Как выглядит фрактал. Фракталы в простых числах. Построение по точкам или вероятностный метод

Когда я не всё понимаю в прочитанном, я особо не расстраиваюсь. Если тема мне позднее не встретится, значит она не особа важна (по крайней мере, для меня). Если же тема встретится повторно, в третий раз, у меня появятся новые шансы лучше в ней разобраться. К числу таких тем относятся и фракталы. Впервые я узнал о них из книги Нассима Талеба , а затем подробнее из книги Бенуа Мандельброта . Сегодня по запросу «фрактал» на сайте можно получить 20 заметок.

Часть I. ПУТЕШЕСТВИЕ К ИСТОКАМ

НАЗВАТЬ ЗНАЧИТ УЗНАТЬ. Ещё в начале XX века Анри Пуанкаре заметил: «Удивляешься силе, которую может иметь одно слово. Вот объект, о котором ничего нельзя было сказать, пока он не был окрещён. Достаточно было дать ему имя, чтобы произошло чудо» (см. также ). Так и случилось, когда в 1975 году французский математик польского происхождения Бенуа Мандельброт собрал Слово. Из латинских слов frangere (ломать) и fractus (разрывный, дискретный, дробный) сложился фрактал. Мандельброт искусно продвигал и пропагандировал фрактал как бренд с опорой на эмоциональную привлекательность и рациональную полезность. Он издает несколько монографий, в том числе, Фрактальная геометрия природы (1982).

ФРАКТАЛЫ В ПРИРОДЕ И ИСКУССТВЕ. Мандельброт обозначил контуры фрактальной геометрии, отличной от Евклидовой. Отличие не относилось к аксиоме о параллельности, как в геометриях Лобачевского или Римана. Отличие заключалось в отказе от принятого Евклидом по умолчанию требования гладкости. Некоторым объектам присущи шероховатость, пористость или раздробленность, причём многие из них обладают указанными свойствами «в одинаковой степени в любом масштабе». В природе нет недостатка в подобных формах: подсолнух и брокколи, морские раковины, папоротник, снежинки, горные расселины, береговые линии, фьорды, сталагмиты и сталактиты, молнии.

Люди внимательные и наблюдательные издавна замечали, что некоторые формы демонстрируют повторяющуюся структуру при рассмотрении их «вблизи или издалека». Приближаясь к таким объектам, мы замечаем, что изменяются лишь незначительные детали, но форма в целом остаётся почти неизменной. Исходя из этого, фрактал проще всего определить, как геометрическую форму, содержащую в себе повторяющиеся элементы в любом масштабе.

МИФЫ И МИСТИФИКАЦИИ. Открытый Мандельбротом новый пласт форм стал золотой жилой для дизайнеров, архитекторов, инженеров. Несчётное число фракталов строится по одним и тем же принципам многократного повторения. Отсюда фрактал проще всего определить, как геометрическую форму, которая содержит в себе повторяющиеся элементы в любом масштабе. Эта геометрическая форма локально неизменна (инвариантна), масштабно самоподобна и целостна в своей ограниченности истинная сингулярность, сложность которой раскрывается по мере приближения, а на удалении сама тривиальность.

ДЬЯВОЛЬСКАЯ ЛЕСТНИЦА. Для передачи данных между компьютерами используются чрезвычайно сильные электрические сигналы. Такой сигнал дискретен. Помехи или шумы случайно возникают в электрических сетях вследствие многих причин и приводят к потере данных при передаче информации между компьютерами. Исключить влияние шумов на передачу данных в начале шестидесятых годов прошлого века было поручено группе инженеров IBM, в работе которой принимал участие Мандельброт.

Грубый анализ показал наличие периодов, во время которых не регистрировалось ни одной ошибки. Выделив периоды длительностью в час, инженеры заметили, что между ними периоды прохождения сигнала без ошибок также прерывисты здесь возникают более короткие паузы длительностью около двадцати минут. Таким образом, передача данных без ошибок характеризуется пакетами данных разной длины и паузами в шумах, в течение которых сигнал передаётся без ошибок. В пакетах более высокого ранга как бы встроены пакеты более низкого. Подобное описание предполагает существование такого понятия, как относительное расположение пакетов низшего ранга в пакете более высокого ранга. Опыт показал, что распределение вероятностей этих относительных расположении пакетов не зависит от их ранга. Такая инвариантность говорит о самоподобии процесса искажения данных под действием электрических шумов. Сама процедура вырезания свободных от ошибок пауз в сигнале при передаче данных не могла прийти в голову инженерам-электрикам по той причине, что для них такое было внове.

Но Мандельброт, изучавший чистую математику, хорошо знал множество Кантора, описанное ещё в 1883 году и представляющее собой пыль из точек, полученных согласно строгому алгоритму. Суть алгоритма построения «пыли Кантора» сводится к следующему. Возьмите отрезок прямой. Удалите из него серединную треть отрезка, сохранив две концевых. Теперь повторим ту же операцию с концевыми отрезками и так далее. Мандельброт обнаружил, что именно такова геометрия пакетов и пауз при передаче сигналов между компьютерами. Ошибка накапливается. Её накопление можно моделировать так. На первом шаге всем точкам из интервала присвоим значение 1/2, на втором шаге из интервала значение 1/4, значение 3/4 точкам из интервала и т.д. Пошаговое суммирование этих величин позволяет построить так называемую «дьявольскую лестницу» (рис. 1). Мерой «пыли Кантора» является иррациональное число, равное 0,618…, известное как «золотое сечение» или «Божественная пропорция».

Часть II. ФРАКТАЛЫ СУТЬ ДЕЛА

УЛЫБКА БЕЗ КОТА: ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ. Размерность – одно из фундаментальных понятий, выходящее далеко за пределы математики. Евклид в первой книге «Начал» определил основные понятия геометрии точка, линия, плоскость. Основанное на этих определениях понятие трёхмерного евклидова пространства оставалось неизменным почти две с половиной тысячи лет. Многочисленные заигрывания с пространствами четырёх, пяти и более измерений ничего по существу не прибавляют, но сталкиваются с тем, что представить их человеческое воображение не может. С открытием фрактальной геометрии в представлениях о размерности произошёл радикальный переворот. Размерностей появилось великое множество и среди них не только целые, но и дробные, и даже иррациональные. И эти размерности доступны для наглядного и чувственного представления. В самом деле, мы легко представляем сыр с дырками модель среды, размерность которой больше двух, но не дотягивает до трёх из-за сырных дырок, понижающей размерность сырной массы.

