Краткая история развития искусственного интеллекта. История развития искусственного интеллекта за рубежом. Краткая история искусственного интеллекта

Лекция 1

Введение. Понятие информационной системы и технологии, интеллектуальной информационной системы (ИИС). Исторические аспекты развития методов представления и обработки сигналов, методов построения систем обработки сигналов, их интеллектуализации. Отличие ИИС от традиционных информационных систем. Виды и характеристики интеллектуальных систем. Понятие и виды интеллектуального управления. Подходы к построению интеллектуальных информационных систем. Основные классы ИИС. Отличительные признаки каждого класса.

В современном мире рост производительности программиста практически достигается только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области является "искусственный интеллект", когда компьютер не только берет на себя однотипные, многократно повторяющиеся операции, но и сам может обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития.

Прежде чем начать рассмотрение вопросов построения работоспособных интеллектуальных информационных систем, обратимся к некоторым определениям и основным понятиям темы.

Информация – сведения об объектах, явлениях и событиях, процессах окружающего мира, передаваемые устным, письменным или иным способом и уменьшающие неопределенность знаний о них.

Информация должна быть достоверной, полной, адекватной, т.е. иметь определенный уровень соответствия, краткой, ясно и понятно выраженной, своевременной и ценной.

Система – совокупность элементов, объединенная связями между ними и обладающая определенной целостностью. Т.е., система – это совокупность взаимодействующих взаимосвязанных элементов, объединенных некоторой целью и общими (целенаправленными) правилами взаимоотношений.

Автоматические информационные системы выполняют все операции по переработке информации без участия человека.

Автоматизированные информационные системы предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль отводится компьютеру. В современном толковании в термин «информационная система» обязательно вкладывается понятие автоматизируемой системы. Следует различать понятия информационной системы и информационной технологии.

Информационная технология – приемы, способы и методы применения средств вычислительной техники при выполнении функций сбора, хранения, обработки и использования данных (по ГОСТ 34.003-90).

Информационная система – организационно упорядоченная совокупность документов и информационных технологий, в том числе и с использованием средств вычислительной техники и связи, реализующих информационные процессы.

Такое понимание информационной системы предполагает использование в качестве основного технического средства переработки информации ЭВМ и средств связи, реализующих информационные процессы и выдачу информации, необходимой в процессе принятия решений о задачах из любой области.

ИнфСист является средой, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, БД, люди, различного рода технические и программные средства связи и т.д. Хотя сама идея ИС и некоторые принципы их организации возникли задолго до появления компьютеров, однако компьютеризация в десятки и сотни раз повысила эффективность ИС и расширила сферы их применения.

Под термином «система» понимается объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность взаимосвязанных разнородных элементов, работающих как единое целое. Системы значительно отличаются между собой как по составу, так и по главным целям. Это целое приобретает некоторое свойство, отсутствующее у элементов в отдельности.

Признаки системности описываются тремя принципами:

    Внешней целостности – обособленность или относительная обособленность системы в окружающем мире;

    Внутренней целостности – свойства системы зависят от свойств её элементов и взаимосвязей между ними. Нарушение этих взаимосвязей может привести к тому, что система не сможет выполнять свои функции;

    Иерархичности – в системе можно выделить различные подсистемы, с другой стороны сама система тоже может являться подсистемой другой более крупной системы или подсистемы.

В информатике понятие "система" широко распространено и имеет множество смысловых значений. Чаще всего оно используется применительно к набору технических средств и программ. Системой может называться аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

В зависимости от конкретной области применения ИС могут очень различаться по своим функциям, архитектуре, реализации. Можно выделить основные свойства, которые являются общими для всех ИС :

    структура ИС, ее функциональное назначение должны соответствовать поставленным целям;

    ИС использует сети для передачи данных;

    так как любая ИС предназначена для сбора, хранения и обработки информации, то в основе любой ИС лежит среда хранения и доступа к данным. И поскольку задача ИС – производство достоверной, надежной, своевременной и систематизированной информации, основанной на использование БД, экспертных систем и баз знаний, то она должна обеспечивать требуемый уровень надежности хранения и эффективность доступа, которые соответствуют области применения ИС;

    ИС должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными принципами, реализованными в виде стандарта предприятия или иного стандарта на ИС. Интерфейс пользователя ИС должен быть легко понимаем на интуитивном уровне.

