События с разной вероятностью примеры. Случайные события, их классификация. Понятие вероятности. Урок алгебры » Случайные события. Вероятность случайного события.»

Конспект урока

по теме: Случайные события и их вероятности

Цель урока: познакомить студентов с понятиями: события достоверные, невозможные, случайные, абсолютная частота, относительная частота, с классическим определением вероятности, формулой вычисления вероятности событий.

Задачи урока: формирование навыков решения задач на характеристику событий и классическое нахождение вероятности событий; развить у студента умения отличать равновероятные возможности от не равновероятных; воспитание воли, трудолюбия.

Оборудование: мультимедийная доска

Ход урока:

    Организационный момент

    Актуализация знаний учащихся

О теории вероятности

В повседневной жизни, в практической и научной деятельности часто наблюдаются те или иные явления, проводят определенные эксперименты. В процессе наблюдения или эксперимента приходится встречаться с некоторыми случайными событиями, то есть такими событиями, которые могут произойти или не произойти. Например, поражение мишени или промах при выстреле - случайные события. Выигрыш команды во встрече с соперником, проигрыш или ничейный результат - это тоже случайные события. Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей.

Каждый из нас не отделен от окружающего мира глухой стеной, да и в своей жизни мы ежедневно сталкиваемся с вероятностными ситуациями. Проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных ситуациях - все это, несомненно, находится в сфере реальных интересов личности. Подготовку человека к таким проблемам во всем мире осуществляет школьный курс математики, и в частности ее раздел ""математическая статистика"". Математическая статистика - это раздел математики, который изучает методы обработки и классификации статистических данных для получения научно - обоснованных выводов и принятия решений. В связи с тем, что статистические данные зависят от случайных факторов, математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

Еще первобытный вождь понимал, что у десятка охотников вероятность поразить копьем зверя гораздо больше, чем у одного. Поэтому о охотились тогда коллективно. Необоснованно было бы думать. Что такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали только на доблесть и искусство воинов. Несомненно, они на основании наблюдений и опыта военного руководства умели как-то оценить вероятность своего возвращения со щитом или на щите, знали, когда принимать бой, когда уклониться от него. Они не были рабами случая, но вместе с тем они были еще очень далеки от теории вероятностей. Позднее, с опытом, человек все чаще и чаще стал взвешивать события, классифицировать их исходы как невозможные, возможные и достоверные. Он заметил, что случайность не так уж редко управляют объективные закономерности.

Зарождение теории вероятностей произошло в поисках ответа на вопрос: как часто наступает то или иное событие в большей серии испытаний со случайными исходами, которые происходят в одинаковых условиях.

    Изучение нового материала

Событие называется случайным, если при одних и тех же условиях оно может как произойти, так и не произойти

Например, «При подбрасывании игрального кубика выпадет 6 очков»

Говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом.

В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом.

Достоверное событие, которое происходят при каждом таком эксперименте.

Невозможное событие, которое никогда не могут произойти.

Предметом теории вероятности является изучение вероятных закономерностей массовых однородных случайных событий.

Рассмотрим несколько примеров случайных экспериментов:

Опыт 1. П одбрасывание монеты. В результате такого эксперимента монета может упасть на одну из двух сторон - «орел» или «решка».

Опыт 2. Подбрасывание кубика. Речь в нем идет об игральном кубике, на гранях которого выбиты точки, символизирующие количество очков от 1 до 6.

Опыт 3. Выбор перчаток. В коробке лежит 3 пары одинаковых перчаток, из нее, не глядя, вытаскивают две перчатки.

Кроме случайного события, с опытом связано еще одно важное понятие - элементарный исход. Исходом (или элементарным исходом, элементарным событием ) называется один из взаимоисключающих друг друга вариантов, которым может завершиться случайный эксперимент.

Определим число возможных исходов в каждом из опытов:

Опыт 1 - 2 исхода: «орел» и «решка»

Опыт 2 - 6 исходов: 1, 2, 3, 4, 5, 6

Сколько исходов в 3-м опыте? (2 исхода: «перчатки на одну рук» и «перчатки на разные руки»)

В опыте 3 можно предложить более детальное описание исходов: «обе перчатки на левую руку», «обе перчатки на правую руку», «перчатки на разные руки». А можно - перенумеровать все шесть перчаток и тогда число исходов возрастет до 15.

Неэлементарное событие будет состоять из некоторого множества исходов, которые называются благоприятными для этого события. Благоприятны они в том смысле, что приводят к наступлению данного события.