Чтобы понять дробную или фрактальную размерность, обратимся к парадоксу Ричардсона, который утверждал, что длина изрезанной береговой линии Британии бесконечна! Луис Фрай Ричардсон задался вопросом о влиянии масштаба измерения на величину измеряемой длины береговой линии Британии. При переходе от масштаба контурных карт к масштабу «береговых камешков» он приходил к странному и неожиданному выводу: длина береговой линии неограниченно возрастает, причём это возрастание не имеет предела. Гладкие изогнутые линии так себя не ведут. Эмпирические данные Ричардсона, полученные на картах всё более крупных масштабов, свидетельствовали о степенном росте длины береговой линии при уменьшении шага измерения:

В этой простой формуле Ричардсона L есть измеренная длина побережья, ε – величина шага измерения, а β ≈ 3/2 – найденная им степень роста длины побережья с уменьшением шага измерения. В отличие от длины окружности, длина береговой линии Великобритании возрастает, не имея 55 предела. Она бесконечна! Приходиться смириться с тем, что кривые изломанные, негладкие не имеют предельной длины.

Однако исследования Ричардсона наводили на мысль, что они имеют некоторую характерную меру степень роста длины с уменьшением масштаба измерения. Оказалось, что именно эта величина мистическим образом идентифицирует ломаную линию как отпечаток пальцев личность человека. Мандельброт интерпретировал береговую линию как фрактальный объект – объект, размерность которого совпадает с показателем степени β.

Например, размерности прибрежных пограничных кривых для западного побережья Норвегии – 1,52; для Великобритании – 1,25; для Германии – 1,15; для Австралии – 1,13; для сравнительно гладкого побережья Южной Африки – 1,02 и, наконец, для идеально гладкой окружности – 1,0.

Взглянув на фрагмент фрактала, вы не сможете сказать, какова его размерность. И причина не в геометрической сложности фрагмента фрагмент может быть очень простым, но в том, что фрактальная размерность отражает не только форму фрагмента, но и формат трансформации фрагмента в процессе построения фрактала. Фрактальная размерность как бы отстранена от формы. И благодаря этому величина фрактальной размерности остаётся инвариантной она одинакова для любого фрагмента фрактала при любом масштабе обзора. Её нельзя «ухватить пальцами», но можно рассчитать.

ФРАКТАЛЬНЫЙ ПОВТОР. Повтор можно моделировать с помощью нелинейных уравнений. Линейные уравнения характеризуются однозначным соответствием переменных: каждому значению х соответствует одно и только одно значение у и наоборот. Например, уравнение х + у = 1 линейно. Поведение линейных функций полностью детерминировано, однозначно определено начальными условиями. Поведение нелинейных функций не столь однозначно, ведь два разных начальных условия могут привести к одному результату. На этом основании итерация повторение операции проявляется в двух различных форматах. Она может иметь характер линейной референции, когда на каждом шаге вычислений идёт возврат к начальному условию. Это своего рода «итерация по шаблону». Серийное производство на конвейере есть «итерация по шаблону». Итерация в формате линейной референции не зависит от промежуточных состояний эволюции системы. Здесь каждая новая итерация стартует «от печки». Совсем иное дело, когда итерация имеет формат рекурсии, т. е. результат предыдущего шага итерации становится начальным условием для следующего.

Рекурсию можно проиллюстрировать рядом Фибоначчи, представленным в форме последовательности Жирара:

u n +2 = u n +1 + u n

Результат – числа Фибоначчи:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

В этом примере совершенно очевидно, что функция применяется сама к себе, не отсылая к начальному значению. Она как бы скользит по ряду Фибоначчи, и каждый результат предыдущей итерации становится начальным значением для следующей. Именно такое повторение реализуется при построении фрактальных форм.

Покажем, как фрактальный повтор реализуется в алгоритмах построения «салфетки Серпинского» (методом вырезания и методом CIF).

Метод вырезания. Берём равносторонний треугольник со стороной r . На первом шаге вырезаем в центре него перевёрнутый вершиной вниз равносторонний треугольник с длиной стороны r 1 = r 0 /2. В результате этого шага у нас получаются три равносторонних треугольника с длинами сторон r 1 = r 0 /2, располагающиеся в вершинах исходного треугольника (рис. 2).

На втором шаге в каждом из трёх образовавшихся треугольников вырезаем перевёрнутые вписанные треугольники с длиной стороны r 2 = r 1 /2 = r 0 /4. Результат – 9 треугольников с длиной стороны r 2 = r 0 /4. В результате форма «салфетки Серпинского» постепенно становится всё более и более определённой. Фиксация происходит на каждом шаге. Все предыдущие фиксации как бы «стираются».

Метод SIF, или Метод систем итерированных функций Барнсли. Дано: равносторонний треугольник с координатами углов А (0,0), В (1,0), С (1/2, √3/2). Z 0 – произвольная точка внутри этого треугольника (рис. 3). Берем игральную кость, на гранях которой имеется по две буквы А, В и С.

Шаг 1. Бросаем кость. Вероятность выпадения каждой буквы составляет 2/6 = 1/3.

  • Если выпала буква А строим отрезок z 0 –A, на середине которого ставим точку z 1
  • Если выпала буква В строим отрезок z 0 –B, на середине которого ставим точку z 1
  • Если выпала буква С строим отрезок z 0 –C, на середине которого ставим точку z 1

Шаг 2. Бросаем кость ещё раз.

  • Если выпала буква А строим отрезок z 1 –A, на середине которого ставим точку z 2
  • Если выпала буква В строим отрезок z 1 –B, на середине которого ставим точку z 2
  • Если выпала буква С строим отрезок z 1 –C, на середине которого ставим точку z 2

Повторяя операцию много раз, мы получим точки z 3 , z 4 , …, z n . Особенность каждой из них в том, что точка находится точно на полпути от предыдущей до произвольно выбранной вершины. Теперь, если отбросить начальные точки, например, от z 0 до z 100 , то остальные при достаточно большом их количестве образуют структуру «салфетки Серпинского». Чем больше точек, чем больше итераций, тем явственнее является наблюдателю фрактал Серпинского. И это при том, что процесс идет, казалось бы, случайным путём (благодаря игральной кости). «Салфетка Серпинского» представляет собой своего рода аттрактор процесса, то есть фигуру, к которой стремятся все траектории, построенные в этом процессе при достаточно большом количестве итераций. Фиксация образа при этом представляет собой кумулятивный, накопительный процесс. Каждая отдельная точка, быть может, никогда и не совпадёт с точкой фрактала Серпинского, но каждая следующая точка этого организованного «по случаю» процесса притягивается ближе и ближе к точкам «салфетки Серпинского».

ПЕТЛЯ ОБРАТНОЙ СВЯЗИ. Основоположник кибернетики Норберт Винер для описания петли обратной связи в качестве примера привёл рулевого на лодке. Рулевой должен придерживаться заданного курса и постоянно проводит оценку того, насколько лодка его придерживается. Если рулевой видит, что лодка отклоняется, он поворотом руля возвращает её на заданный курс. Через некоторое время он снова производит оценку и опять корректирует направление движения при помощи руля. Таким образом, навигация осуществляется при помощи итераций, повтора и последовательного приближения движения лодки к заданному курсу.