Основные задачи информационных систем и разработчиков ИС:

    Поиск, обработка и хранение информации, которая долго накапливается и утрата которой невосполнима. Компьютеризованные ИС предназначены для более быстрой и надежной обработки информации, чтобы люди не тратили время, чтобы избежать свойственных человеку случайных ошибок, чтобы сэкономить расходы, чтобы сделать жизнь людей более комфортной;

    Хранение данных разной структуры. Не существует развитой ИС, работающей с одним однородным файлом данных. Более того, разумным требованием к информационной системе является то, чтобы она могла развиваться. Могут появиться новые функции, для выполнения которых требуются дополнительные данные с новой структурой. При этом вся накопленная ранее информация должна остаться сохраненной. Теоретически можно решить эту задачу путем использования нескольких файлов внешней памяти, каждый из которых хранит данные с фиксированной структурой. В зависимости от способа организации используемой системы управления файлами эта структура может быть структурой записи файла или поддерживаться отдельной библиотечной функцией, написанной специально для данной ИС. Известны примеры реально функционирующих ИС, в которых хранилище данных планировалось основывать на файлах. В результате развития большинства таких систем в них выделился отдельный компонент, который представляет собой разновидность системы управления базами данных (СУБД);

    Анализ и прогнозирование потоков информации различных видов и типов, перемещающихся в обществе. Изучаются потоки с целью их минимизации, стандартизации и приспособления для эффективной обработки на вычислительных машинах, а также особенности потоков информации, протекающей через различные каналы распространения информации;

    Исследование способов представления и хранения информации, создание специальных языков для формального описания информации различной природы, разработка специальных приемов сжатия и кодирования информации, аннотирования объемных документов и реферирования их. В рамках этого направления развиваются работы по созданию банков данных большого объема, хранящих информацию из различных областей знаний в форме, доступной для вычислительных машин;

    Построение процедур и технических средств для их реализации, с помощью которых можно автоматизировать процесс извлечения информации из документов, не предназначенных для вычислительных машин, а ориентированных на восприятие их человеком;

    Создание информационно-поисковых систем, способных воспринимать запросы к информационным хранилищам, сформулированные на естественном языке, а также специальных языках запросов для систем такого типа;

    Создание сетей хранения, обработки и передачи информации, в состав которых входят информационные банки данных, терминалы, обрабатывающие центры и средства связи.

Конкретные задачи, которые должны решаться информационной системой, зависят от той прикладной области, для которой предназначена система. Области применения информационных приложений разнообразны: банковское дело, управление производством, медицина, транспорт, образование и т.д. Введем понятие «предметная область» - фрагмент, выделенный из окружающего мира, называется областью экспертизы или предметной областью . Существует также множество задач и проблем, которые необходимо решать, используя сущности и отношения из этой предметной области, поэтому используется более широкое понятие - проблемная среда – это предметная область + решаемые задачи.

С двумя типами информационных систем мы будем знакомиться поближе. Это экспертные и интеллектуальные системы.

Экспертные системы (Expert System) – информационные консультирующие и\или принимающие решения системы, основанные на структурированных, часто плохо формализуемых процедурах, использующих опыт, интуицию, т.е. поддерживающие или моделирующие работу экспертов интеллектуальные особенности; системы используются как в долгосрочном, так и в краткосрочном оперативном прогнозировании, управлении.

Интеллектуальные системы или системы, основанные на знаниях (Knowleadge Based System) - системы поддержки задач принятия решения в сложных системах, где необходимо использование знаний в достаточно широком диапазоне, особенно в плохо формализуемых и плохо структурируемых системах, нечетких системах и при нечетких критериях принятия решения; эти системы наиболее эффективны и используемы для сведения проблем долгосрочного, стратегического управления к проблемам тактического и краткосрочного характера, повышения управляемости, особенно в условиях многокритериальности. В отличие от экспертных систем, в системах, основанных на знаниях, следует чаще избегать экспертных и эвристических процедур и прибегать к когнитивным процедурам для минимизации риска. Здесь более существенно влияние профессионализма персонала, ибо при разработке таких систем необходимо сотрудничество и взаимопонимание не только разработчиков, но и пользователей, менеджеров, а сам процесс разработки, как правило, происходит итерационно, итерационными улучшениями, постепенным преобразованием (переходом) процедурных знаний (как делать) в непроцедурные, декларативные (что делать).

Рассмотрим теперь вопрос интеллектуальности информационных систем.

Термининтеллект (intelligence) происходит от латинского intellectus, что означает "ум, рассудок, разум; мыслительные способности человека". Соответственноискусственный интеллект (artificial intelligence) - ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Можно сказать, чтоинтеллект - это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразованиязнаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. Сам термин «искусственный интеллект» (artificial intelligence) был предложен в 1956 году на семинаре в Дартсмутском колледже (США). Слово intelligence, собственно, и означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect.

