Разброс случайной величины. Остаточная дисперсия

Для сгруппированных данных остаточная дисперсия - средняя из внутригрупповых дисперсий:

Где σ 2 j - внутригрупповая дисперсия j -й группы.

Для не сгруппированных данных остаточная дисперсия – мера точности аппроксимации, т.е. приближения линии регрессии к исходным данным:
где y(t) – прогноз по уравнению тренда; y t – исходный ряд динамики; n – количество точек; p – число коэффициентов уравнения регрессии (количество объясняющих переменных).
В этом примере она называется несмещенная оценка дисперсии .

Пример №1 . Распределение рабочих трех предприятий одного объединения по тарифным разрядам характеризуется следующими данными:

Тарифный разряд рабочего Численность рабочих на предприятии
предприятие 1 предприятие 2 предприятие 3
1 50 20 40
2 100 80 60
3 150 150 200
4 350 300 400
5 200 150 250
6 150 100 150

Определить:
1. дисперсию по каждому предприятию (внутригрупповые дисперсии);
2. среднюю из внутригрупповых дисперсий;
3. межгрупповую дисперсию ;
4. общую дисперсию.

Решение.
Прежде чем приступить к решению задачи необходимо выяснить, какой признак является результативным, а какой – факторным. В рассматриваемом примере результативным признаком является «Тарифный разряд», а факторным признаком – «Номер (название) предприятия».
Тогда имеем три группы (предприятия), для которых необходимо рассчитать групповую среднюю и внутригрупповые дисперсии :


Предприятие Групповая средняя, Внутригрупповая дисперсия,
1 4 1,8

Средняя из внутригрупповых дисперсий (остаточная дисперсия ) рассчитаем по формуле:


где можно рассчитать:
либо:


тогда:
Общая дисперсия будет равна: s 2 = 1,6 + 0 = 1,6.
Общую дисперсию также можно рассчитать и по одной из следующих двух формул:

При решении практических задач часто приходится иметь дело с признаком, принимающим только два альтернативных значения. В этом случае говорят не о весе того или иного значения признака, а о его доле в совокупности. Если долю единиц совокупности, обладающих изучаемым признаком, обозначить через «р », а не обладающих – через «q », то дисперсию можно рассчитать по формуле:
s 2 = p×q

Пример №2 . По данным о выработке шести рабочих бригады определить межгрупповую дисперсию и оценить влияние рабочей смены на их производительность труда, если общая дисперсия равна 12,2 .

№ рабочего бригады Выработка рабочего, шт.
в I смену во II смену
1 18 13
2 19 14
3 22 15
4 20 17
5 24 16
6 23 15

Решение . Исходные данные

X f 1 f 2 f 3 f 4 f 5 f 6 Итого
1 18 19 22 20 24 23 126
2 13 14 15 17 16 15 90
Итого 31 33 37 37 40 38

Тогда имеем 6 группы, для которых необходимо рассчитать групповую среднюю и внутригрупповые дисперсии.
1. Находим средние значения каждой группы .







2. Находим среднее квадратическое каждой группы .







Результаты расчета сведем в таблицу:
Номер группы Групповая средняя Внутригрупповая дисперсия
1 1.42 0.24
2 1.42 0.24
3 1.41 0.24
4 1.46 0.25
5 1.4 0.24
6 1.39 0.24

3. Внутригрупповая дисперсия характеризует изменение (вариацию) изучаемого (результативного) признака в пределах группы под действием на него всех факторов, кроме фактора, положенного в основание группировки:
Среднюю из внутригрупповых дисперсий рассчитаем по формуле:


4. Межгрупповая дисперсия характеризует изменение (вариацию) изучаемого (результативного) признака под действием на него фактора (факторного признака), положенного в основание группировки.
Межгрупповую дисперсию определим как:

где


Тогда

Общая дисперсия характеризует изменение (вариацию) изучаемого (результативного) признака под действием на него всех без исключения факторов (факторных признаков). По условию задачи она равна 12.2 .
Эмпирическое корреляционное отношение измеряет, какую часть общей колеблемости результативного признака вызывает изучаемый фактор. Это отношение факторной дисперсии к общей дисперсии:

Определяем эмпирическое корреляционное отношение:

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 0.3 0.5 0.7 0.9 В нашем примере связь между признаком Y фактором X слабая
Коэффициент детерминации.

Определим коэффициент детерминации:

Таким образом, на 0.67% вариация обусловлена различиями между признаками, а на 99.37% – другими факторами.
Вывод : в данном случае выработка рабочих не зависит от работы в конкретную смену, т..е. влияние рабочей смены на их производительность труда не значительное и обусловлено другими факторами.