Типовая схема петли обратной связи показана на рис. 4 Она сводится к изменению переменного параметрах (направление лодки) и контролируемого параметра С (курс лодки).

Рассмотрим отображение «сдвиг Бернулли». Пусть в качестве начального состояния выбрано некоторое число, принадлежащее интервалу от 0 до 1. Запишем это число в двоичной системе счисления:

х 0 = 0,01011010001010011001010…

Теперь один шаг эволюции во времени состоит в том, что последовательность нулей и единиц сдвигается влево на одну позицию, и цифра, оказавшаяся по левую сторону от запятой, отбрасывается:

х 1 = 0,1011010001010011001010…

х 2 = 0,011010001010011001010 …

х 3 = 0,11010001010011001010 …

Заметим, что если исходные числа х 0 рациональные, то в процессе итерации значения х n выходят на периодическую орбиту. Например, для начального числа 11/24 в процессе итерации получим ряд значений:

11/24 -> 11/12 -> 5/6 -> 2/3 -> 1/3 -> 2/3 -> 1/3 -> …

Если исходные значения x 0 иррациональны, отображение никогда не выйдет на периодический режим. В интервале исходных значений x 0 ∈ содержится бесконечно много точек рациональных и бесконечно много точек иррациональных. Таким образом, плотность периодических орбит равна плотности орбит, которые никогда не выходят на периодический режим. В любой окрестности рационального значения x 0 найдётся иррациональное значение исходного параметра х’ 0 При таком положении дел неизбежно возникает тонкая чувствительность к начальным условиям. Это является характерным признаком того, что система находиться в состоянии динамического хаоса.

ЭЛЕМЕНТАРНЫЕ ПЕТЛИ ОБРАТНОЙ СВЯЗИ. Реверс является необходимым условием и следствием всякого бокового взгляда, самого себя застигающего врасплох. Иконой реверсивной петли может служить лента Мёбиуса, при которой нижняя её сторона с каждым кругом переходит в верхнюю, внутреннее становится внешним и наоборот. Накопление различий в процессе реверса сначала уводит образ от исходного, а затем к нему возвращает. В логике реверсивную петлю иллюстрирует парадокс Эпименида: «все критяне – лжецы». Но ведь и сам Эпименид критянин.

СТРАННАЯ ПЕТЛЯ. Динамическая суть феномена странной петли сводится к тому, что образ, трансформируясь и все больше отличаясь от исходного, в процессе многочисленных деформаций возвращается к исходному образу, но никогда не повторяет его в точности. Описывая этот феномен, Хофштадтер в книге вводит термин «странная петля». Он приходит к выводу, что и Эшер, и Бах, и Гёдель обнаружили или, точнее, использовали странные петли в своих работах и творчестве в изобразительном искусстве, музыке и математике соответственно. Эшер в «Метаморфозах» открыл для себя странную связность различных планов реальности. Формы одной из художественных перспектив пластично преобразуются в формы другой художественной перспективы (рис. 5).

Рис. 5. Мауриц Эшер. Рисующие руки. 1948

Подобная странность причудливым образом проявилась в музыке. Один из канонов «Музыкального приношения» Баха (Canon per Tonos - Тональный канон) сконструирован таким образом, что его кажущийся финал неожиданно плавно переходит в начало, но со сдвигом тональности. Эти последовательные модуляции уводят слушателя всё выше и выше от начальной тональности. Однако, чудесным образом, после шести модуляций мы почти возвращаемся. Все голоса теперь звучат ровно на октаву выше, чем в начале. Странность в том только, что поднимаясь по уровням некой иерархии, мы неожиданно обнаруживаем себя почти на том же месте, откуда начали свой путь – возвращение без повтора .

Курт Гёдель открыл странные петли в одной из самых древних и освоенных областей математики – в теории чисел. Теорема Гёделя впервые увидела свет как Теорема VI в его статье 1931 года «О формально неразрешимых суждениях» в «Principle Mathematica». Теорема утверждает следующее: все непротиворечивые аксиоматические формулировки теории чисел содержат неразрешимые суждения. Суждения теории чисел не говорят ничего про суждения теории чисел; они не более как суждения теории чисел. Здесь есть петля, но нет странности. Странная петля спрятана в доказательстве.

СТРАННЫЙ АТТРАКТОР. Аттрактор (от англ. attract притягивать) точка или замкнутая линия, притягивающая к себе все возможные траектории поведения системы. Аттрактор устойчив, то есть в долгосрочной перспективе единственная возможная модель поведения аттрактор, всё другое временно. Аттрактор пространственно-временной объект, охватывающий весь процесс, не являясь ни его причиной, ни следствием. Он формируется лишь системами с ограниченным числом степеней свободы. Аттракторы могут представлять собой точку, круг, тор и фрактал. В последнем случае аттрактор называется «странным» (рис. 6).

Точечный аттрактор описывает любое устойчивое состояние системы. В фазовом пространстве он представляет собой точку, вокруг которой формируются локальные траектории «узла», «фокуса» или «седла». Так ведёт себя маятник: при любой начальной скорости и любом начальном положении по истечении достаточного времени под действием трения маятник останавливается приходит в состояние устойчивого равновесия. Круговой (циклический) аттрактор – это движение взад-вперёд, подобно идеальному маятнику (без трения), по кругу.

Странные аттракторы (strange attractors) кажутся странными только со стороны, но термин «странный аттрактор» распространился сразу после появления в 1971 году статьи Давида Рюэля и голландца Флориса Такенса «Природа турбулентности» (см. также ). Рюэль и Такенс задались вопросом, обладает ли какой-либо аттрактор подходящим набором характеристик: устойчивостью, ограниченным числом степеней свободы и непериодичностью. С геометрической точки зрения вопрос казался чистой головоломкой. Какой вид должна иметь бесконечно протяжённая траектория, изображаемая в ограниченном пространстве, чтобы никогда не повторять и не пересекать саму себя? Чтобы воспроизвести каждый ритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади другими словами, быть самозаглатывающей (рис. 7).

К 1971 году в научной литературе уже имелся один набросок такого аттрактора. Эдуард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 году. Этот аттрактор был устойчивым, непериодическим, имел малое число степеней свободы и никогда не пересекал сам себя. Если бы подобное случилось, и он возвратился в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя тороидальный аттрактор, но такого не происходило.

Странность аттрактора заключается, как считал Рюэль, в трёх неэквивалентных, но на практике существующих вместе признаках:

  • фракталъности (вложенность, подобие, согласованность);
  • детерминированности (зависимость от начальных условий);
  • сингулярности (конечное число определяющих параметров).