В 1950 году британский математик Алан Тьюринг опубликовал в журнале «Mind» свою работу «Вычислительная машина и интеллект», в которой описал тест для проверки программы на интеллектуальность. Он предложил поместить исследователя и программу в разные комнаты и до тех пор, пока исследователь не определит, кто за стеной - человек или программа, считать поведение программы разумным. Это было одно из первых определений интеллектуальности, то есть А. Тьюринг предложил называть интеллектуальным такое поведение программы, которое будет моделировать разумное поведение человека. С тех пор появилось много определений интеллектуальных систем (ИнС) и искусственного интеллекта (ИИ). Приведем некоторые из этих определений. 1. ИИ определяется как область компьютерных наук, занимающуюся исследованием и автоматизацией разумного поведения. 2. другое определение: «ИИ - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка». 3. ИС – это адаптивная система , позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде. При этом адаптивная система определяется как система, которая сохраняет работоспособность при непредвиденных изменениях свойств управляемого объекта, целей управления или окружающей среды путем смены алгоритма функционирования, программы поведения или поиска оптимальных, в некоторых случаях просто эффективных, решений и состояний. Традиционно, по способу адаптации различают самонастраивающиеся, самообучающиеся и самоорганизующиеся системы.

Итак, применяя интеллектуальные системы, человек решает интеллектуальные задачи. Для определения отличия просто задачи от интеллектуальной задачи необходимо ввести понятие алгоритма. Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин "алгоритм" происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Принято считать, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными. Т.е. интеллектуальные задачи – это сложные плохо формализуемые задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Разные исследователи по-разному определяют искусственный интеллект как науку, в зависимости от своего взгляда на нее, и работают над созданием систем, которые:

    думают подобно людям;

    думают рационально;

    действуют подобно людям;

    действуют рационально.

При воссоздании разумных рассуждений и действий возникают определенные трудности. Во-первых, в большинстве случаев, выполняя какие-то действия, человек не осознает, как это делает, не известен точный способ, метод или алгоритм понимания текста, распознавания лиц, доказательства теорем, решения задач, сочинения стихов и т.д. Во-вторых, на современном уровне развития компьютер слишком далек от человеческого уровня компетентности и работает по другим принципам.

Искусственный интеллект всегда был междисциплинарной наукой, являясь одновременно и наукой и искусством, и техникой и психологией. Методы искусственного интеллекта разнообразны. Они активно заимствуются из других наук, адаптируются и изменяются под решаемую задачу. Для создания интеллектуальной системы необходимо привлекать специалистов из прикладной области, поэтому в рамках искусственного интеллекта сотрудничают лингвисты, нейрофизиологи, психологи, экономисты, информатики, программисты и т.д.

История развития искусственного интеллекта

Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в Древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобных существ.

Искусственный интеллект является в некотором смысле наукой будущего, в которой нет жесткого разделения по областям и ясно видна связь между отдельными дисциплинами, которые лишь отражают определенную грань познания.

Точный свод законов, руководящих рациональной частью мышления, был сформулирован Аристотелем (384-322 гг. до н.э.). Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач на основе разработанной им всеобщей классификации понятий. В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Труды этих ученых можно считать первыми теоретическими работами в области искусственного интеллекта. Теория игр и теория принятия решений, данные о строении мозга, когнитивная психология – все это стало строительным материалом для искусственного интеллекта. Но окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века и выпуска Норбертом Винером основополагающих работ по новой науке – кибернетике.

Формирование искусственного интеллекта как науки произошло в1956 году. Д. Маккарти, М. Минский, К. Шеннон и Н. Рочестер организовали двухмесячный семинар в Дартмуте для американских исследователей, занимающихся теорией автоматов, нейронными сетями, интеллектом. Хотя исследования в этой области уже активно велись, но именно на этом семинаре появились термин и отдельная наука – искусственный интеллект.

Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950 году опубликовал статью «Вычислительные машины и разум» (переведенную на русский язык под названием «Может ли машина мыслить?»). Именно в ней описывался ставший классическим «тест Тьюринга», позволяющий оценить «интеллектуальность» компьютера по его способности к осмысленному диалогу с человеком.

Первые десятилетия развития искусственного интеллекта (1952- 1969 гг.)были полны успехов и энтузиазма. А. Ньюэлл, Дж. Шоу и Г. Саймон создали программу для игры в шахматы на основе метода, предложенного в 1950 году К. Шенноном, формализованного А. Тьюрингом и промоделированного им же вручную. К работе была привлечена группа голландских психологов под руководством А. де Гроота, изучавших стили игры выдающихся шахматистов. В 1956 году этим коллективом был создан язык программирования ИПЛ1 – практически первый символьный язык обработки списков и написана первая программа «Логик-Теоретик», предназначенная для автоматического доказательства теорем в исчислении высказываний. Эту программу можно отнести к первым достижениям в области искусственного интеллекта.

В 1960 году этой же группой была написана программа GPS (General Problem Solver) – универсальный решатель задач. Она могла решать ряд головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Результаты привлекли внимание специалистов в области вычислений, и появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач.

С 1952 года А. Самюэл написал ряд программ для игры в шашки, которые играли на уровне хорошо подготовленного любителя, причем одна из них научилась играть лучше, чем ее создатель.

В 1958 году Д. Маккарти определил новый язык высокого уровня Lisp, который стал доминирующим для искусственного интеллекта.

Первые нейросети появились в конце 50-х годов. В 1957 году Ф. Розенблаттом была предпринята попытка создать систему, моделирующую человеческий глаз и его взаимодействие с мозгом, – персептрон.

Первая международная конференция по искусственному интеллекту (IJCAI) состоялась в 1969 году в Вашингтоне.

В 1963 году Д. Робинсон реализовал метод автоматического доказательства теорем, получивший название «принцип резолюции», и на основе этого метода в 1973 году был создан язык логического программирования Prolog.

В США появились первые коммерческие системы, основанные на знаниях, – экспертные системы. Происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения и интерес ксамообучающимся системам , создаются промышленные экспертные системы. Разрабатываются методы представления знаний.

Первая экспертная система была создана Э. Фейгенбаумом в 1965 году. Но до коммерческой прибыли было еще далеко. Лишь в 1986 году первая коммерческая система R1 компании DEC позволила сэкономить примерно 40 миллионов долларов за год. К 1988 году компанией DEC было развернуто 40 экспертных систем. В компании Du Pont применялось 100 систем, и экономия составляла примерно 10 миллионов в год.

В 1981 году Япония, в рамках 10-летнего плана по разработке интеллектуальных компьютеров на базе Prolog, приступила к разработке компьютера 5-го поколения, основанного на знаниях. 1986 год стал годом возрождения интереса к нейронным сетям.

В 1991 году Япония прекращает финансирование проекта компьютера 5-го поколения и начинает проект создания компьютера 6-го поколения – нейрокомпьютера.

В 1997 году компьютер «Дип Блю» победил в игре в шахматы чемпиона мира Г. Каспарова, доказав возможность того, что искусственный интеллект может сравняться с человеком или превзойти его в ряде интеллектуальных задач (пусть и в ограниченных условиях).

Огромную роль в борьбе за признание искусственного интеллекта в СССР сыграли академики А. И. Берг и Г. С. Поспелов.

В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. Создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы искусственного интеллекта внесли выдающиеся ученые М. Л. Цетлин, В. Н. Пушкин, М. А. Гаврилов, чьи ученики и явились пионерами этой науки в России.

В 1964 году предлагался метод автоматического поиска доказательства теорем в исчислении предикатов, получивший название «обратный метод Маслова».

В 1965-1980 гг. произошло рождение нового направления – ситуационного управления (в западной терминологии соответствует представлению знаний). Основателем этой научной школы стал профессор Д. А. Поспелов.

В Московском государственном университете в 1968 году В. Ф. Турчиным был создан язык символьной обработки данных РЕФАЛ.

ЧТО ТАКОЕ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. 3

1. ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА.. 4

1.1. История развития искусственного интеллекта за рубежом.. 4

1.1.1. Ключевые этапы развития ИИ и становление ЭС.. 9

1.2. История развития искусственного интеллекта в России. 9

1.3. Основные направления исследований в ИИ.. 10

1.4. Перспективные направления искусственного интеллекта. 20

1.5. Различные подходы к построению современных интеллектуальных. 21

2. СТРУКТУРА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ... 25

3. ДАННЫЕ И ЗНАНИЯ.. 27

3.1. Формы представления знаний: императивные, декларативные, комбинированные формы представления знаний. 31

3.2. Модели представления знаний. 32

3.2.1. Формальные логические модели. 32

3.2.2. Продукционная модель. 36

3.2.3.Семантические сети. 45

3.2.4.Фреймы.. 53

4. Представление и обработка нечетких знаний. 74

4.1. Подход на основе условных вероятностей (теоремы Байеса) 76

4.2. Подход с использованием коэффициентов уверенности. 81

4.3. Нечеткая логика Заде. 86

5. Методы поиска решений в сложных пространствах. 89

5.1. Методы поиска в одном пространстве. 90

5.2. Способы формализации задач. Представление задач в пространстве состояний. 93

5.3. Алгоритмы поиска решения (в пространстве состояний) 96

5.4. Эвристический (упорядоченный) поиск. 101

Библиографический список. 104

ЧТО ТАКОЕ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Наука под названием «искусственный интеллект» входит в комплекс компьютерных наук , а создаваемые на ее основе технологии относятся к информационным технологиям .

Искусственный интеллект - это одно из направлений информатики, цель которого разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Задачей этой науки является обеспечение разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств.

На этом пути возникают следующие главные трудности:

а) в большинстве случаев до получения результата не известен алгоритм решения задачи. Например, точно неизвестно, как происходит понимание текста, поиск доказательства теоремы, построение плана действий, узнавание изображения.

б) искусственные устройства (например, компьютеры) не обладают достаточным уровнем начальной компетентности. Специалист же добивается результата, используя свою компетентность (в частности, знания и опыт).

Это означает, что искусственный интеллект представляет собой экспериментальную науку . Экспериментальность искусственного интеллекта состоит в том, что создавая те или иные компьютерные представления и модели, исследователь сравнивает их поведение между собой и с примерами решения тех же задач специалистом, модифицирует их на основе этого сравнения, пытаясь добиться лучшего соответствия результатов.

Чтобы модификация программ «монотонным» образом улучшала результаты, надо иметь разумные исходные представления и модели. Их доставляют психологические исследования сознания, в частности, когнитивная психология.

Важная характеристика методов искусственного интеллекта – он имеет дело только с теми механизмами компетентности, которые носят вербальный характер (допускают символьное представление). Далеко не все механизмы, которые использует для решения задач человек, таковы.

ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

История развития искусственного интеллекта за рубежом

Идея создания искусственного подобия человеческого разума для решения сложных задач моделирования мыслительной способности витала в воздухе с древнейших времен. Впервые ее выразил Р.Лулли й (ок.1235- ок.1315), который еще в XIV в. пытался создать машину для решения различных задач на основе всеобщей классификации понятий.

В XVIII в. Г.Лейбниц (1646 - 1716) и Р.Декарт (1596- 1650) независимо друг от друга развили эту идею, предложив универсальные языки классификации всех наук. Эти идеи легли в основу теоретических разработок в области создания искусственного интеллекта.

Развитие искусственного интеллекта как научного направления стало возможным только после создания ЭВМ. Это произошло в 40-х гг. XX в. В это же время И.Винер (1894- 1964) создал свои основополагающие работы по новой науке - кибернетике.

Термин искусственный интеллект (artificial intelligence) предложен в 1956 г. на семинаре с аналогичным названием в Станфордском университете (США). Семинар был посвящен разработке логических, а не вычислительных задач. Вскоре после признания искусственного интеллекта самостоятельной отраслью науки произошло разделение на два основных направления: нейрокибернетику и кибернетику"черного ящика " (или бионическое и прагматическое направления). И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Основную идею нейрокибернетики можно сформулировать следующим образом. Единственный объект, способный мыслить, - это человеческий мозг. Поэтому любое "мыслящее" устройство должно каким-то образом воспроизводить его структуру.

Таким образом, нейрокибериетика ориентирована на аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество связанных между собой и взаимодействующих нервных клеток - нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями , или нейросетями.

Первые нейросети были созданы в конце 50-х гг. американскими учеными Г.Розенблаттом и П.Мак-Кигюком. Это были попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Устройство, созданное ими, получило название перцептрона . Оно умело различать буквы алфавита, но было чувствительно к их написанию, например, буквы А, А и А для этого устройства были тремя разными знаками. Постепенно в 70-80 гг. количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны оказались первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.

Однако в середине 80-х гг. в Японии в рамках проекта разработки компьютера V поколения, основанного на знаниях, был создан нейрокомпьютер. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры - параллельные компьютеры с большим количеством процессоров. От транспьютеров был один шаг до нейрокомпьютеров , моделирующих структуру мозга человека. Основная область применения нейрокомпьютеров - распознавание образов.

В настоящее время используются три подхода к созданию нейросетей:

аппаратный - создание специальных компьютеров, плат расширения, наборов микросхем, реализующих все необходимые алгоритмы,

программный - создание программ н инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры;

гибридный - комбинация первых двух. Часть вычислений выполняют специальные платы расширения (сопроцессоры), часть - программные средства.

В основу кибернетики "черного ящика" лег принцип, противоположный нейрокибернетике. Не имеет значения, как устроено "мыслящее" устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг.

Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. В 1954 -1963 гг. велись интенсивные поиски моделей и алгоритма человеческого мышления и разработка первых программ. Оказалось, что ни одна из существующих наук - философия, психология, лингвистика - не может предложить такого алгоритма. Тогда кибернетики предложили создать собственные модели. Были созданы и опробованы различные подходы.

В конце 50-х гг. родилась модель лабиринтного поиска . Этот подход представляет задачу как некоторый граф, отражающий пространство состояний, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но в решении практических задач идея большого распространения не получила,

В 1954 году американский исследователь А.Ньюэлл (A.Newel) решил написать программу для игры в шахматы. Этой идеей он поделился с аналитиками корпорации «РЭНД» (RAND Corporation) Дж. Шоу (J.Show) и Г.Саймоном (H.Simon), которые предложили Ньюэллу свою помощь. В качестве теоретической основы такой программы было решено использовать метод, предложенный в 1950 году Клодом Шенноном (C.E. Shannon), основателем теории информации. Точная формализация этого метода была выполнена Аланом Тьюрингом (Alan Turing). Он же промоделировал его вручную.