Определение: Абсолютной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, сколько раз в этой серии произошло событие А

Провели испытания:

Бросили 100 раз игральный кубик. При бросании игрального куба на его верхней грани

кубика выпадает очки:

Исходы испытания: 1. Выпадает одно очко.

2. Выпадает два очка.

3. Выпадает три очка.

4. Выпадает четыре очка.

5. Выпадает пять очков.

6. Выпадает шесть очков.

Случайное событие: - выпадет шесть очков.

Частота события: - в данной серии экспериментов «шестёрка» выпала 17 раз

Относительной частотой - отношение частоты к общему числу испытаний. (в нашем случае )

Т. е. относительной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, какая доля опытов в этой серии завершилась наступлением события А.

Рассмотрим событие В, которое означает выпадение на кубе числа очков, кратного 3. Это событие происходит лишь при двух исходах испытания: когда выпало 3 очка и когда выпало 6 очков, т.е. для события В благоприятными являются два исхода из шести равновозможных исходов.

Отношения числа благоприятных исходов к числу всех равновозможных исходов в рассматриваемом примере равно 2/6. Это отношение вероятностью события В и пишут Р(В) = 2/6.

Обозначение Р происходит от французского слова probabilite, что означает «вероятность».

Если все исходы какого-либо испытания равновозможные, то вероятность события в этом испытании равна отношению числа благоприятных для него исходов к числу всех равновозможных исходов.

Задача . Из 25 экзаменационных билетов по геометрии ученик успел подготовить 11 первых и 8 последних билетов. Какова вероятность того, что на экзамене ему достанется билет, который он не подготовил?

Решение. Общее число равновозможных исходов при выборе билетов на экзамене 25. пусть М - событие, заключающееся в том, что ученику достанется на экзамене билет, к которому он не подготовился. Число благоприятных для события М исходов равно 25 - (11 + 8), т. е. 6. Значит, .

Задача. Антон и Игорь бросают белый и черный игральные кубики и подсчитывают сумму выпавших очков. Они договорились, что если при очередном бросании в сумме выпадет 8 очков, то выигрывает Антон, а если в сумме выпадет 7 очков, то выигрывает Игорь. Можно ли считать, что шансы выиграть в этой игре у мальчиков одинаковы?

Решение. При бросании кубиков на белом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому числу очков, выпавших на белом кубике, соответствует шесть вариантов числа очков, выпавших на черном кубике. Все исходы этого испытания приведены в таблице:

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(6; 2)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(5; 3)

(6; 3)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(5; 4)

(6; 4)

(1; 5)

(2; 5)

(3; 5)

(4; 5)

(5; 5)

(6; 5)

(1; 6)

(2; 6)

(3; 6)

(4; 6)

(5; 6)

(6; 6)

В каждой паре на первом месте записано число очков, выпавших на белом кубике, а на втором месте - число очков, выпавших на черном кубике. Указанные исходы испытания равновозможны. Общее число равновозможных исходов равно 36. Пусть событие А означает, что при бросании кубиков в сумме выпало 8 очков, а событие В означает, что в сумме выпало 7 очков.

Для события А благоприятными являются 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2).

Для события В благоприятными являются 6 исходов:

(1; 6), (2; 5), (3; 4), (4; 3), (5; 2), (6; 1).

Отсюда , .

Поэтому шансов выиграть у Игоря больше, чем у Антона.

      1. Закрепление нового материала.

Решить следующие задачи:

      1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?

        Какова вероятность того, что при бросании игрального кубика выпадет 1 очко? более 3 очков?

      1. Ученик записал в тетради произвольно двузначное число. Какова вероятность того, что сумма цифр этого числа окажется равной 6?

        В коробке лежит 10 шаров, из них 5 черных, 2 белых, остальные – красные. Какова вероятность вытащить черный шар? вытащить не красный шар?

        Андрей и Олег договорились, что если при бросании двух игральных кубиков в сумме выпадет число очков кратное 5, то выигрывает Андрей, а если в сумме выпадет число очков, кратное 6, то выигрывает Олег. Справедлива ли эта игра? У кого из мальчиков больше шансов выиграть? Какова вероятность выигрыша каждого мальчика?

5. Итоги урока.

6. Домашнее задание.

Задача 1. В урне находятся 3 синих, 8 красных и 9 белых шаров одинакового размера и веса, неразличимых на ощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?

Задача 2. Наташа купила лотерейный билет, который участвует в розыгрыше 100 призов на 50000 билетов, а Лена – билет, который участвует в розыгрыше трех призов на 70000. У кого больше шансов выиграть?

Краткая теория

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, геометрическое определение вероятности , статистическое и т. д.).

Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

Пусть достоверное событие распадается на равновозможных случаев , сумма которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

Из определения вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

Свойство 5. Вероятность наступления противоположного события определяется так же, как и вероятность наступления события A.

Число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A:

Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

На соседней странице рассматривается .

Пример решения задачи

Пример 1

В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий: – извлечен по крайней мере 1 красный шар, – есть по крайней мере 2 шара одного цвета, – есть по крайней мере 1 красный и 1 белый шар.

Решение задачи

Общее число исходов испытания найдем как число сочетаний из 19 (8+4+7) элементов по 3:

Найдем вероятность события – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

Искомая вероятность:

Пусть событие – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Пусть событие – есть по крайней мере один красный и 1 белый шар

(1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Ответ: P(A)=0.773;P(C)=0.7688; P(D)=0.6068

Пример 2

Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

Решение

Пусть событие – сумма очков не меньше 5

Воспользуемся классическим определением вероятности:

Общее число возможных исходов испытания

Число испытаний, благоприятствующих интересующему нас событию

На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно числу размещений с повторениями (выбор с размещениями 2 элементов из совокупнности объема 6):

Найдем вероятность противоположного события – сумма очков меньше 5

Благоприятствовать событию будут следующие сочетания выпавших очков:

1-я кость 2-я кость 1 1 1 2 1 2 3 2 1 4 3 1 5 1 3

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Формула полной вероятности. Формула Байеса
На примере решения задачи рассмотрены формула полной вероятности и формула Байеса, а также рассказывается, что такое гипотезы и условные вероятности.

Случайное событие –

Два события несовместны,

Теория вероятностей

Алгебра случайных событий, диаграммы Вьенна-Эйлера.

Сумма событий А и В называется такое событие, которое происходит, когда происходит либо А, либо В, либо оба события.

Произведением А и В называется событие, которое происходит, если в опыте происходят оба события.

Событием Ā, противоположное событию А называется событие, которое происходит всякий раз, когда не наступает событие А.

A\B (дополнение А до В) – происходит А, но не происходит В

Классическое определение вероятности. Комбинаторика.

– классическое определение вероятности.

m – общее число исходов

n – число исходов, благоприятствующих наступлению события А..

Комбинаторика – раздел математики, изучающий расположение объектов в соответствии со специальными правилами и подсчитывает количество способов таких расположений. Комбинаторика возникла в 18 веке. Рассматривается как раздел теории множеств.

Аксиоматическое построение теории вероятностей.

Аксиома 1. «аксиома неотрицательности» P(A)≥0

Аксиома 2. «аксиома нормированности» P(Ω)=1

Аксиома 3. «аксиома аддитивности» Если события А и В несовместны (АВ=Ø), то P(A+B)=P(A)+P(B)

Теорема о вероятности суммы событий.

Для любых событий Р(А+В) = Р(А) + Р(В) – Р(АВ) (док-во в лекции)

Условная вероятность. Зависимые и независимые события. Теоремы о вероятности произведения событий.

Р(А|В) – вероятность события А, если событие В уже произошло – условная вероятность.

Событие А называют независимым , от события В, если вероятность события А не меняется в зависимости от того, происходит или нет событие В.

Теорема умножения вероятностей: Р(АВ) = Р(А|В)·Р(В) = Р(В|А)·Р(А)

Теорема умножения вероятностей независимых событий: Р(АВ) = Р(А)·Р(В)

По определению условной вероятности,

Формула полной вероятности.

Есть события Н 1 , Н 2 ,….,Н n попарно несовместные и образуют полную группу. Такие события называют гипотезами . Пусть есть некоторое событие А. А=АН 1 +АН 2 +…+АН n (слагаемые этой суммы попарно несовместны).

Формула Байеса.

Н 1 , Н 2 ,….,Н n A

Схема Бернулли. Формула Бернулли. Наивероятнейшее число успехов.

Пусть проводится конечное число n последовательных испытаний, в каждом из которых некоторое событие А может либо наступить «успех», либо не наступить «неудача», причем эти испытания удовлетворяют следующим условиям:

· Каждое испытание случайно относительно события А.т.е. до проведения испытания нельзя сказать, появится А или нет;

· Испытания проводятся в одинаковых с вероятностной точки зрения условиях, т.е. вероятность успеха в каждом отдельно взятом испытании равна р и не меняется от испытания к испытанию;

· Испытания независимы, т.е. исход любого из них никак не влияет ни исходы других испытаний.

