height="26 src="> будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2)..gif" width="49" height="25 src=">..gif" width="76" height="28 src=">.gif" width="205" height="47 src="> и общее решение (5..gif" width="45" height="25 src=">..gif" width="74" height="26 src=">..gif" width="83" height="26 src=">. Проверим, что эта функция удовлетворяет уравнению (5.1)..gif" width="190" height="26 src=">. Подставляя эти выражения в уравнение (5.1), получим

https://pandia.ru/text/78/516/images/image141_6.gif" width="328" height="26 src=">, т. к..gif" width="137" height="26 src=">.

Частные решения https://pandia.ru/text/78/516/images/image145_6.gif" width="86" height="28 src="> линейно независимы, т. к..gif" width="166" height="26 src=">.gif" width="45" height="25 src=">..gif" width="65" height="33 src=">.gif" width="134" height="25 src=">.gif" width="267" height="25 src=">.gif" width="474" height="25 src=">.

Обе скобки в левой части этого равенства тождественно равны нулю..gif" width="174" height="25 src=">..gif" width="132" height="25 src="> есть решение уравнения (5.1)..gif" width="129" height="25 src="> будет иметь вид:

https://pandia.ru/text/78/516/images/image162_6.gif" width="179" height="25 src="> f(x) (6.1)

представляется в виде суммы общего решения https://pandia.ru/text/78/516/images/image164_6.gif" width="195" height="25 src="> (6.2)

и любого частного решения https://pandia.ru/text/78/516/images/image166_6.gif" width="87" height="25 src="> будет решением уравнения (6.1)..gif" width="272" height="25 src="> f(x). Это равенство является тождеством, т. к..gif" width="128" height="25 src="> f(x). Следовательно.gif" width="85" height="25 src=">.gif" width="138" height="25 src=">.gif" width="18" height="25 src="> – линейно независимые решения этого уравнения. Таким образом:

https://pandia.ru/text/78/516/images/image173_5.gif" width="289" height="48 src=">

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="11" height="25 src=">.gif" width="51" height="25 src=">, а такой определитель, как мы видели выше, отличен от нуля..gif" width="19" height="25 src="> из системы уравнений (6..gif" width="76" height="25 src=">.gif" width="76" height="25 src=">.gif" width="140" height="25 src="> будет решением уравнения

https://pandia.ru/text/78/516/images/image179_5.gif" width="91" height="25 src="> в уравнение (6.5), получим

https://pandia.ru/text/78/516/images/image181_5.gif" width="140" height="25 src=">.gif" width="128" height="25 src="> f(x) (7.1)

где https://pandia.ru/text/78/516/images/image185_5.gif" width="34" height="25 src="> уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1..gif" width="282" height="25 src=">.gif" width="53" height="25 src=">, могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image191_5.gif" width="393" height="25 src=">.gif" width="157" height="25 src=">.

Решение.

Для уравнения https://pandia.ru/text/78/516/images/image195_4.gif" width="86" height="25 src=">..gif" width="62" height="25 src=">..gif" width="101" height="25 src=">.gif" width="153" height="25 src=">.gif" width="383" height="25 src=">.

Обе части сокращаем на https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src="> в левой и правой частях равенства

https://pandia.ru/text/78/516/images/image206_5.gif" width="111" height="40 src=">

Из полученной системы уравнений находим: https://pandia.ru/text/78/516/images/image208_5.gif" width="189" height="25 src=">, а общее решение заданного уравнения есть:

https://pandia.ru/text/78/516/images/image190_5.gif" width="11" height="25 src=">.gif" width="423" height="25 src=">,

где https://pandia.ru/text/78/516/images/image212_5.gif" width="158" height="25 src=">.

Решение.

Соответствующее характеристическое уравнение имеет вид:

https://pandia.ru/text/78/516/images/image214_6.gif" width="53" height="25 src=">.gif" width="85" height="25 src=">.gif" width="45" height="25 src=">.gif" width="219" height="25 src=">..gif" width="184" height="35 src=">. Окончательно имеем следующее выражение для общего решения:

https://pandia.ru/text/78/516/images/image223_4.gif" width="170" height="25 src=">.gif" width="13" height="25 src="> отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image227_5.gif" width="204" height="25 src=">,

где https://pandia.ru/text/78/516/images/image226_5.gif" width="16" height="25 src="> является корнем характеристического уравнения для уравнения (5..gif" width="229" height="25 src=">,

где https://pandia.ru/text/78/516/images/image229_5.gif" width="147" height="25 src=">.

Решение.

Корни характеристического уравнения для уравнения https://pandia.ru/text/78/516/images/image231_4.gif" width="58" height="25 src=">.gif" width="203" height="25 src=">.

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) https://pandia.ru/text/78/516/images/image235_3.gif" width="50" height="25 src=">.gif" width="55" height="25 src=">.gif" width="229" height="25 src=">.

Для определения https://pandia.ru/text/78/516/images/image240_2.gif" width="11" height="25 src=">.gif" width="43" height="25 src="> и подставляем в заданное уравнение:

Приводя подобные члены, приравнивая коэффициенты при https://pandia.ru/text/78/516/images/image245_2.gif" width="46" height="25 src=">.gif" width="100" height="25 src=">.

Окончательно общее решение заданного уравнения имеет вид: https://pandia.ru/text/78/516/images/image249_2.gif" width="281" height="25 src=">.gif" width="47" height="25 src=">.gif" width="10" height="25 src="> соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число https://pandia.ru/text/78/516/images/image255_2.gif" width="605" height="51">, (7.2)

где https://pandia.ru/text/78/516/images/image257_2.gif" width="121" height="25 src=">.

б) Если число https://pandia.ru/text/78/516/images/image210_5.gif" width="80" height="25 src=">, то частное решение лнду будет иметь вид:

https://pandia.ru/text/78/516/images/image259_2.gif" width="17" height="25 src=">. В выражении (7..gif" width="121" height="25 src=">.

Пример 4. Указать вид частного решения для уравнения

https://pandia.ru/text/78/516/images/image262_2.gif" width="129" height="25 src=">..gif" width="95" height="25 src=">. Общее решение лоду имеет вид:

https://pandia.ru/text/78/516/images/image266_2.gif" width="183" height="25 src=">..gif" width="42" height="25 src=">..gif" width="36" height="25 src=">.gif" width="351" height="25 src=">.

Далее коэффициенты https://pandia.ru/text/78/516/images/image273_2.gif" width="34" height="25 src=">.gif" width="42" height="28 src="> есть частное решение для уравнения с правой частью f1(x), а Вариация" href="/text/category/variatciya/" rel="bookmark">вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

https://pandia.ru/text/78/516/images/image278_2.gif" width="46" height="25 src=">.gif" width="51" height="25 src="> – не постоянные, а некоторые, пока неизвестные, функции от f(x). . нужно брать из интервала. В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала, т. е. во всем пространстве – комплексный корень характеристического уравнения..gif" width="20" height="25 src="> линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида.