Свойства открытых и замкнутых множеств. Понятие счетного множества. Теория вещественных чисел. Алгебраические структуры с одной бинарной операцией

ЗАМКНУТОЕ МНОЖЕСТВО

в топологическом пространстве - , содержащее все свои предельные точки. Таким образом, все точки дополнения к 3. м.- внутренние, и потому 3. м. можно определить как к открытому. Понятие 3. м. лежит в основе определения топологич. пространства как непустого множества Xс заданной системой множеств (называемых замкнутыми), удовлетворяющей аксиомам: все Xи замкнуты; любого числа 3. м. замкнуто; конечного числа 3. м. замкнуто.

Лит : Куратовский К., Топология, [пер. с англ.], т. 1, М., 1966.

А. А. Мальцев.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЗАМКНУТОЕ МНОЖЕСТВО" в других словарях:

    замкнутое множество - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN closed set … Справочник технического переводчика

    Для термина «Замкнутость» см. другие значения. Замкнутое множество подмножество пространства дополнение к которому открыто. Содержание 1 Определение 2 Замыкание 3 Свойства … Википедия

    Множество, открытое (замкнутое) относительно нек рого множества Е, множество Мтопологич. пространства Xтакое, что (черта сверху означает операцию замыкания). Для того чтобы нек рое множество было открытым (замкнутым) относительно Е, необходимо и… … Математическая энциклопедия

    Подмножество топологич. пространства, одновременно открытое и замкнутое в нем. Топологич. пространство Xнесвязно тогда и только тогда, когда в нем имеется отличное от Xи от О. з. м. Если семейство всех О. з. м. топологич. пространства является… … Математическая энциклопедия

    Или катлокус точки в римановом многообразии подмножество точек, через которые не проходит ни одна кратчайшая из. Содержание 1 Примеры … Википедия

    Для одноимённого математического понятия, смотрите Замкнутое множество и Пространство (математика) Ливневая канализация … Википедия

Книги

  • Предельные теоремы для ассоциированных случайных полей и родственных систем , Александр Булинский. Монография посвящена исследованию асимптотических свойств широкого класса стохастических моделей, возникающих в математической статистике, теории перколяции, статистической физике и теории…

ОПРЕДЕЛЕНИЕ 5. Пусть Х - метрическое пространство, МÌ Х, аÎХ. Точка а называется предельной точкой М, если в любой окрестности а есть точки множества М\{a}. Последнее означает, что в любой окрестности а есть точки множества М, отличные от а.

Замечания. 1. Предельная точка может, как принадлежать, так и не принадлежать множеству. Например, 0 и 1 являются предельными точками множества (0,2), но первая ему не принадлежит, а вторая принадлежит.

2. Точка множества М может не являться его предельной точкой. В этом случае она называется изолированной точкой М. Например, 1 - изолированная точка множества (-1,0)È{1}.

3. Если предельная точка а не принадлежит множеству М, то найдется последовательность точек х n ÎM, сходящаяся к а в этом метрическом пространстве. Для доказательства достаточно взять открытые шары в этой точке радиусов 1/n и выбрать из каждого шара точку, принадлежащую М. Верно и обратное, если для а есть такая последовательность, то точка является предельной.

ОПРЕДЕЛЕНИЕ 6. Замыканием множества М называется объединение М с множеством его предельных точек. Обозначение .

Отметим, что замыкание шара не обязано совпадать с замкнутым шаром того же радиуса. Например, в дискретном пространстве замыкание шара B(a,1) равно самому шару (состоит из одной точки a) в то время как замкнутый шар (a,1) совпадает со всем пространством.

Опишем некоторые свойства замыкания множеств.

1. МÌ . Это следует непосредственно из определения замыкания.

2. Если М Ì N, то Ì . Действительно, если a Î , a ÏМ, то в любой окрестности a есть точки множества М. Они же являются точками N. Поэтому aÎ . Для точек из М это ясно по определению.

4. .

5. Замыкание пустого множества пустое. Это соглашение не следует из общего определения, но является естественным.

ОПРЕДЕЛЕНИЕ 7. Множество M Ì X называется замкнутым, если = M.

Множество M Ì X называется открытым, если замкнуто множество X\M.

Множество M Ì X называется всюду плотным в X, если = X.

ОПРЕДЕЛЕНИЕ 8. Точка а называется внутренней точкой множества M, если B(a,r)ÌM при некотором положительном r, т. е. внутренняя точка входит во множество вместе с некоторой окрестностью. Точка а называется внешней точкой множества M, если шар B(a,r)ÌХ/M при некотором положительном r, т. е. внутренняя точка не входит во множество вместе с некоторой окрестностью. Точки, которые не являются ни внутренними, ни внешними точками множества M, называются граничными.

Таким образом, граничные точки характеризуются тем, что в каждой их окрестности есть точки как входящие, так и не входящие в M.

ПРЕДЛОЖЕНИЕ 4. Для того, чтобы множество являлось открытым, необходимо и достаточно, чтобы все его точки были внутренними.

Примерами замкнутых множеств на прямой являются , , e > 0; Ue+(x) = }