Такая последовательность испытаний называется схемой Бернулли или биноминальной схемой, а сами испытания – испытаниями Бернулли.

Для расчета вероятности Р n (к) того, что в серии из n испытаний Бернулли окажется ровно k успешных, применяется формула Бернулли: (k = 0,1,2,…n).

10. Понятие случайной величины. Дискретная случайная величина, способы ее задания: ряд распределения.

Случайной величиной называется величина, которая в каждом испытании (при каждом наблюдении) принимает одно из множества своих возможных значений, заранее не известно, какое.

Дискретная с.в. – с.в., множество возможных значений которой конечно или счетно.

Ряд распределения с.в. (ряд распределения вероятности). График ряда распределения задается многоугольником распределения – ломанная, которая соединяет точки с координатами (x i ,p i)

X x 1 x 2 x 3 x k
P p 1 p 2 p 3 p k

Закон распределения с.в.: p k =P({X=x k })

Случайные события, их классификация. Понятие вероятности.

Случайное событие – событие, которое в условиях опыта оно может произойти, а может и не произойти. Причем заранее неизвестно, произойдет оно или нет.

Два события несовместны, если появление одного из них исключает появление другого в том же опыте.

Теория вероятностей изучает закономерности, присущие массовым случайным явлениям. Основные понятия теории вероятностей были заложены в переписке Паскалем и Ферма. Эти понятия зародились в результате попыток математически описать азартные игры.

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Вероятность. Что это?

Теория вероятностей , как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Алгоритм решения типовых задач на нахождение вероятности

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике. А теперь не будем ходить вокруг да около, и сформулируем примерную схему , по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения.

    Вероятность

    Ответьте на тестовые вопросы типа:

    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}^3=\frac{30!}{3!27!}=\frac{28\cdot 29 \cdot 30}{1\cdot 2 \cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}^3=\frac{5!}{3!2!}=\frac{4 \cdot 5}{1\cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=\frac{m}{n}=\frac{10}{4060}=0,002.$$ Задача решена.

Еще примеры: Решенные задачи на классическое определение вероятности.

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_{n}(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность: $$ P(X)=P_{8}(5)=C_8^5 \cdot 0,5^5 \cdot (1-0,5)^{8-5}=\frac{8!}{5!3!}\cdot 0,5^8=\frac{6\cdot 7 \cdot 8}{1\cdot 2 \cdot 3} \cdot 0,5^8= 0,219.$$ Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли, решебник задач по теории вероятности.

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Спасибо, что читаете и делитесь с другими

Другие полезные статьи по теории вероятностей

Статьи о решении математических задач

Наблюдение явления, опыт, эксперимент, которые можно провести многократно, в теории вероятностей принято называть испытанием . Результат, исход испытания называется событием .

Пример 1 . Сдача экзамена — это испытание; получение определенной отметки — событие. Выстрел — это испытание; попадание в определенную область мишени — событие. Бросание игрального кубика — это испытание; появление того или иного числа очков на брошенной игральной кости — событие.

Виды случайных событий

События называются несовместными , если появление одного из них исключает появления других событий в одном и том же испытании.

Пример 2 :

  • несовместные события : день и ночь, человек читает и человек спит, число иррациональное и четное;
  • совместные события : идет дождь и идет снег, человек ест и человек читает, число целое и четное.

Несколько событий образуют полную группу (пространство исходов) , если в результате испытания появиться хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

Пример 3 .

Урок алгебры » Случайные события. Вероятность случайного события.»

При сдаче зачета возможны следующие исходы: «зачтено», «не зачтено», «не явился»; при подбрасывании монеты – «орел», «решка».

Пример 4 . Пусть в урне содержится 6 одинаковых шаров, причем 2 из них — красные, 3 — синие и 1 — белый. Какова возможность вынуть наудачу из урны цветной шар? Можно ли охарактеризовать эту возможность числом?

Оказывается можно. Это число и называется вероятностью события А (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события .

Каждый из возможных результатов испытания (в примере 4, испытание состоит в извлечении шара из урны) называется элементарным исходом .

Те элементарные исходы, в которых интересующее нас событие наступает, называются благоприятствующими этому событию. В примере 4 благоприятствуют событию А (появление цветного шара) 5 исходов.