Часть III. МНИМАЯ ЛЁГКОСТЬ ФРАКТАЛЬНЫХ ФОРМ

МНИМЫЕ ЧИСЛА, ФАЗОВЫЕ ПОРТРЕТЫ И ВЕРОЯТНОСТЬ. Фрактальная геометрия покоится на теории мнимых чисел, динамических фазовых портретах и теории вероятностей. Теория мнимых чисел допускает, что существует квадратный корень из минус единицы. Джероламо Кардано в своём труде «Великое искусство» («Ars Magna», 1545) представил общее решение кубического уравнения z 3 + pz + q = 0. Кардано использует мнимые числа как средство технического формализма для выражения корней уравнения. Он замечает странность, которую иллюстрирует простым уравнением х 3 = 15х + 4. Это уравнение имеет одно очевидное решение: х = 4. Однако обобщающая формула даёт странный результат. Он содержит корень из отрицательного числа:

Рафаэль Бомбелли в своей книге по алгебре («L’Algebra», 1560) указал на то, что = 2 ± i, и это сразу позволило ему получить вещественный корень х = 4. В подобных случаях, когда комплексные числа сопряжены, получается вещественный корень, а комплексные числа служат техническим подспорьем в процессе получения решения кубического уравнения.

Ньютон считал, что решения, содержащие корень из минус единицы, следует считать «не имеющими физического смысла» и отбрасывать. В XVII–XVIII веках формировалось понимание того, что нечто воображаемое, духовное, мнимое не менее реально, чем всё действительное, вместе взятое. Мы даже можем назвать точную дату 10 ноября 1619 года, когда Декарт сформулировал манифест нового мышления «cogito ergo sum». С этого момента мысль есть абсолютная и несомненная реальность: «если я мыслю, то, значит, я существую»! Точнее мысль теперь воспринимается как реальность. Идея Декарта об ортогональной системе координат, благодаря мнимым числам, обретает свою завершённость. Теперь появилась возможность наполнять эти воображаемые числа смыслами.

В XIX веке трудами Эйлера, Аргана, Коши, Гамильтона разрабатывается арифметический аппарат работы с комплексными числами. Любое комплексное число может быть представлено как сумма X+iY, где X и Y – привычные нам вещественные числа, а i мнимая единица (по сути это √–1). Каждому комплексному числу соответствует точка с координатами {X, Y} на так называемой комплексной плоскости.

Второе важное понятие – фазовый портрет динамической системы сформировалось в XX веке. После того, как Эйнштейн показал, что по отношению к свету всё движется с одинаковой скоростью, идея о возможности выразить динамическое поведение системы в формате застывших геометрических линий так называемом фазовом портрете динамической системы обрела ясный физический смысл.

Проиллюстрируем её на примере маятника. Первые опыты с маятником Жан Фуко проводил в 1851 году в погребе, потом в Парижской обсерватории, потом под куполом Пантеона. Наконец, в 1855 году маятник Фуко был подвешен под куполом парижской церкви Сен-Мартен-де-Шан. Длина каната маятника Фуко 67 м, вес гири 28 кг. С огромного расстояния маятник выглядит как точка. Точка всегда неподвижна. Приближаясь, мы различим систему с тремя типовыми траекториями: гармонический осциллятор (sinϕ ≈ ϕ), маятник (колебания взад-вперёд), пропеллер (вращение).

Там, где локальный наблюдатель видит одну из трёх возможных конфигураций движения шара, отстранённый от процесса аналитик может предположить, что шар совершает одно из трёх типовых движений. Это можноизобразить на одном плане. Необходимо условиться, что мы переместим «шар на нити» в абстрактное фазовое пространство, имеющее столько координат, сколько степеней свободы имеет рассматриваемая система. В этом случае мы говорим о двух степенях свободы скорость v и угол наклона нити с шаром к вертикали ϕ. В координатах ϕ и v траектория гармонического осциллятора представляет собой систему концентрических окружностей, по мере увеличения угла ϕ эти окружности становятся овальными, а при ϕ = ± π теряется замыкание овала. Это означает, что маятник перешёл в режим пропеллера: v = const (рис. 8).

Рис. 8. Маятник: а) траектория в фазовом пространстве идеального маятника; б) траектория в фазовом пространстве маятника, качающегося с затуханием; в) фазовый портрет

В фазовом пространстве может не быть длин, длительностей, движений. Здесь любое действие пред-дано, но не всякое действительно. От геометрии остаётся только топология, вместо мер параметры, вместо размеров размерности. Здесь любая динамическая система имеет свой уникальный отпечаток фазовый портрет. И среди них встречаются фазовые портреты довольно странные: будучи сложными, они определены одним-единственным параметром; будучи соизмеримыми, они несоразмерны; будучи непрерывными, они дискретны. Такие странные фазовые портреты характерны для систем с фрактальной конфигурацией аттракторов. Дискретность центров притяжения (аттракторов) создаёт эффект кванта действия, эффект разрыва или скачка при том, что траектории сохраняют непрерывность и производят единую связанную форму странный аттрактор.

КЛАССИФИКАЦИЯ ФРАКТАЛОВ. Фрактал имеет три ипостаси: формальную, операциональную и символическую, которые ортогональны друг другу. И это значит, что одна и та же форма фрактала может быть получена посредством разных алгоритмов, а одно и то же число фрактальная размерность может появиться у совершенно разных по форме фракталов. С учетом этих замечаний классифицируем фракталы по символическому, формальному и операциональному признакам:

  • в символическом плане характерная для фрактала размерность может быть целой или дробной;
  • по формальному признаку фракталы могут быть связные, как лист или облако, и несвязные, как пыль;
  • по операциональному признаку фракталы могут быть разделены на регулярные и стохастические.

Регулярные фракталы строятся по строго определённому алгоритму. Процесс построения при этом обратим. Вы можете повторить все операции в обратном порядке, стирая любой созданный в процессе детерминированного алгоритма образ, точка за точкой. Детерминированный алгоритм может быть линейным или нелинейным.

Стохастические фракталы, подобные в стохастическом смысле, возникают, когда в алгоритме их построения, в процессе итераций какие-либо параметры изменяются случайным образом. Термин «стохастичность» восходит к греческому слову stochasis – догадка, предположение. Стохастический процесс – процесс, характер изменения которого точно предсказать невозможно. Фракталы производятся по капризу природы (поверхности разлома горных пород, облака, турбулентные потоки, пена, гели, контуры частиц сажи, изменения биржевых цен и уровня рек и прочие), лишены геометрического подобия, но упорно воспроизводят в каждом фрагменте статистические свойства целого в среднем. Компьютер позволяет генерировать последовательности псевдослучайных чисел и сразу моделировать стохастические алгоритмы и формы.

