Приведение пары форм к каноническому виду. Методы приведения квадратичной формы к каноническому виду. Линейные преобразования переменных

220400 Алгебра и геометрия Толстиков А.В.

Лекции 16. Билинейные и квадратичные формы.

План

1. Билинейная форма и ее свойства.

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

3. Приведение квадратичной формы к каноническому виду. Метод Лагранжа.

4. Закон инерции квадратичных форм.

5. Приведение квадратичной формы к каноническому виду по методу собственных значений.

6. Критерий Сильверста положительной определенности квадратичной формы.

1. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1984.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997.

3. Воеводин В.В. Линейная алгебра.. М.: Наука 1980.

4. Сборник задач по для втузов. Линейная алгебра и основы математического анализа. Под ред. Ефимова А.В., Демидовича Б.П.. М.: Наука, 1981.

5. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит, 2001.

, , , ,

1. Билинейная форма и ее свойства. Пусть V - n -мерное векторное пространство над полем P.

Определение 1. Билинейной формой , определенной на V, называется такое отображение g : V 2 ® P , которое каждой упорядоченной паре (x , y ) векторов x , y из ставит в V соответствие число из поля P , обозначаемое g (x , y ), и линейное по каждой из переменных x , y , т.е. обладающее свойствами:

1) ("x , y , z ÎV ) g (x + y , z ) = g (x , z ) + g (y , z );

2) ("x , y ÎV ) ("a ÎP ) g (ax , y ) = ag (x , y );

3) ("x , y , z ÎV ) g (x , y + z ) = g (x , y ) + g (x , z );

4) ("x , y ÎV ) ("a ÎP ) g (x , ay ) = ag (x , y ).

Пример 1 . Любое скалярное произведение, определенное на векторном пространстве V является билинейной формой.

2 . Функция h (x , y ) = 2x 1 y 1 - x 2 y 2 + x 2 y 1 , где x = (x 1 , x 2), y = (y 1 , y 2)ÎR 2 , билинейная форма на R 2 .

Определение 2. Пусть v = (v 1 , v 2 ,…, v n V. Матрицей билинейной формы g (x , y ) относительно базиса v называется матрица B =(b ij ) n ´ n , элементы которой вычисляются по формуле b ij = g (v i , v j ):

Пример 3 . Матрица билинейной формы h (x , y ) (см. пример 2) относительно базиса e 1 = (1,0), e 2 = (0,1) равна .

Теорема 1 . Пусть X, Y- координатные столбцы соответственно векторов x , y в базисе v, B - матрица билинейной формы g (x , y ) относительно базиса v . Тогда билинейную форму можно записать в виде

g (x , y )=X t BY . (1)

Доказательство. По свойствам билинейной формы получаем

Пример 3 . Билинейной формы h (x , y ) (см. пример 2) можно записать в виде h (x , y )=.

Теорема 2 . Пусть v = (v 1 , v 2 ,…, v n ), u = (u 1 , u 2 ,…, u n ) - два базиса векторного пространства V, T- матрица перехода от базиса v к базису u. Пусть B = (b ij ) n ´ n и С =(с ij ) n ´ n - матрицы билинейной формы g (x , y ) соответственно относительно базисов v и u. Тогда

С = T t BT. (2)

Доказательство. По определению матрицы перехода и матрицы билинейной формы находим:



Определение 2. Билинейная форма g (x , y ) называется симметричной , если g (x , y ) = g (y , x ) для любых x , y ÎV.

Теорема 3 . Билинейная форма g (x , y )- симметричной тогда и только тогда, когда матрица билинейной формы относительно любого базиса симметричная.

Доказательство. Пусть v = (v 1 , v 2 ,…, v n ) - базис векторного пространства V, B = (b ij ) n ´ n - матрицы билинейной формы g (x , y ) относительно базиса v. Пусть билинейная форма g (x , y )- симметричная. Тогда по определению 2 для любых i, j = 1, 2,…, n имеем b ij = g (v i , v j ) = g (v j , v i ) = b ji . Тогда матрица B - симметричная.

Обратно, пусть матрица B - симметричная. Тогда B t = B и для любых векторов x = x 1 v 1 + …+ x n v n = vX, y = y 1 v 1 + y 2 v 2 +…+ y n v n = vY ÎV , согласно формуле (1), получаем (учитываем, что число - матрица порядка 1, и при транспонировании не меняется)

g (x , y ) = g (x , y ) t = (X t BY ) t = Y t B t X = g (y , x ).