События называются равновозможными , если есть основания считать, что не одно из них не является более возможным, чем другое.

Пример 5 . Появление того или иного числа очков на брошенном игральном кубике – равновозможные события.

Вероятностью P(A) события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Вероятность P(A) события А определяется по формуле

где m – число элементарных исходов, благоприятствующих A ; n – число всех возможных элементарных исходов испытания.

В примере 4 всего элементарных исходов 6 ; из них 5 благоприятствуют событию А . Следовательно, вероятность того что взятый шар окажется цветным, равна P(A) = 5/6 .

Пример 6 . Определить вероятность выпадения нечётного числа очков на кости.

Решение. При бросании кости событие A – «выпало нечётное число очков» можно записать как подмножество {1, 3, 5} пространства исходов {1, 2, 3, 4, 5, 6} (рис. 1).

Число всех равновозможных исходов n = 6, а число благоприятных событию A m = 3. Следовательно,

Пример 7 . В урне находится 7 шаров: 2 белых, 4 черных и 1 красный. Вынимается один шар наугад. Какова вероятность того, что вынутый шар будет чёрным?

Решение. Занумеруем шары. Пусть, например, шары с номерами 1 и 2 – белые, с номерами 3, 4, 5 и 6 – чёрные, а красному шару присвоим номер 7 .

Так как мы можем вынуть только один из семи шаров, то общее число равновозможных исходов равно семи (n = 7 ). Из них 4 исхода – появление шаров с номерами 3, 4, 5 и 6 – приведут к тому, что вынутый шар будет чёрным (m = 4 ). Тем самым, вероятность события А , состоящего в появлении чёрного шара, равна

Вычислите вероятность того, что вынутый шар будет белым.

Пример 8 .

Вычислить вероятность выпадения в сумме 10 очков при бросании пары костей.

Решение. Рассмотрим все равновозможные исходы в результате бросания двух костей (их число равно 36 — рекомендуем записать в виде таблицы). Выпадение в сумме 10 очков (событие А ) возможно в трёх случаях4 очка на первой кости и 6 на второй, 5 очков на первой и 5 на второй, 6 очков на первой и 4 на второй. Поэтому вероятность события А (выпадения в сумме 10 очков) равна

Свойство 1 . Вероятность достоверного события А равна единице: Р(А) = 1 .

Свойство 2 . Вероятность невозможного события А равна нулю: Р(А) = 0 .

Свойство 3 . Вероятность случайного события есть положительное число, заключенное между нулем и единицей :

0 £ P (A) £ 1.

Пример 9 . Так как вероятность выпадения 13 очков при бросании пары костей – невозможное событие, его вероятность равна нулю .

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно. Кроме этого, часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. По этой причине, наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение .

Статистическое определение вероятности

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события А называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний:

где m – число появлений события А , n – общее число испытаний.

Классическая вероятность вычисляется до опыта, а относительная частота – после опыта .

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний велико, то относительная частота обнаруживает свойство устойчивости .

Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Таким образом, при достаточно большом количестве испытаний в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Пример 10 . Естествоиспытатель К. Пирсон терпеливо подбрасывал монету и после каждого бросания не ленился записывать полученный результат. Проделав эту операцию 24 000 раз, он обнаружил, что герб выпадал в 12 012 случаях. Вычисляя относительную частоту выпадения герба, он получил , что практически равно 1/2.

Многих интересует вопрос: возможно ли повлиять на случайные события, выявить какую-либо закономерность событий, получить тот результат, который желателен. Все явления, которые окружают нас, происходят и изменяются с какой-то долей случайности, неопределенности.

Со случайными событиями мы встречаемся чаще, чем это принято считать. Случайные факторы лежат в основе окружающей среды, экономики, политики, социальной и общественной жизни, они определяют течение любого процесса массового обслуживания - торговли, телефонной связи, транспортных услуг и медицинской помощи. Задача управления различного рода процессами, которая наиболее остро стоит перед современным обществом, состоит в том, чтобы научиться ориентироваться в мире случайностей и активно действовать, опираясь на скрытые специфические закономерности.

Все явления окружающей нас действительности можно рассматривать с точки зрения вероятности их наступления. Когда студент идет на экзамен, вероятность получения им хорошей оценки зависит от нескольких причин: подготовленности студента, удачно выбранного билета, самочувствия, настроя.