ЛИНЕЙНЫЕ ФРАКТАЛЫ. Линейные фракталы названы так по той причине, что все они строятся по определённому линейному алгоритму. Эти фракталы самоподобны, не искажаются при любом изменении масштаба и не дифференцируемы в любой своей точке. Для построения таких фракталов достаточно задать основу и фрагмент. Эти элементы будут многократно повторяться с уменьшением масштаба до бесконечности.

Пыль Кантора. В XIX веке немецкий математик Георг Фердинанд Людвиг Филипп Кантор (1845–1918) предложил математическому сообществу странное множество чисел в интервале от 0 до 1. Множество содержало бесконечное число элементов в указанном промежутке и притом имело нулевую размерность. Пущенная наугад стрела вряд ли поразила бы хоть один элемент этого множества.

Для начала необходимо выбрать отрезок единичной длины (первый шаг: n = 0), затем разделим его на три части и изымем среднюю треть (n = 1). Далее будем поступать точно так же с каждым из образовавшихся отрезков. В результате бесконечного количества повторений операции получаем искомое множество «пыль Кантора». Теперь между разрывным и бесконечно делимым не существует противопоставления «пыль Кантора» представляет собой и то, и другое (см. рис. 1). «Пыль Кантора» – фрактал. Его фрактальная размерность равна 0,6304…

Один из двухмерных аналогов одномерого множества Кантора был описан польским математиком Вацлавом Серпинским. Его называют «канторов ковёр» или чаще «ковёр Серпинского». Он строго самоподобен. Мы можем рассчитать его фрактальную размерность как ln8/lnЗ = 1,89… (рис. 9).

ЛИНИИ, ЗАПОЛНЯЮЩИЕ ПЛОСКОСТЬ. Рассмотрим целое семейство регулярных фракталов, которые представляют собой кривые, способные заполнить плоскость. Ещё Лейбниц утверждал: «Если предположить, что некто ставит на бумаге множество точек по воле случая, <… > я говорю, что можно выявить постоянную и целостную, подчиняющуюся определённому правилу геометрическую линию, которая пройдёт через все точки». Это утверждение Лейбница противоречило Евклидову пониманию размерности, как наименьшего количества параметров, при помощи которых однозначно определяется положение точки в пространстве. За неимением строгого доказательства эти идеи Лейбница оставались на периферии математической мысли.

Кривая Пеано. Но вот в 1890 году математик из Италии Джузеппе Пеано сконструировал линию, которая полностью покрывает плоскую поверхность, проходя через все её точки. Построение «кривой Пеано» показано на рис. 10.

При том, что топологическая размерность кривой Пеано равна единице, её фрактальная размерность равна d = ln(1/9)/ln(1/3) = 2. В рамках фрактальной геометрии парадокс разрешился самым естественным образом. Линией, как паутиной, можно покрыть плоскость. При этом устанавливается однозначное соответствие: каждой точке линии соответствует точка на плоскости. Но это соответствие не взаимно-однозначное, ведь каждой точке на плоскости соответствует одна или более точек на линии.

Кривая Гильберта. Годом позже, в 1891 году появилась статья немецкого математика Дэвида Гильберта (1862–1943), в которой он представил кривую, покрывающую плоскость без пересечений и касаний. Построение «кривой Гильберта» показано на рис. 11.

Кривая Гильберта стала первым примером FASS-кривых (spaceFilling, selfAvoiding, Simple and selfSimilar заполняющих пространство само избегающих, простых и самоподобных линий). Фрактальная размерность линии Гилберта, как и кривой Пеано, равна двум.

Лента Минковского. Герман Минковский, близкий друг Гильберта со студенческих времён, построил кривую, которая не покрывает всю плоскость, но формирует нечто наподобие ленты. При построении «ленты Минковского» на каждом шаге каждый отрезок заменяется на ломаную линию, состоящую из 8 отрезков. На следующем этапе с каждым новым отрезком операция повторяется в масштабе 1:4. Фрактальная размерность ленты Минковского d = ln(l/8)/ln(1/4) = 1,5.

НЕЛИНЕЙНЫЕ ФРАКТАЛЫ. Простейшим нелинейным отображением комплексной плоскости на себя является рассмотренное в первой части отображение Жюлиа z g z 2 + С. Оно представляет собой расчёт по замкнутому циклу, в котором результат предыдущего цикла умножается сам на себя с приплюсовыванием к нему некоей константы, т. е. представляет собой квадратичную петлю обратной связи (рис. 13).

В процессе итераций при фиксированной величине константы С, в зависимости от произвольной начальной точки Z 0 , точка Z n при n -> ∞ может быть или конечной, или бесконечной. Всё зависит от положения Z 0 относительно начала отсчёта z = 0. Если расчётная величина конечна, то она включается в множество Жюлиа; если уходит на бесконечность, то отсекается от множества Жюлиа.

Форма, которая получается после применения отображения Жюлиа к точкам некоторой поверхности, однозначно определяется параметром С. При малых С – это несложные связные петли, при больших С – это кластеры несвязных, но строго упорядоченных точек. По большому счёту, все формы Жюлиа могут быть разбиты на два больших семейства – связных и несвязных отображений. Первые напоминают «снежинку Коха», вторые «пыль Кантора».

Разнообразие форм Жюлиа обескуражило математиков, когда они впервые смогли наблюдать эти формы на мониторах компьютеров. Попытки ранжировать это многообразие носили весьма условный характер и свелись к тому, что за основу классификации отображений Жюлиа было взято множество Мандельброта, границы которого, как оказалось, асимптотически подобны отображениям Жюлиа.

При С = 0 повторение отображения Жюлиа даёт последовательность чисел z 0 , z 0 2 , z 0 4 , z 0 8 , z 0 16 … В итоге возможны три варианта:

  • при |z 0 | < 1 в процессе итераций числа z n по модулю будут уменьшаться, последовательно приближаясь к нулю. Иными словами, ноль есть точечный аттрактор;
  • при |z 0 | > 1 в ходе итераций числа z n по модулю увеличиваются, стремясь к бесконечности. В этом случае аттрактором является бесконечно удалённая точка, и такие значения мы исключаем из множества Жюлиа;
  • при |z 0 | = 1 все точки последовательности продолжают оставаться на этой единичной окружности. В этом случае аттрактором является окружность.

Таким образом, при С = 0 граница между притягивающими и отталкивающими исходными точками есть круг. В этом случае отображение имеет две неподвижные точки: z = 0 и z = 1. Первая из них является притягивающей, так как производная квадратичной функции в нуле есть 0, а вторая отталкивающей, так как производная квадратичной функции при значении параметра единица равна двум.