К работе была привлечена группа голландских психологов под руководством А. Де Гроота (A. de Groot), изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 - по-видимому первый символьный язык обработки списков. Вскоре была написана и первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Эта была программа "Логик-Теоретик" (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний.

Собственно же программа для игры в шахматы, NSS, была завершена в 1957 г. В основе ее работы лежали так называемые эвристики (правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований) и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.

Начало 60-х гг. - эпоха эвристического программирования . Эвристика - правило, теоретически не обоснованное, но позволяющее сократить количество переборов в пространстве поиска. Эвристическое программирование - разработка стратегии действий на основе известных, заранее заданных эвристик.

В 1960 г. той же группой, на основе принципов, использованных в NSS, была написана программа, которую ее создатели назвали GPS (General Problem Solver)-Универсальный решатель задач. Система GPS была универсальной в том отношении, что "не было конкретного указания, к какой области относится задача". Пользователь должен был задать "проблемную среду" в терминах объектов и тех операторов, которые к ним применимы. Но эта универсальность относилась лишь к ограниченной области математических головоломок с относительно небольшим множеством сocтояний и хорошо очерченных формальных правил. Система GPS функционировала в таком формализованном микромире, где возникающие проблемы, с точки зрения людей, проблемами и не являются.

С технической точки зрения можно сказать, что процесс, известный как "поиск в глубину" и состоящий в последовательном разбиении задачи на подзадачи, пока не будет получена легко решаемая подзадача, является малоэффективным по той причине, что большое число тупиковых направлений подвергается весьма тщательному анализу. Впоследствии исследователи разработали более эффективные стратегии "поиска в ширину".

Эти результаты привлекли внимание специалистов в области вычислений. Появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач (сформулированных на английском языке).

В конце 60-х годов появились первые игровые программы, системы для элементарного анализа текста и решения некоторых математических задач (геометрии, интегрального исчисления). В возникавших при этом сложных переборных проблемах количество перебираемых вариантов резко снижалось применением всевозможных эвристик и «здравого смысла». Такой подход стали называть эвристическим программированием . Дальнейшее развитие эвристического программирования шло по пути усложнения алгоритмов и улучшения эвристик. Однако вскоре стало ясно, что существует некоторый предел, за которым никакие улучшения эвристик и усложнения алгоритма не повысят качества работы системы и, главное, не расширят ее возможностей. Программа, которая играет в шахматы, никогда не будет играть в шашки или карточные игры.

В 1963- 1970 гг. к решению задач стали подключать методы математической логики. Джона Маккарти (J.McCarty) из Стэнфорда заинтересовали математические основы этих результатов и вообще символьных вычислений. В результате в 1963 г. им был разработан язык ЛИСП (LISP, от List Processing), основу которого составило использование единого спискового представления для программ и данных, применение выражений для определения функций, скобочный синтаксис.

В 1965 г. в США появляется работа Дж.А.Робинсона (J.A.Pobinson) , посвященная несколько иному методу автоматического поиска доказательства теорем в исчислении предикатов первого порядка. Этот метод был назван методом резолюций и послужил отправной точкой для создания нового языка программирования со встроенной процедурой логического вывода - языка Пролог (PROLOG) в 1971.

Постепенно исследователи стали понимать, что всем ранее созданным программам недостает самого важного - знаний в соответствующей области. Специалисты, решая задачи, достигают высоких результатов, благодаря своим знаниям и опыту; если программы будут обращаться к знаниям и применять их, то они тоже достигнут высокого качества работы.

Это понимание, возникшее в начале 70-х годов, по существу, означало качественный скачок в работах по искусственному интеллекту, когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. Основополагающие соображения на этот счет высказал в 1977 году на 5-й Объединенной конференции по искусственному интеллекту американский ученый Э.Фейгенбаум (E.Feigenbaum).

Уже к середине 70-х годов появляются первые прикладные интеллектуальные системы, использующие различные способы представления знаний для решения задач - экспертные системы . Экспертная система (ЭС) – это программа, в которую заложены теоретические и практические знания высококвалифицированных специалистов в некоторой конкретной проблемной области и которая способна давать рекомендации по проблемам в этой области с высокой степенью надежности на уровне этих специалистов.