Экономиста может интересовать вероятность того, что цены на товар не вырастут, если не снизится объем его производства, или вероятность того, что застрахованный автомобиль не попадет в аварию.

Все эти события являются случайными и могут наступить или нет с некоторой долей неопределенности. Количественной мерой такой неопределенности является вероятность наступления случайного события, под которой понимают число, которое выражает степень уверенности в наступлении того или иного случайного события.

Случайными событиями называют возможные результаты единичной операции, или испытания .

Под испытанием следует понимать процесс, включающий в себя определенные условия и приводящий к одному из нескольких возможных исходов .

Например: испытание - бросание монеты, случайное событие - выпадение герба. Испытание - рождение ребенка, случайное событие - пол ребенка - мужской.

Исходом опыта может быть результат наблюдения, измерения, оценки.

Случайное событие может состоять из нескольких элементарных событий.

Единичный, отдельный исход испытания называется элементарным событием.

Событие называется случайным, если в результате испытания (опыта) оно может произойти, а может и не произойти.

Например, стрелок, производящий выстрел, может попасть или не попасть в цель. В этом случае испытание - это выстрел, а возможные элементарные исходы - попадание или непопадание в цель. Футбольная команда может участвовать в матче - это испытание, в результате которого могут наступить исходы, или элементарные события: выигрыш, проигрыш или ничья.

Оценка студента на экзамене - это случайное событие, которое состоит из элементарных событий: получение оценки «отлично», получение оценки «хорошо», получение оценки «удовлетворительно», получение оценки «неудовлетворительно».

Элементарные события можно классифицировать по мере их неопределенности как достоверные, невозможные и случайные.

Достовернымназывают событие, которое обязательно произойдет при определенном комплексе условий .

Например, если в ящике находятся только стандартные детали, то извлечение из него стандартной детали есть событие достоверное. Достоверным является и то, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Событие, которое не может произойти в результате данного испытания, называется невозможным .

Если в ящике все детали стандартные, то извлечение из него нестандартной детали есть событие невозможное. Квадрат вещественного числа не может быть отрицательным. Достоверные и невозможные события, вообще говоря, не являются случайными.

Случайные события. Вероятность (стр. 1)

Фундаментом для научного подхода к поиску ответов на вопросы подобного рода является теория вероятностей.

Зарождение теории вероятностей и формирование первых понятий этой ветви математики произошло в середине 17 века, когда Паскаль, Ферма, Бернулли попытались осуществить анализ задач связанных с азартными играми новыми методами. Скоро стало ясно, что возникающая теория найдет широкий круг применения для решения многих задач возникающих в различных сферах деятельности человека .

Производя достаточно большое количество опытов или испытаний, можно определить, как часто появляется событие, и вычислить вероятность его наступления. Вероятность, определенную таким образом, называют статистической или послеопытной. В некоторых случаях можно определить доопытную вероятность, которую называют классической.

Вероятностью появления события А называют отношение числа исходов, благоприятствующих появлению этого события, к общему числу всех единственно возможных и несовместных элементарных исходов. Обозначим число благоприятствующих событию А исходов через М, а число всех возможных исходов N. тогда для определения вероятности можно использовать формулу Р (А) = М/N .

Я провела эксперимент: попробовала вытащить из 15 шариков, 2 из которых красные, остальные зеленые, произвольным образом 2 шарика. Пыталась определить вероятность того, что оба шарика окажутся красными; оба шарика будут зелеными; один шарик будет красный, другой зеленый.

Предположенный перед проведением эксперимента результат оправдался: наиболее возможным исходом является вытаскивание 2 зеленых шариков, наименее возможным исходом является вытаскивание 2 красных шариков.

При сравнении практической и теоретической вероятности, обнаружилось довольно большое расхождение, причиной которого является малое количество проведенных испытаний.

Для получения более точного результата желательно проводить как можно больше испытаний, рассматривать всевозможные исходы испытаний и благоприятные исходы. Не забывать, что проверить это всегда можно и теоретически. При этом вероятности до проведения опыта и после проведения должны совпадать.

Проведя исследование по данному вопросу, я пришла к выводу: теория вероятности не влияет на случайные события, она только позволяет выяснить степень его наступления, а вероятность, посчитанная во время эксперимента, тем точнее, чем больше проведено испытаний.

Литература:

  1. Кибзун А. И. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / А. И. Кибзун. - М.: Физматлит, 2002. - 224 с.
  2. Кочетков Е. С., Смерчинская С. О., Соколов В. В. Теория вероятностей и математическая статистика. - М.: ФОРУМ: ИНФРА-М, 2006. - 240 с.
  3. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. - М.: Айрис-пресс, 2007. - 288 с.