2. Квадратичная форма. Матрица квадратичной формы. Преобразование координат.

Определение 1. Квадратичной формой определенной на V, называется отображение f : V ® P , которое для любого векторов x из V определяется равенством f (x ) = g (x , x ), где g (x , y ) - симметричная билинейная форма, определенная на V .

Свойство 1. По заданной квадратичной форме f (x ) билинейная форма находится однозначно по формуле

g (x , y ) = 1/2(f (x + y ) - f (x )- f (y )). (1)

Доказательство. Для любых векторов x , y ÎV получаем по свойствам билинейной формы

f (x + y ) = g (x + y , x + y ) = g (x , x + y ) + g (y , x + y ) = g (x , x ) + g (x , y ) + g (y , x ) + g (y , y ) = f (x ) + 2g (x , y ) + f (y ).

Отсюда следует формула (1). 

Определение 2. Матрицей квадратичной формы f (x ) относительно базиса v = (v 1 , v 2 ,…, v n ) называется матрица соответствующей симметричной билинейной формы g (x , y ) относительно базиса v .

Теорема 1 . Пусть X = (x 1 , x 2 ,…, x n ) t - координатный столбец вектора x в базисе v, B - матрица квадратичной формы f (x ) относительно базиса v . Тогда квадратичную форму f (x )

А с матрицей .

Это симметрическое преобразование можно записать в виде:

y 1 = a 11 x 1 + a 12 x 2

y 2 = a 12 x 1 + a 22 x 2

где у 1 и у 2 - координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде:

Ф(х 1 , х 2) = х 1 у 1 + х 2 у 2 .

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х 1 и х 2 - скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

При переходе к новому базису от переменных х 1 и х 2 мы переходим к переменным и . Тогда:

Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

Пример. Привести к каноническому виду квадратичную форму

Ф(х 1 , х 2) = 27.

Коэффициенты : а 11 = 27, а 12 = 5, а 22 = 3.

Составим характеристическое уравнение : ;

(27 - l)(3 - l) - 25 = 0

l 2 - 30l + 56 = 0

l 1 = 2; l 2 = 28;

Пример. Привести к каноническому виду уравнение второго порядка:

17x 2 + 12xy + 8y 2 - 20 = 0.

Коэффициенты а 11 = 17, а 12 = 6, а 22 = 8. А =

Составим характеристическое уравнение:

(17 - l)(8 - l) - 36 = 0

136 - 8l - 17l + l 2 - 36 = 0

l 2 - 25l + 100 = 0

l 1 = 5, l 2 = 20.

Итого: - каноническое уравнение эллипса.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l 1 = 2, l 2 = 6.

Найдем координаты собственных векторов:

Собственные векторы :

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример . Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение : Составим характеристическое уравнение квадратичной формы : при


Решив это уравнение, получим l 1 = 1, l 2 = 11.

Найдем координаты собственных векторов:

полагая m 1 = 1, получим n 1 =

полагая m 2 = 1, получим n 2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

При использовании компьютерной версии “Курса высшей математики ” возможно запустить программу, которая решает рассморенные выше примеры для любых начальных условий.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите коэффициенты квадратичной формы и нажмите Enter.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Данный метод состоит в последовательном выделении в квадратичной форме полных квадратов.

Пусть дана квадратичная форма

Напомним, что, ввиду симметричности матрицы

,

Возможны два случая:

1. Хотя бы один из коэффициентовпри квадратах отличен от нуля. Не нарушая общности, будем считать(этого всегда можно добиться соответствующей перенумерацией переменных);

2. Все коэффициенты,

но есть коэффициент , отличный от нуля (для определённости пусть будет).

В первом случае преобразуем квадратичную форму следующим образом:

,

а через обозначены все остальные слагаемые.

представляет собой квадратичную форму от (n-1) переменных .

С ней поступают аналогичным образом и так далее.

Заметим, что

Второй случай заменой переменных

сводится к первому.

Пример 1:Квадратичную форму привести к каноническому виду посредством невырожденного линейного преобразования.

Решение. Соберём все слагаемые, содержащие неизвестное , и дополним их до полного квадрата

.