Рассмотрим ситуацию, когда постоянная С является действительным числом, т.е. мы как бы перемещаемся по оси множества Мандельброта (рис. 14). При С = –0,75 происходит самопересечение границы множества Жюлиа и появляется второй аттрактор. Фрактал в этой точке носит имя фрактала Сан-Марко, данное ему Мандельбротом в честь известного венецианского собора. Глядя на рисунок, нетрудно понять, почему Мандельброту пришла идея назвать фрактал именно в честь этого строения: сходство потрясающее.

Рис. 14. Изменение формы множества Жюлиа при уменьшении действительной величины С от 0 до –1

Уменьшая далее С до –1,25, мы получим новую типовую форму с четырьмя неподвижными точками, которые сохраняются до значений С < 2. При С = 2 множество Жюлиа вырождается в отрезок, который тут же распадается в пыль, аналогичную «пыли Кантора» (рис. 15).

Рис. 15. Появление новых форм множества Жюлиа при уменьшении действительной величины С < –1

Итак, даже оставаясь на оси фрактала Мандельброта (постоянная С действительное число), мы «захватили» в поле внимания и некоторым образом ранжировали довольно большое разнообразие форм Жюлиа от окружности до пыли. Теперь рассмотрим знаковые области фрактала Мандельброта и соответствующие им формы фракталов Жюлиа. Прежде всего, опишем фрактал Мандельброта в терминах «кардиоид», «почек» и «луковок» (рис. 16).

Главная кардиоида и примыкающий к ней круг формируют основную форму фрактала Мандельброта. К ним примыкает бесконечное число её же копий, которые принято называть почками. Каждая из этих почек облеплена бесконечно большим количеством меньших почек, похожих одна на другую. Две самые большие почки сверху и снизу от основной кардиоиды назвали луковками.

Исследовавшие типовой фрактал этого множества (С = –0,12 + 0,74i) француз Адриен Дауди и американец Билл Хаббард назвали его «фракталом кролика» (рис. 17).

При переходе границы фрактала Мандельброта фракталы Жюлиа всегда теряют связность и превращаются в пыль, которую принято называть «пылью Фату» в честь Пьера Фату, доказавшего, что для определённых значений С бесконечно удалённая точка притягивает всю комплексную плоскость, кроме очень тонкого множества, подобного пыли (рис. 18).

СТОХАСТИЧЕСКИЕ ФРАКТАЛЫ. Есть существенное отличие между строго самоподобной кривой фон Коха и, например, побережьем Норвегии. Последняя, не являясь строго самоподобной, проявляет подобие в статистическом смысле. Обе кривые при этом изломаны настолько, что ни к одной из их точек вы не сможете провести касательную, или, иными словами, не сможете её дифференцировать. Такие кривые своего рода «монстры» среди нормальных евклидовых линий. Первым, кто построил непрерывную функцию, не имеющую касательной ни в одной своей точке, был Карл Теодор Вильгельм Вейерштрасс. Его работа была представлена Королевской Прусской Академии 18 июля 1872 года и опубликована в 1875 году. Функции, описанные Вейерштрассом, выглядят подобно шумам (рис. 19).

Посмотрите на графики биржевых бюллетеней, сводку колебаний температуры или давления воздуха и обнаружите некую регулярную изрезанность. Причём при увеличений масштаба характер изрезанности сохраняется. И это отсылает нас к фрактальной геометрии.

Броуновское движение – один из самых известных примеров стохастического процесса. В 1926 году Жан Перрен получил Нобелевскую премию за исследование характера броуновского движения. Именно он обратил внимание на самоподобие и недифференцируемость броуновской траектории.

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. В основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций - копирования и масштабирования

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:

  • обладает сложной структурой при любом увеличении;
  • является (приближенно) самоподобной;
  • обладает дробной хаусдорфовой (фрактальной) размерностью , которая больше топологической;
  • может быть построена рекурсивными процедурами.

На рубеже XIX и XX веков изучение фракталов носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха» .

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал - С-кривая Леви . Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов .

Другой класс - динамические (алгебраические) фракталы , к которым относится и множество Мандельброта . Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа - целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли.

Вновь внимание к работам Жюлиа и Фату обратилось лишь полвека спустя, с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов. Ведь Фату никогда не мог посмотреть на изображения, которые мы сейчас знаем как изображения множества Мандельброта, потому что необходимое количество вычислений невозможно провести вручную. Первым, кто использовал для этого компьютер был Бенуа Мандельброт.

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными то появилось даже целое направление в искусстве - фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Я обнаружил этот фрактал, когда разглядывал интерференцию волн на поверхности речки. Волна движется к берегу, отражается и накладывается сама на себя. Есть ли порядок в тех узорах, которые создаются волнами? Попробуем найти его. Рассмотрим не всю волну, а только вектор ее движения. «Берега» сделаем гладкими, для простоты эксперимента.

Эксперимент можно провести на обычном листке в клеточку из школьной тетради.

Или используя JavaScript реализацию алгоритма.

Возьмем прямоугольник со сторонами q и p. Отправим луч (вектор) из угла в угол. Луч двигается к одной из сторон прямоугольника, отражается и продолжает движение к следующей стороне. Это продолжается до тех пор, пока луч не попадет в один из оставшихся углов. Если размер стороны q и p - взаимно просты числа, то получается узор (как мы увидим позже - фрактал).

На картинке мы ясно видим, как работает этот алгоритм.

Gif-анимация:

Самое удивительное то, что с разными сторонами прямоугольника - получаем разные узоры.




Почему я называю эти узоры фракталами? Как известно, «фрактал» - это геометрическая фигура, обладающая свойствами самоподобия. Часть картинки повторяет всю картинку в целом. Если значительно увеличить размеры сторон Q и P - ясно, что эти узоры обладают свойствами самоподобия.

Попробуем увеличить. Увеличивать будем хитрым способом. Возьмем, например, узор 17x29. Следующие узоры будут: 29x(17+29=46), 46x(29+46=75)…
Одна сторона: F(n);
Вторая сторона: F(n+1)=F(n)+F(n-1);
17, 29, 46, 75, 121, 196, 317, 513, 830, 1343
Как числа Фибоначчи, только с другими первым и вторым членом последовательности: F(0)=17, F(1)=29.

Если большая сторона четная, получается такой узор:

Если меньшая сторона четная:

Если обе стороны нечетные - получаем симметрический узор:

В зависимости от того, как начинается луч:

или

Попробую объяснить, что происходит в этих прямоугольниках.

Отделим от прямоугольника квадрат, и посмотрим, что происходит на границе.

Луч выходит в той-же точке, откуда зашел.

При этом, количество квадратиков, которые проходит луч - всегда четное число.

Поэтому, если отрезать от прямоугольника квадрат - останется не измененная часть фрактала.

Если отделять от фрактала квадраты столько раз, сколько это возможно - можно добраться до «начала» фрактала.

Похоже на спираль Фибоначчи?