Спасибо, что читаете и делитесь с другими

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события $А$, если появление этого события влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8).

Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров…)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей…)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов…)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .. Количество элементарных исходов (количество карт)

Искомая вероятность
.

Формулы по теории вероятности онлайн

В данном разделе вы найдете формулы по теории вероятностей в онлайн-варианте (скачать можно на странице Таблицы и формулы по теории вероятностей). Если слово подчеркнуто, щелкнув на ссылке, вы перейдете к подробному описанию термина, примерам или вычислению на онлайн-калькуляторе. Используйте эти возможности!

А также для изучения тервера у нас есть:

Спасибо, что читаете и делитесь с другими

I. Случайные события. Основные формулы онлайн

1. Основные формулы комбинаторики

Число перестановок $$P_n = n!

Учебник по теории вероятностей

1\cdot 2 \cdot 3 \cdot … \cdot (n-1) \cdot n$$

Число размещений $$A_m^n = n \cdot (n-1) \cdot … \cdot (n-m+1)$$

Число сочетаний $$C_n^m =\frac{A_n^m}{P_m}=\frac{n!}{m! \cdot (n-m)!}$$

2. Классическое определение вероятности

$$P(A) = \frac{m}{n},$$ где $m$ — число благоприятствующих событию $A$ исходов, $n$ — число всех элементарных равновозможных исходов.

Подробнее о классической вероятности см. в онлайн-учебнике и калькуляторах решений.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

$$ P(A+B) = P(A)+P(B) $$

Теорема сложения вероятностей совместных событий:

$$ P(A+B) = P(A)+P(B)-P(AB) $$

Примеры решений и теория по алгебре событий тут.

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B) $$

Теорема умножения вероятностей зависимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B|A),\\ P(A\cdot B) =P(B)\cdot P(A|B). $$

$P(A|B)$ — условная вероятность события $A$ при условии, что произошло событие $B$,

$P(B|A)$ — условная вероятность события $B$ при условии, что произошло событие $A$.

Подробнее об условной вероятности.

5. Формула полной вероятности

$$ P(A)=\sum_{k=1}^{n} P(H_k)\cdot P(A|H_k), $$

6. Формула Байеса (Бейеса). Вычисление апостериорных вероятностей гипотез

$$ P(H_m|A) =\frac{P(H_m)\cdot P(A|H_m)}{P(A)} = \frac{P(H_m)\cdot P(A|H_m)}{\sum\limits_{k=1}^{n} P(H_k)\cdot P(A|H_k)}, $$

где $H_1, H_2, …, H_n$ — полная группа гипотез.

Примеры и теория на эту тему.

7. Формула Бернулли

$$ P_n(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!}\cdot p^k \cdot (1-p)^{n-k} $$ вероятность появления события ровно $k$ раз в $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании.

Еще полезное по формуле Бернулли теория и примеры, онлайн-калькуляторы.

8. Наивероятнейшее число наступления события

Наивероятнейшее число $k_0$ появления события при $n$ независимых испытаниях (где $p$ — вероятность появления события при одном испытании):

$$ np-(1-p) \le k_0 \le np+p. $$

Вычислить наивероятнейшее значение онлайн.

9. Локальная формула Лапласа

$$ P_n(k) = \frac{1}{\sqrt{npq}} \varphi\left(\frac{k-np}{\sqrt{npq}} \right) $$

вероятность появления события ровно $k$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.

Значения функции $\varphi(x)$ берутся из таблицы.

10. Интегральная формула Лапласа

$$ P_n(m_1, m_2) = \Phi\left(\frac{m_2-np}{\sqrt{npq}} \right)-\Phi\left(\frac{m_1-np}{\sqrt{npq}} \right) $$

вероятность появления события не менее $m_1$ и не более $m_2$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.
Значения функции $\Phi(x)$ берутся из таблицы.

Теория и примеры на формулы Муавра-Лапласа.

11. Оценка отклонения относительной частоты от постоянной вероятности $p$

$$ P\left(\left| \frac{m}{n} -p\right| \le \varepsilon\right) = 2 \Phi\left(\varepsilon\cdot \frac{n}{\sqrt{p(1-p)}} \right) $$

$\varepsilon$ — величина отклонения, $p$ — вероятность появления события.