(Так как .)

или

(3)

или


(4)

и от неизвестных
формапримет вид. Далее полагаем

или

и от неизвестных
формапримет уже канонический вид

Разрешим равенства (3) относительно
:

или

Последовательное выполнение линейных преобразований
и
, где

,

имеет матрицей

Линейное преобразование неизвестных
приводит квадратичную форму к каноническому виду (4). Переменные
связаны с новыми переменными
соотношениями

С LU - разложением мы познакомились в практикуме 2_1

Вспомним утверждения из практикума 2_1

Утверждения (см.Л.5, стр. 176)


Данный скрипт призван понять роль LU в методе Лагранжа, с ним нужно работать в блокноте EDITOR с помощью кнопки F9.

А в прилагаемых ниже заданиях лучше создать свои М-функции, помогающие вычислению и осознанию задач линейной алгебры (в рамках данной работы)

Ax=X."*A*X % получаем квадратичную форму

Ax=simple(Ax) % упрощаем ее

4*x1^2 - 4*x1*x2 + 4*x1*x3 + x2^2 - 3*x2*x3 + x3^2

% найдем LU разложение без перестановки строк матрицы A

% При преобразовании матрицы к ступенчатому виду

%без перестановок строк, мы получим матрицу M1 и U3

% U получается из A U3=M1*A,

% вот такой матрицей элементарных преобразований

0.5000 1.0000 0

0.5000 0 1.0000

%мы получим U3=M1*A, где

4.0000 -2.0000 2.0000

% из M1 легко получить L1, поменяв знаки

% в первом столбце во всех строках кроме первой.

0.5000 1.0000 0

0.5000 0 1.0000

% L1 такое, что

A_=L1*U % вот это и есть нужное нам LU разложение

% Элементы, стоящие на главной диагонали U -

% это коэффициенты при квадратах y i ^2

% в преобразованной квадратичной форме

% в нашем случае, есть один только коэффициент

% значит, в новых координатах будет только 4y 1 2 в квадрате,

% при остальных 0y 2 2 и 0y 3 2 коэффициенты равны нулю

% столбцы матрицы L1 - это разложение Y по X

% по первому столбцу видим y1=x1-0.5x2+0.5x3

% по второму видим y2=x2; по третьему y3=x3.

% если транспонировать L1,

% то есть T=L1."

% T - матрица перехода от {X} к {Y}: Y=TX

0.5000 1.0000 0

1.0000 -0.5000 0.5000

% A2 – матрица преобразованной квадратичной формы

% Заметим U=A2*L1." и A=L1* A2*L1."

4.0000 -2.0000 2.0000

1.0000 -0.5000 0.5000

% Итак, мы получили разложение A_=L1* A2*L1." или A_=T."* A2*T

% показывающее замену переменных

% y1=x1-0.5x2+0.5x3

% и представление квадратичной формы в новых координатах

A_=T."*A2*T % T=L1." матрица перехода от {X} к {Y}: Y=TX

isequal(A,A_) % должно совпасть с исходной A

4.0000 -2.0000 2.0000

2.0000 1.0000 -1.5000

2.0000 -1.5000 1.0000

Q1=inv(T) % находим матрицу перехода от {Y} к {X}

% Найдем преобразование,

% приводящее квадратичную форму Ax=X."*A*X

% к новому виду Ay=(Q1Y)."*A*Q1Y=Y." (Q1."*A*Q1)*Y=Y." (U)*Y

Ay =4*y1^2 - y2*y3

x1 - x2/2 + x3/2

% матрица второго преобразования,

% которая составляется значительно проще.

4*z1^2 - z2^2 + z3^2

% R=Q1*Q2, X=R*Z

R=Q1*Q2 % невырожденное линейное преобразование

% приводящее матрицу оператора к каноническому виду.

det(R) % определитель не равен нулю - преобразование невырожденное

4*z1^2 - z2^2 + z3^2 ok

4*z1^2 - z2^2 + z3^2


Сформулируем алгоритм приведения квад ратичной формы к каноническому виду ортогональным преобразованием:


Дана квадратичная форма (2) A (x , x ) = , где x = (x 1 , x 2 , …, x n ). Рассмотрим квадратичную форму в пространстве R 3 , то есть x = (x 1 , x 2 , x 3), A (x , x ) =
+
+
+
+
+
+ +
+
+
=
+
+
+ 2
+ 2
+ + 2
(использовали условие симметричности формы, а именно а 12 = а 21 , а 13 = а 31 , а 23 = а 32). Выпишем матрицу квадратичной формы A в базисе {e }, A (e ) =
. При изменении базиса матрица квадратичной формы меняется по формуле A (f ) = C t A (e )C , где C – матрица перехода от базиса {e } к базису {f }, а C t – транспонированная матрица C .