Из чисел Фибоначчи тоже можно получить фракталы.

В математике числами Фибоначчи (ряд Фибоначчи, последовательность Фибоначчи) называют числа:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…
По определению, первые две цифры в последовательности Фибоначчи 0 и 1, а каждое последующее число равно сумме двух предыдущих.
F(n)=F(n-1)+F(n-2)
F(0)=0, F(1)=1

Поехали:

Как мы видим, чем ближе отношение сторон приближается к золотому сечению - тем больше детализация фрактала.

При этом фрактал повторяет часть фрактала, увеличенного на .

Вместо чисел Фибоначчи можно использовать иррациональные размеры сторон:

Получим тот-же фрактал.

Те-же фракталы можно получить и в квадрате, если пускать луч под другим углом:

Что можно сказать в заключении?
Хаос - это тоже порядок. Со своими закономерностями. Порядок этот не изученный, но вполне поддающийся изучению. А все стремление науки - обнаружить эти закономерности. И в конечном итоге соединить детали головоломки, чтобы увидеть общую картину.
Давайте посмотрим на поверхность речки. Если бросить в нее камень - пойдут волны. Круги, вполне поддающиеся изучению. Скорость, период, длину волны - все это можно подсчитать. Но до тех пор, пока волна не дойдет до берега, не отразиться и не начнет накладываться на саму себя. Получим хаос (интерференцию), который уже трудно поддается изучению.
Что если двигаться от обратного? Упростить поведение волны на столько, на сколько это возможно. Упростить, найти закономерность и после этого попробовать описать уже полную картину происходящего.
Что можно упростить? Очевидно, что сделать отражающую поверхность прямой, без изгибов. Далее, вместо самой волны, использовать только вектор движения волны. В принципе, этого достаточно, чтобы построить простой алгоритм и смоделировать процесс на компьютере. И даже вполне достаточно, чтобы сделать «модель» поведения волны на обычном листке в клеточку.
Что имеем в результате? В результате видим, что в волновых процессах (та-же рябь на поверхности речки) имеем не хаос, а наложение фракталов (самоподобных структур) друг на друга.

Рассмотрим другой вид волн. Как известно, электромагнитная волна состоит из трех векторов - волновой вектор и вектора напряженности электрического и магнитного поля. Как видим, если «словить» такую волну в замкнутой области – там, где пересекаются эти вектора, получаем вполне четкие замкнутые структуры. Быть может, элементарные частицы – это такие-же фракталы?

Все фрактальчики в прямоугольниках от 1 до 80 (6723х6723 px):

Замкнутые области во фракталах (6723х6723 px):

Просто красивый фрактал (4078x2518 px):

Перевод поста Bernat Espigulé Pons, «Adventures into the Mathematical Forest of Fractal Trees» .
Скачать перевод в виде документа Mathematica , который содержит весь код использованный в статье, можно .

Без сомнения, золотое сечение и в наше время представляется одним из самых таинственных, волшебных и поразительных чисел, которые известны людям: . (в языке Wolfram Language и системе Mathematica ему соответствует символ GoldenRatio). Как вы увидите из этого поста, это число действительно имеет множество интересных свойств, которые можно исследовать, причём некоторые из них рассматривались ещё в работах учёных Древней Греции, таких как Пифагор и Евклид , другие в работах итальянского математика Леонардо Пизанского , более известного под прозвищем Фибоначчи, или Иоганном Кеплером - астрономом эпохи Возрождения. Хотя это может прозвучать странно, в этом посте я расскажу вам о новых геометрических объектах, связанных с золотым сечением, которые осветили мне путь, когда я пытался отобразить неизвестную ранее область Математического Леса.

Обнаруженные ниже свойства были найдены не как-то случайно, я упорно работал, чтобы добыть эти новые знания еще со времён, когда я учился в старшей школе. После того, как в 2007 году я увидел рисунки “золотых” (в плане использования при их построении золотого сечения) фрактальных деревьев Ганса Вальзера (Hans Walser), я понял, что в этой области ещё есть место новым исследованиям и открытиям. После некоторых поисков я нашел требующиеся мне для этого инструменты: ими стали система Mathematica и интерактивная модель Тео Грея под названием “Сгибатель обнажённого обдуваемого ветром дерева Пифагора ”, с сайта Wolfram Demonstrations Project . Собрав некоторые знания и начальные умения программирования на языке Wolfram Language, я получил свои первые результаты и озарения. Скажем, ниже вы можете видеть пример одного из первых самокасающихся “золотых” фрактальных деревьев, которые я открыл для себя, создав свою собственную версию “Сгибателя” Тео Грея, которую я изначально разрабатывал для изучения тернарных деревьев (т. е. деревьев, у которых из каждого узла выходит три ветви).

Это самоподобное дерево, т. е. дерево, которое получается, по сути, последовательным применением некоторого правила ветвления. Я называю “золотыми” те деревья, длина ветвей которых кратна золотому сечению GoldenRatio = φ. Для этого конкретного дерева, масштабный коэффициент для центральной ветви равен , а для боковых ветвей . Угол между центральной ветвью и каждой из боковых ветвей равен 72º. Так как это дерево не имеет пересекающихся между собой ветвей или же не соединённых между собой элементов, то его можно называть “самокасающимся” деревом. Давайте взглянем на некоторые из его свойств поближе:

Вслед за обозначениями, предложенными Бенуа Мандельбротом (Benoit Mandelbrot) и Майклом Фрэймом (Michael Frame) для бинарных деревьев, я добавил третью букву U , вместе с которой мы сможем описать все ветви нашего тройного дерева. Буквой L обозначаются ветви, выходящие слева, буквой R - ветви, выходящие справа, а буква U соответствует центральной ветви. Таким образом, строка из этих букв однозначно задаёт каждую ветвь нашего фрактала. В том случае, если такого рода “адрес” имеет бесконечную длину, то мы можем указать конкретную “вершину” нашего фрактального дерева, которую можно рассматривать, по сути, как недостижимую предельную точку, к которой постепенно приближается цепочка ветвей фрактального дерева. Например, бесконечный “адрес” вида задаёт “кончик” в самом верху нашего дерева:

Таким образом, высота нашего дерева равна:

А его ширина равна расстоянию между точками и :

Также весьма интересно, что длина последовательности ветвей дерева может быть выражена с помощью чисел Фибоначчи (в Mathematica для поиска n-го по счёту числа Фибоначчи служит функция Fibonacci [n]). Вы можете найти некоторые выражения, используемые в коде ниже, в нижнем левом углу предыдущего рисунка:

Наконец, для того, чтобы доказать, что это дерево является самокасающимся, нам необходимо показать, что две различные ветви (их вершины) касаются друг друга в одной точке, которая соответствует одновременно двум точкам (вершинам) дерева: . При этом тоже самое наблюдается и для зеркально симметричной точки (см. диаграмму ниже). Если это так, то самоподобие дерева будет означать, что в нём отсутствуют вершины, которые не касаются других вершин. Это означает, что можно взять любую вершину, “отрезать” подмножество дерева, содержащее её, которое повторяет по внешнему виду всё дерево, затем изменить соответствующим образом его масштаб, повернуть на нужный угол и мы получим после этого точку касания одного из двух рассмотренных основных типов:

Координаты вершины можно определить следующим образом:

При этом координаты вершины будут равны:

Таким образом, ввиду того, что эти координаты равны, мы можем утверждать, что наше дерево действительно является самокасающимся.