Решенные задачи по теории вероятностей

Нужна готовая задача по терверу? Найдите на сайте-решебнике:

Каталог формул по теории вероятности онлайн

Полный список страниц с формулами:

Спасибо, что читаете и делитесь с другими

Классическое определение вероятности
Вероятностью события А Р(A) называется отношение числа благоприятствующих этому событию исходов m к общему числу всех единственно возможных и равновозможных элементарных исходов n, Р(A)=.

Задача1

Из 20 экзаменационных билетов 3 содержат простые вопросы. Пять студентов по очереди берут билеты. Найти вероятность того, что хотя бы одному из них достанется билет с простыми вопросами.

Решение:

Для начала найдем вероятность того, что ни одному из студентов не достанется билет с простыми вопросами.
Эта вероятность равна

Первая дробь показывает вероятность того, что первому студенту достался билет со сложными вопросами (их 17 из 20)
Вторая дробь показывает вероятность того, что второму студенту достался билет со сложными вопросами (их осталось 16 из 19)
Третья дробь показывает вероятность того, что третьему студенту достался билет со сложными вопросами (их осталось 15 из 18)
И так далее до пятого студента. Вероятности перемножаются т.к. по условию требуется одновременное выполнение этих условий.

Чтобы получить вероятность того, что хотя бы одному из студентов достанется билет с простыми вопросами надо вычесть полученную выше вероятность из единицы.

Ответ: 0,6009.

Задача2
Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности. Решение

Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна P (A ) = , где n полное число равновероятных исходов; m – число исходов, благоприятствующих событию A .

Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр, n = 410 = 220 = 1048576.

Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3: = = 56.

Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243.

Т.о., число исходов, благоприятствующих событию A , равно m = ×35 = 56×243 = 13608.
Искомая вероятность события A равна:
P (A ) = = 0,013.
Ответ: P(A) = = 0,013.

Задача 3.
Имеется 100 одинаковых деталей, среди которых 3 бракованных. Найти вероятность того, что взятая наудачу деталь без брака.

Решение. В этой задаче производится испытание – извлекается одна деталь. Число всех исходов испытания равно 100, т. к. может быть взята любая деталь из 100. Эти исходы несовместны, равновозможны, единственно возможны. Таким образом, Событие - появилась деталь без брака. Всего в партии 97 деталей без брака, следовательно, число исходов, благоприятных появлению события А равно 97 . Итак, Тогда
Задача 4.
Код банковского сейфа состоит из 6 цифр. Найти вероятность того, что наудачу выбранный код содержит различные цифры? Решение. Так как на каждом из шести мест в шестизначном шифре может стоять любая из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, то всех различных шестизначных номеров по правилу произведения будет . Номера, в которых все цифры различны, - это размещения из 10 элементов (10 цифр) по 6. Поэтому число благоприятствующих исходов . Искомая вероятность равна
Задача 5.
Между шестью фирмами (А, Б, В, Г, Д, Е), занимающимися продажей компьютерной техники, проводится жеребьевка на предмет очередности предъявления своей продукции на выставке потенциальным потребителям. Какова вероятность того, что очередь будет выстроена по порядку, т. е. А, Б, В, Г, Д, Е? Решение. Исход испытания - случайное расположение фирм в очереди. Число всех возможных исходов равно числу всех перестановок из шести элементов (фирм), т.е.Число исходов, благоприятствующих событию : m= 1, если очередь выстроена по порядку. Тогда
Задача 6.
В компании 10 акционеров, из них трое имеют привилегированные акции. На собрание акционеров явилось 6 человек. Найти вероятность того, что среди явившихся акционеров:
а) все трое акционеров с привилегированными акциями отсутствуют;
б) двое присутствуют и один не явился. Решение
а) испытанием является отбор 6 человек из 10 акционеров. Число всех исходов испытания равно числу сочетаний из 10 по 6, т. е.

Пусть событие - среди шести человек нет ни одного с привилегированными акциями. Исход, благоприятствующий событию ,- отбор шести человек среди семи акционеров, не имеющих привилегированных акций. Число всех исходов, благоприятствующих событию А , будет
Искомая вероятность

б) пусть событие - среди шести явившихся акционеров двое с привилегированными акциями, а остальные четыре – с общими акциями. Число всех исходов, Число способов выбора двух человек из необходимых трех Число способов выбора оставшихся четырех акционеров среди семи с общими акциями Тогда число всех способов отбора по правилу произведения
Искомая вероятность равна