Одной из первых была экспертная система DENDRAL, разработанная в Станфордском университете группой ученых, возглавляемой Эдвардом Фейгенбаумом и предназначенная для порождения формул химических соединений на основе спектрального анализа. В настоящее время DENDRAL поставляется покупателям вместе со спектрометром. Система MYCIN предназначена для диагностики и лечения инфекционных заболеваний крови. Она была родоначальником целой серии медико-диагностических машин, которые используются в рутинной клинической практике. Система MICIN ввела в рассмотрение несколько характеристик, которые стали отличительной чертой экспертных систем. Во-первых, ее знания представляют сотни продукционных правил “если - то”; во-вторых, правила являются вероятностными; в-третьих, используются коэффициенты уверенности; в-четвертых, система может объяснить свой процесс рассуждений. Известная система PROSPECTOR прогнозирует залежи полезных ископаемых. Имеются сведения о том, что с ее помощью были открыты залежи молибдена, ценность которых превосходит 100 миллионов долларов. Система оценки качества воды, реализованная на основе российской технологии SIMER + MIR выявляет причины превышения предельно допустимых концентрациий загрязняющих веществ в Москве-реке в районе Серебрянного Бора. Система CASNET предназначена для диагностики и выбора стратегии лечения глаукомы и т.д.

В настоящее время разработка и реализация экспертных систем выделилась в самостоятельную инженерную область.

Начиная с середины 80-х гг. происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Искусственный интеллект перенес внимание на область проблем машинного обучения.

Дуг Ленат создал машинную общающуюся систему EURISCO, которая автоматически улучшает и расширяет свой запас эвристических правил. Кроме того, что эта система выигрывала три года подряд в военной игре (несмотря на то, что правила игры каждый раз менялись, чтобы помешать ей это сделать), она смогла произвести переворот в области создания СБИС (сверхбольших интегральных схем), изобретя трехмерный узел типа И/ИЛИ.

В начале 90-х годов исследованиях по искусственному интеллекту сформировалось самостоятельное направление – “инженерия знаний”. Ведутся работы по созданию динамических интеллектуальных систем, т.е. систем, учитывающих изменения, происходящие в окружающем мире за время исполнения приложения.

ВВЕДЕНИЕ

1. ПРЕДЫСТОРИЯ ВОЗНИКНОВЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

2. ИСТОРИЯ РАЗРАБОТКИ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

3. СОВРЕМЕННОЕ СОСТОЯНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

4. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. ВЗГЛЯД В БУДУЩЕЕ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Актуальность исторического исследования. Одним из приоритетных направлений исследования в области Computer Science (Компьютерных наук) является искусственный интеллект. Это важно потому, что люди не совершенны. Они устают, испытывают эмоции и очень часто думают не рационально. Кроме того, в самой человеческой природе есть изъян, который порождает преступность, коррупцию и прочие нежелательные явления. Роботы лишены этих недостатков. Тем не менее, для того, чтобы заменить людей в критических областях, роботы должны иметь интеллект как у людей. Однако, сама идея создания искусственного интеллекта и замена людей роботами очень противоречива и требует ответа на ряд философских вопросов:

какова будет роль человека в мире, где практически всю работу за людей будут выполнять роботы;

морально-этические проблемы, возникающие при создании искусственных мыслящих существ;

возможные риски выхода искусственного интеллекта из под контроля и как их предотвратить;

возможно ли в принципе создать искусственный интеллект?

Ответы на эти и другие вопросы требует анализа современных философских воззрений, научных данных о человеческом мозге и сознании, а также некую экстраполяцию развития технологий искусственного интеллекта в будущее, для чего необходимо провести исторический анализ развития данных технологий.

Объект исследования. Объектом исследования в рамках данного реферата является история Computer Science. Данная наука в широком смысле слова включает в себя такие науки и научные дисциплины, как информатика, кибернетика, математическая лингвистика, искусственный интеллект, программная инженерия, а также другие специальные технические дисциплины, связанные с компьютерами.

Предмет исследования. Предметом исследования в рамках настоящего реферат является история искусственного интеллекта, как подраздела Computer Science. Такая дисциплина как искусственный интеллект, включающая в себя методы автоматизации когнитивной деятельности человека, в том числе компьютерное зрение, эмуляцию работы нейронов головного мозга, обработку естественного языка, различные эвристические алгоритмы и методы оптимизации.

Цели исследования. Целью данного исследования является анализ предыстории и истории создания технологий искусственного интеллекта, анализ современного состояния и взгляд в будущее для оценки возможных последствий для человечества, к которым приведет развитие технологии ИИ.

Задачи исследования. Исходя из поставленной цели исследования, в данном реферате выполнены следующие задачи:

— Обзор исторических предпосылок создания технологий искусственного интеллекта;

— Обзор исторических событий, связанных с разработкой искусственного интеллекта, эволюции данных технологий;

— Обзор современного состояния исследований в области ИИ;

— Краткий прогноз будущего развития технологий ИИ и предложение способов уменьшения рисков и решения филосовско-этических проблем, связанных с ИИ.