Еще одна потрясающая вещь, связанная с этим “золотым” деревом, заключается в том, что оно создаёт красивый узор с осевой симметрией 5-го порядка, который может быть получен поворотом основного дерева вокруг его основания:

Или же можно создать аналогичный узор, вращая дерево вокруг его основной вершины:

В тот же день я открыл для себя второе тройное “золотое” дерево. Это дерево, в котором центральная ветвь идёт по направлению вниз, её мы обозначим буквой D , а правая R и левая L ветви образуют угол в 36º вместе с центральной ветвью.

В этом случае, мы можем создать узор с осевой симметрией 10-го порядка, вращая созданное дерево вокруг его основания:

Теперь позвольте представить вам самое первое “золотое” дерево, которое я открыл для себя ещё в 2011 году:

Это бинарное дерево асимметрично. В нём длина ветвей, которые отходят налево, на каждом шаге умножается на коэффициент , при этом они образуют с продолжением центральной ветви угол в 36º. Ветви, отходящие направо устроены таким образом, чтобы формировать правильные пятиугольники. Первые четыре итерации приведены ниже:

Ещё можно рассмотреть асимметричное дерево, приведённое ниже, которое имеет зеркальную симметрию относительно прямой, проходящей через центральную ветвь:

На основе этого дерева можно создать фрактал, имеющий осевую симметрию 5-го порядка:

Настоящая магия произошла после того, как я “сложил” это дерево так, как это показано в этой gif-анимации , созданной с помощью Mathematica .

Когда ветви были полностью сложены, вершины дерева образовали “золотую” снежинку Коха . Золотое сечение “выстроило” ветви таким образом, что они сформировали “золотые треугольники ” и “золотые гномоны ”, которые можно увидеть при любой степени увеличения изображения.


()

Затем я начал рассматривать деревья, имеющие более двух ветвей, отходящих от основной ветви. Сборник “Фрактальных мозаик ” Роберта Фатхауэра (Robert Fathauer) вдохновил меня на поиск способа отображения всех возможных деревьев, порождающих снежинки Коха, подобно тому дереву, что было рассмотрено ранее, с помощью одной диаграммы. Эта диаграмма была представлена на прошлогодней конференции Bridges conference (статью вы можете найти по ссылке , сама диаграмма - рисунок с подписью figure 4). Эти исследования и наблюдения позволили мне продвинуться вперед и обобщить симметричные самокасающиеся бинарные фрактальные деревья, изученные Бенуа Мандельбротом (Benoit Mandelbrot) и Майклом Фрэймом (Michael Frame) (см. ), Тарой Тэйлор (Tara Taylor) (см. ), Душаном Пагоном (Dušan Pagon) (см. ) и Стивеном Вольфрамом (Stephen Wolfram) (см. ). После долгой работы над выяснением того, как связаны между собой “адреса” путей до вершин дерева, в которых оно касается само себя, с углом θ, а также с количеством ветвей дерева, с помощью системы Mathematica мне удалось получить все девять типов уравнений, которые определяют коэффициент самокасания для n -арных симметричных фрактальных деревьев. Я не буду вдаваться в подробности здесь - вы можете сами изучить самокасающиеся деревья в манипуляторе ниже. Если же вас заинтересовал данный вопрос, вы можете прочитать пост “Девять уравнений, чтобы править ими всеми. Всё семейство фракталов Серпинского ” (Nine equations to rule them all. The Sierpinski’s whole family), который был написан для Wolfram Community. В этом посте получены результаты, которые были затем опубликованы в журнале Symmetry (Volume 24, Numbers 1–4, pages 320–338, 2013).


()

Мои исследования не закончились на этом. Прошлым летом, во время первой недели моего пребывания на летней школе Wolfram Science Summer School , я имел счастье открыть пять трёхмерных самокасающихся бесконечных “золотых” деревьев с ветвями, направленными вниз (ниже вы можете видеть одно из таких деревьев, порождающих трёхмерную снежинку кода, которое может быть получено, если взять угол наклона боковых ветвей относительно продолжения центральной ветви равным ). Этот момент стал для меня самым выдающимся. (Todd Rowland), академического директора летней школы, помогла мне понять основные идеи реализации моего проекта, а мой руководитель, Виталий Кауров (Vitaliy Kaurov), был очень вдохновлен моей целью .

После моего первого разговора со Стивеном Вольфрамом (Stephen Wolfram), все были согласны, что я должен остаться в том же самом Математическом лесу, из которого я пришел и должен постараться перейти к более высокой размерности рассматриваемых деревьев. На протяжении моей первой недели я искал литературу о трёхмерных фрактальных деревьях, и я нашел статью “Симметричные трёхмерные фрактальные деревья ” (Symmetric Fractal Trees in Three Dimensions), написанную Фронгилло (Frongillo) и др., а также пример Пола Ниландера (Paul Nylander) генерирования трёхмерных тернарных фрактальных деревьев. После этого я быстро попытался воспроизвести и расширить результаты, представленные в статье, основываясь на моей интуиции и знаниях, полученных во время изучения двумерных деревьев под руководством Сюзанны Кромкер (Susanne Krömker) в Гейдельбергском университете. Окончательные результаты были поразительны и я по-прежнему поражаюсь насколько быстро все эти были получены всего за три недели. Конечно, та атмосфера, которая стояла в летней школе стала лучшим помощником для выполнения такого проекта.


()

(Манипулятор, созданный с помощью функции Manipulate , который вы видите выше, позволит вам изучить “лес” симметричных бинарных фрактальных деревьев. Синяя “карта” на заднем плане представляет собой множество Мандельброта для симметричных бинарных деревьев. В данном случае, множества Жулиа, связанные с этой “картой”, являются множествами вершин соответствующих деревьев. Эта “карта”, открытая Майклом Барнсли (Michael Barnsley), имеет некоторые общие свойства с точечными картами , открытыми Стивеном Вольфрамом (Stephen Wolfram). Мнимая ось направлена на этом рисунке вверх для того, чтобы деревья “росли” вверх. При этом белая область в центре соответствует тем положениям материнских ветвей, при которых полученные на их основе деревья являются несвязными.)

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.