Определение 11.12. Вид квадратичной формы с диагональной матрицей называется каноническим .

Итак, пусть A (f ) =
, тогда A "(x , x ) =
+
+
, где x " 1 , x " 2 , x " 3 – координаты вектора x в новом базисе {f }.

Определение 11.13. Пусть в n V выбран такой базис f = {f 1 , f 2 , …, f n }, в котором квадратичная форма имеет вид

A (x , x ) =
+
+ … +
, (3)

где y 1 , y 2 , …, y n – координаты вектора x в базисе {f }. Выражение (3) называется каноническим видом квадратичной формы. Коэффициенты  1 , λ 2 , …, λ n называются каноническими ; базис, в котором квадратичная форма имеет канонический вид, называется каноническим базисом .

Замечание . Если квадратичная форма A (x , x ) приведена к каноническому виду, то, вообще говоря, не все коэффициенты  i отличны от нуля. Ранг квадратичной формы равен рангу ее матрицы в любом базисе.

Пусть ранг квадратичной формы A (x , x ) равен r , где r n . Матрица квадратичной формы в каноническом виде имеет диагональный вид. A (f ) =
, поскольку ее ранг равен r , то среди коэффициентов  i должно быть r , не равных нулю. Отсюда следует, что число отличных от нуля канонических коэффициентов равно рангу квадратичной формы.

Замечание . Линейным преобразованием координат называется переход от переменных x 1 , x 2 , …, x n к переменным y 1 , y 2 , …, y n , при котором старые переменные выражаются через новые переменные с некоторыми числовыми коэффициентами.

x 1 = α 11 y 1 + α 12 y 2 + … + α 1 n y n ,

x 2 = α 2 1 y 1 + α 2 2 y 2 + … + α 2 n y n ,

………………………………

x 1 = α n 1 y 1 + α n 2 y 2 + … + α nn y n .

Так как каждому преобразованию базиса отвечает невырожденное линейное преобразование координат, то вопрос о приведении квадратичной формы к каноническому виду можно решать путем выбора соответствующего невырожденного преобразования координат.

Теорема 11.2 (основная теорема о квадратичных формах). Всякая квадратичная форма A (x , x ), заданная в n -мерном векторном пространстве V , с помощью невырожденного линейного преобразования координат может быть приведена к каноническому виду.

Доказательство . (Метод Лагранжа) Идея этого метода состоит в последовательном дополнении квадратного трехчлена по каждой переменной до полного квадрата. Будем считать, что A (x , x ) ≠ 0 и в базисе e = {e 1 , e 2 , …, e n } имеет вид (2):

A (x , x ) =
.

Если A (x , x ) = 0, то (a ij ) = 0, то есть форма уже каноническая. Формулу A (x , x ) можно преобразовать так, чтобы коэффициент a 11 ≠ 0. Если a 11 = 0, то коэффициент при квадрате другой переменной отличен от нуля, тогда при помощи перенумерации переменных можно добиться, чтобы a 11 ≠ 0. Перенумерация переменных является невырожденным линейным преобразованием. Если же все коэффициенты при квадратах переменных равны нулю, то нужные преобразования получаются следующим образом. Пусть, например, a 12 ≠ 0 (A (x , x ) ≠ 0, поэтому хотя бы один коэффициент a ij ≠ 0). Рассмотрим преобразование

x 1 = y 1 – y 2 ,

x 2 = y 1 + y 2 ,

x i = y i , при i = 3, 4, …, n .

Это преобразование невырожденное, так как определитель его матрицы отличен от нуля
= = 2 ≠ 0.

Тогда 2a 12 x 1 x 2 = 2 a 12 (y 1 – y 2)(y 1 + y 2) = 2
– 2
, то есть в форме A (x , x ) появятся квадраты сразу двух переменных.