Пример №3 . На основе данных о средней заработной плате и квадратах отклонений от её величины по двум группам рабочих найти общую дисперсию, применив правило сложения дисперсий:

Решение:
Средняя из внутригрупповых дисперсий

Межгрупповую дисперсию определим как:


Общая дисперсия будет равна: 480 + 13824 = 14304

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия  это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается  2 . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

 дисперсия невзвешенная (простая);

 дисперсия взвешенная.

Среднее квадратическое отклонение  это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т. д.).

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается :

 среднее квадратическое отклонение невзвешенное;

 среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Порядок расчета дисперсии взвешенной следующий:

1) определяют среднюю арифметическую взвешенную:

2) рассчитывают отклонения вариантов от средней:

3) возводят в квадрат отклонение каждого варианта от средней:

4) умножают квадраты отклонений на веса (частоты):

5) суммируют полученные произведения:

6) полученную сумму делят на сумму весов:

Пример 2.1

Исчислим среднюю арифметическую взвешенную:

Значения отклонений от средней и их квадратов представлены в таблице. Определим дисперсию:

Среднее квадратическое отклонение будет равно:

Если исходные данные представлены в виде интервального ряда распределения , то сначала нужно определить дискретное значение признака, а затем применить изложенный метод.

Пример 2.2

Покажем расчет дисперсии для интервального ряда на данных о распределении посевной площади колхоза по урожайности пшеницы.

Средняя арифметическая равна:

Исчислим дисперсию:

6.3. Расчет дисперсии по формуле по индивидуальным данным

Техника вычисления дисперсии сложна, а при больших значениях вариантов и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.

Дисперсия имеет следующие свойства.

1. Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсию не изменяет.

2. Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсию не изменяет.

3. Уменьшение или увеличение каждого значения признака в какое-то число раз k соответственно уменьшает или увеличивает дисперсию в k 2 раз, а среднее квадратическое отклонение  в k раз.

4. Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величинами:

Если А  0, то приходим к следующему равенству:

т. е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

Порядок расчета дисперсии простой:

1) определяют среднюю арифметическую :

2) возводят в квадрат среднюю арифметическую:

3) возводят в квадрат отклонение каждого варианта ряда:

х i 2 .

4) находят сумму квадратов вариантов:

5) делят сумму квадратов вариантов на их число, т. е. определяют средний квадрат:

6) определяют разность между средним квадратом признака и квадратом средней:

Пример 3.1 Имеются следующие данные о производительности труда рабочих:

Произведем следующие расчеты:

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

Виды дисперсий:

Общая дисперсия характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле

где - общая средняя арифметическая всей исследуемой совокупности.

Средняя внутригрупповая дисперсия свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам (), затем рассчитывается средняя внутригрупповая дисперсия:

где n i - число единиц в группе

Межгрупповая дисперсия (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки.

где - средняя величина по отдельной группе.

Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

Свойства:

25 Относительные показатели вариации

Коэффициент осцилляции

Относительное линейное отклонение

Коэффициент вариации

Коэф. Осц. о тражает относительную колеблемость крайних значений признака вокруг средней. Отн. лин. откл . характеризует долю усредненного значения признака абсолютных отклонений от средней величины. Коэф. Вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

    Закономерность рядов распределения. Моменты распределения. Показатели формы распределения

В вариационных рядах существует связь между частотами и значениями варьирующего признака: с увеличением признака величина частоты сначала возрастает до определённой границы, а потом уменьшается. Такие изменения называются закономерностями распределения.

Форму распределения изучают с помощью показателей асимметрии и эксцесса. При исчислении указанных показателей используют моменты распределения.

Моментом k-го порядка называют среднюю из k-х степеней отклонений вариантов значений признака от некоторой постоянной величины. Порядок момента определяется величиной k. При анализе вариационных рядов ограничиваются расчетом моментов первых четырех порядков. При исчислении моментов в качестве весов могут быть использованы частоты или частости. В зависимости от выбора постоянной величины различают начальные, условные и центральные моменты.

Показатели формы распределения:

Асимметрия (As) показатель характеризующий степень асимметричности распределения.

Следовательно, при (левосторонней) отрицательной асимметрии . При (правосторонней) положительной асимметрии.

Для расчета асимметрии можно использовать центральные моменты. Тогда:

,

где μ 3 – центральный момент третьего порядка.

- эксцесс (Е к ) характеризует крутизну графика функции в сравнении с с нормальным распределением при той же силе вариации:

,

где μ 4 – центральный момент 4-ого порядка.

    Закон нормального распределения

Для нормального распределения (распределения Гаусса) функция распределения имеет следующий вид:

Матожидание- стандартное отклонение

Нормальное распределение симметрично и для него характерно следующее соотношение: Хср=Ме=Мо

Эксцесс нормального распределения равен 3, а коэффициент асимметрии 0.

Кривая нормального распределения представляет собой полигон(симметричная колокобразная прямая)

    Виды дисперсий. Правило сложения дисперсий. Сущность эмпирического коэффициента детерминации.

Если исходная совокупность разделена на группы по какому-то существенному признаку, то вычисляют следующие виды дисперсий:

    Общая дисперсия исходной совокупности:

где - общая средняя величина исходной совокупности;f– частоты исходной совокупности. Общая дисперсия характеризует отклонение индивидуальных значений признака от общей средней величины исходной совокупности.

    Внутригрупповые дисперсии:

где j- номер группы;- средняя величина в каждойj-ой группе;- частотыj-ой группы. Внутригрупповые дисперсии характеризуют отклонение индивидуального значения признака в каждой группе от групповой средней величины. Из всех внутригрупповых дисперсий вычисляют среднюю по формуле:, где- численность единиц в каждойj-ой группе.

    Межгрупповая дисперсия:

Межгрупповая дисперсия характеризует отклонение групповых средних величин от общей средней величины исходной совокупности.

Правило сложения дисперсий заключается в том, что общая дисперсия исходной совокупности должна быть равна сумме межгрупповой и средней из внутригрупповых дисперсий:

Эмпирический коэффициент детерминации показывает долю вариации изучаемого признака, обусловленную вариацией группировочного признака, и рассчитывается по формуле:

    Способ отсчета от условного нуля (способ моментов) для расчета средней величины и дисперсии

Расчет дисперсии способом моментов основан на использовании формулы и 3 и 4 свойств дисперсии.

(3.Если все значения признака (варианты) увеличить (уменьшить) на какое-то постоянное число А, то дисперсия новой совокупности не изменится.

4.Если все значения признака (варианты) увеличить (умножить) в К раз, где К – постоянное число, то дисперсия новой совокупности увеличится (уменьшится) в К 2 раз.)

Получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:

А- условный ноль, равный варианте с максимальной частотой (середина интервала с максимальной частотой)

Расчет средней величины способом моментов также основан на использовании свойств средней.

    Понятие о выборочном наблюдении. Этапы исследования экономических явлений выборочным методом

Выборочным называют наблюдение, при котором обследованию и изучению подвергаются не все единицы исходной совокупности, а только часть единиц, при этом результат обследования части совокупности распространяется на всю исходную совокупность. Совокупность, из которой производится отбор единиц для дальнейшего обследования и изучения называется генеральной и все показатели, характеризующие эту совокупность, называютсягенеральными .

Возможные пределы отклонений выборочной средней величины от генеральной средней величины называют ошибкой выборки .

Совокупность отобранных единиц называется выборочной и все показатели, характеризующие эту совокупность, называютсявыборочными .

Выборочное исследование включает следующие этапы:

Характеристика объекта исследования (массовые экономические явления). Если генеральная совокупность небольшая, то выборку проводить не рекомендуется, необходимо сплошное исследование;

Расчет объема выборки. Важно определить оптимальный объем, который позволит при наименьших затратах получить ошибку выборки в пределах допустимой;

Проведение отбора единиц наблюдения с учетом требований случайности, пропорциональности.

Доказательство репрезентативности, основанное на оценке ошибки выборки. Для случайной выборки ошибка рассчитывается с использованием формул. Для целевой выборки репрезентативность оценивается с помощью качественных методов (сравнения, эксперимента);

Анализ выборочной совокупности. Если сформированная выборка отвечает требованиям репрезентативности, то проводится ее анализ с использованием аналитических показателей (средних, относительных и проч.)

Часто в статистике при анализе какого-либо явления или процесса необходимо учитывать не только информацию о средних уровнях исследуемых показателей, но и разброс или вариацию значений отдельных единиц , которая является важной характеристикой изучаемой совокупности.

В наибольшей степени вариации подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды времени и в разных местах.

Основными показателями, характеризующими вариацию , являются размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Размах вариации представляет собой разность максимального и минимального значений признака: R = Xmax – Xmin . Недостатком данного показателя является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ.

Дисперсия лишена этого недостатка. Она рассчитывается как средний квадрат отклонений значений признака от их средней величины:

Упрощенный способ расчета дисперсии осуществляется с помощью следующих формул (простой и взвешенной):

Примеры применения данных формул представлены в задачах 1 и 2.

Широко распространенным на практике показателем является среднее квадратическое отклонение :

Среднее квадратическое отклонение определяется как квадратный корень из дисперсии и имеет ту же размеренность, что и изучаемый признак.

Рассмотренные показатели позволяют получить абсолютное значение вариации, т.е. оценивают ее в единицах измерения исследуемого признака. В отличие от них, коэффициент вариации измеряет колеблемость в относительном выражении - относительно среднего уровня, что во многих случаях является предпочтительнее.

Формула для расчета коэффициента вариации.

Примеры решения задач по теме «Показатели вариации в статистике»

Задача 1 . При изучении влияния рекламы на размер среднемесячного вклада в банках района обследовано 2 банка. Получены следующие результаты:

Определить:
1) для каждого банка: а) средний размер вклада за месяц; б) дисперсию вклада;
2) средний размер вклада за месяц для двух банков вместе;
3) Дисперсию вклада для 2-х банков, зависящую от рекламы;
4) Дисперсию вклада для 2-х банков, зависящую от всех факторов, кроме рекламы;
5) Общую дисперсию используя правило сложения;
6) Коэффициент детерминации;
7) Корреляционное отношение.

Решение

1) Составим расчетную таблицу для банка с рекламой . Для определения среднего размера вклада за месяц найдем середины интервалов. При этом величина открытого интервала (первого) условно приравнивается к величине интервала, примыкающего к нему (второго).

Средний размер вклада найдем по формуле средней арифметической взвешенной:

29 000/50 = 580 руб.

Дисперсию вклада найдем по формуле:

23 400/50 = 468

Аналогичные действия произведем для банка без рекламы :

2) Найдем средний размер вклада для двух банков вместе. Хср =(580×50+542,8×50)/100 = 561,4 руб.

3) Дисперсию вклада, для двух банков, зависящую от рекламы найдем по формуле: σ 2 =pq (формула дисперсии альтернативного признака). Здесь р=0,5 – доля факторов, зависящих от рекламы; q=1-0,5, тогда σ 2 =0,5*0,5=0,25.

4) Поскольку доля остальных факторов равна 0,5, то дисперсия вклада для двух банков, зависящая от всех факторов кроме рекламы тоже 0,25.

5) Определим общую дисперсию, используя правило сложения.

= (468*50+636,16*50)/100=552,08

= [(580-561,4)250+(542,8-561,4)250] / 100= 34 596/ 100=345,96

σ 2 = σ 2 факт + σ 2 ост = 552,08+345,96 = 898,04

6) Коэффициент детерминации η 2 = σ 2 факт / σ 2 = 345,96/898,04 = 0,39 = 39% - размер вклада на 39% зависит от рекламы.

7) Эмпирическое корреляционное отношение η = √η 2 = √0,39 = 0,62 – связь достаточно тесная.

Задача 2 . Имеется группировка предприятий по величине товарной продукции:

Определить: 1) дисперсию величины товарной продукции; 2) среднее квадратическое отклонение; 3) коэффициент вариации.

Решение

1) По условию представлен интервальный ряд распределения. Его необходимо выразить дискретно, то есть найти середину интервала (х"). В группах закрытых интервалов середину найдем по простой средней арифметической. В группах с верхней границей - как разность между этой верхней границей и половиной размера следующего за ним интервала (200-(400-200):2=100).

В группах с нижней границей – суммой этой нижней границы и половины размера предыдущего интервала (800+(800-600):2=900).

Расчет средней величины товарной продукции делаем по формуле:

Хср = k×((Σ((х"-a):k)×f):Σf)+a. Здесь а=500 - размер варианта при наибольшей частоте, k=600-400=200 - размер интервала при наибольшей частоте. Результат поместим в таблицу:

Итак, средняя величина товарной продукции за изучаемый период в целом равна Хср = (-5:37)×200+500=472,97 тыс. руб.

2) Дисперсию найдем по следующей формуле:

σ 2 = (33/37)*2002-(472,97-500)2 = 35 675,67-730,62 = 34 945,05

3) среднее квадратическое отклонение: σ = ±√σ 2 = ±√34 945,05 ≈ ±186,94 тыс. руб.

4) коэффициент вариации: V = (σ /Хср)*100 = (186,94 / 472,97)*100 = 39,52%