A (x , x ) =
+ 2
+ 2
+
. (4)

Преобразуем выделенную сумму к виду:

A (x , x ) = a 11
, (5)

при этом коэффициенты a ij меняются на . Рассмотрим невырожденное преобразование

y 1 = x 1 + + … + ,

y 2 = x 2 ,

y n = x n .

Тогда получим

A (x , x ) =
. (6).

Если квадратичная форма
= 0, то вопрос о приведении A (x , x ) к каноническому виду решен.

Если эта форма не равна нулю, то повторяем рассуждения, рассматривая преобразования координат y 2 , …, y n и не меняя при этом координату y 1 . Очевидно, что эти преобразования будут невырожденными. За конечное число шагов квадратичная форма A (x , x ) будет приведена к каноническому виду (3).

Замечание 1. Нужное преобразование исходных координат x 1 , x 2 , …, x n можно получить путем перемножения найденных в процессе рассуждений невырожденных преобразований: [x ] = A [y ], [y ] = B [z ], [z ] = C [t ], тогда [x ] = A B [z ] = A B C [t ], то есть [x ] = M [t ], где M = A B C .

Замечание 2. Пусть A (x , x ) = A (x , x ) =
+
+ …+
, где  i ≠ 0, i = 1, 2, …, r , причем  1 > 0, λ 2 > 0, …, λ q > 0, λ q +1 < 0, …, λ r < 0.

Рассмотрим невырожденное преобразование

y 1 = z 1 , y 2 = z 2 , …, y q = z q , y q +1 =
z q +1 , …, y r = z r , y r +1 = z r +1 , …, y n = z n . В результате A (x , x ) примет вид: A (x , x ) = + + … + – … – , который называется нормальным видом квадратичной формы .

Пример 11.1. Привести к каноническому виду квадратичную форму A (x , x ) = 2x 1 x 2 – 6x 2 x 3 + 2x 3 x 1 .

Решение . Поскольку a 11 = 0, используем преобразование

x 1 = y 1 – y 2 ,

x 2 = y 1 + y 2 ,

x 3 = y 3 .

Это преобразование имеет матрицу A =
, то есть [x ] = A [y ] получим A (x , x ) = 2(y 1 – y 2)(y 1 + y 2) – 6(y 1 + y 2)y 3 + 2y 3 (y 1 – y 2) =

2– 2– 6y 1 y 3 – 6y 2 y 3 + 2y 3 y 1 – 2y 3 y 2 = 2– 2– 4y 1 y 3 – 8y 3 y 2 .

Поскольку коэффициент при не равен нулю, можно выделить квадрат одного неизвестного, пусть это будет y 1 . Выделим все члены, содержащие y 1 .

A (x , x ) = 2(– 2 y 1 y 3) – 2– 8y 3 y 2 = 2(– 2 y 1 y 3 + ) – 2– 2– 8y 3 y 2 = 2(y 1 – y 3) 2 – 2– 2– 8y 3 y 2 .

Выполним преобразование, матрица которого равна B .

z 1 = y 1 – y 3 ,  y 1 = z 1 + z 3 ,

z 2 = y 2 ,  y 2 = z 2 ,

z 3 = y 3 ;  y 3 = z 3 .

B =
, [y ] = B [z ].

Получим A (x , x ) = 2– 2– 8z 2 z 3 . Выделим члены, содержащие z 2 . Имеем A (x , x ) = 2– 2(+ 4z 2 z 3) – 2= 2– 2(+ 4z 2 z 3 + 4) + + 8 – 2 = 2– 2(z 2 + 2z 3) 2 + 6.

Выполняем преобразование с матрицей C :

t 1 = z 1 ,  z 1 = t 1 ,

t 2 = z 2 + 2z 3 ,  z 2 = t 2 – 2t 3 ,

t 3 = z 3 ;  z 3 = t 3 .

C =
, [z ] = C [t ].

Получили: A (x , x ) = 2– 2+ 6 канонический вид квадратичной формы, при этом [x ] = A [y ], [y ] = B [z ], [z ] = C [t ], отсюда [x ] = ABC [t ];

A B C =


=
. Формулы преобразований следующие

x 1 = t 1 – t 2 + t 3 ,

x 2 = t 1 + t 2 – t 3 ,