Информационная база исследования. В рефераты была использованы учебно-методическая литература по Искусственному Интеллекту, в частности, таких авторов как Стюарт Рассел, Поспелов Д.А., Л. Шапиро, Дж. Стокма, Д. Форсайт, Ж. Понс, Р. Гонсалес, Дж. Кэнни; научные труды А. Тьюринга, учебно-методическая литература по философии, современные научные статьи; научные труды Холка Круза и Мальа Шиллинга; книга Н. Бострома. «Искусственный интеллект. Этапы. Угрозы. Стратегии»; электронные ресурсы: Википедия, geektimes.ru, материалы сайта общественного движения «Россия 2045».

Практическая значимость исследования, проведенного в рамках данного реферата заключается в прогнозировании основных тенденций развития искусственного интеллекта на основе его истории, поднятии морально этических вопросов, связанных с дальнейшим развитием систем ИИ и предложении конкретных способов их решения, а также предсказании возможных рисков, связанным с выходом ИИ из под контроля и рассмотрении вопросов их решения.

    ПРЕДЫСТОРИЯ ВОЗНИКНОВЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Искусственный интеллект – это теория и методы создания компьютерных программ, способных выполнять когнитивную работу, выполняемую человеческим мозгом . Первые компьютеры появились в 30-ых года XX-столетия , однако, как появление первых ЭВМ имели некоторые технические и философские предпосылки, так и сама идея искусственного интеллекта имела такие же предпосылки задолго до появления компьютеров.

Самая первая философская предпосылка создания ИИ, пожалуй, возникла еще в древней Греции, с попытки понять разум человека. Эта попытка является изобретение Аристотелем логического мышления. Его силлогизмы стали образцом для создания процедур доказательства . Но теоретические предпосылки создания науки об искусственном интеллекте появились значительно позже, в XVII-ом веке, когда возник механистический материализм, начиная с работ Рене Декарта «Рассуждение о методе» (1637) и сразу вслед за этим работы Томаса Гоббса «Человеческая природа» (1640) .

Следующий шаг – это технические предпосылки создания ИИ. Они также берут свое начало в XVI-ом веке в виде работ Вильгельма Шикарда (нем. Wilhelm Schickard), который в 1623 построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. .

Предыстория ИИ заканчивается с появлением первых компьютеров, когда стало возможным реализовать теоретические разработки практически. С этого момента начинается, собственно, сама история ИИ.

    ИСТОРИЯ РАЗРАБОТКИ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

    Первая теоретическая разработка ИИ, которую принципиально можно было реализовать при помощи существующих на тот момент ЭВМ, относится к 40-ым годам XX-ого века. Так, в 1943 году Уоррен Маккалок и Уолтер Питтс опубликовали свои труды под названием «A Logical Calculus of the Ideas Immanent in Nervous Activity (Логическое исчисление идей, относящихся к нервной активности)», которые заложили основы искусственных нейронных сетей. Авторы предложили модель искусственного нейрона. Д. Хебб в работе «Организация поведения» 1949 года описал основные принципы обучения нейронов. Интерес к исследованию нейронных сетей угас после публикации работы по машинному обучению Минского и Пейперта в 1969 году. Ими были обнаружены основные вычислительные проблемы, возникающие при компьютерной реализации искусственных нейронных сетей.

    Следующая теоретическая разработка, по своей значимости практически самая важная — это работа Алана Тьюринга «Computing Machinery and Intelligence (Вычислительные машины и разум)». Данная работа была опубликована в 1950 году в журнале «Mind», дающая широкой аудитории представление о том, что в настоящее время называется тестом Тьюринга. Суть этого теста следующая: человек и робот общаются с другим человеком, таким образом, чтобы тот не знал и не видел, кто есть кто. Например, по телефону, через телетайп или через чат (в современной интерпретации). Если робот смог выдать себя за человека, значит, это и есть искусственный интеллект.

    В 1954 году родилось такое направление ИИ, как Neural language processing (Обработка естественного языка, или компьютерная лингвистика). Все началось со знаменитого Джорджтаунского эксперимента, в котором были продемонстрированы возможности машинного перевода с одного языка на другой. В ходе эксперимента был продемонстрирован полностью автоматический перевод более 60 предложений с русского языка на английский. Что интересно, в его основе лежала довольно простая система: она была основана всего на 6 грамматических правилах, а словарь включал 250 записей. В компьютер в торжественной обстановке на перфокартах вводились предложения вроде: «Обработка повышает качество нефти», «Командир получает сведения по телеграфу», - и машина выводила их перевод, напечатанный транслитом. Демонстрация была широко освещена в СМИ и воспринята как успех. Она повлияла на решение правительств некоторых государств, в первую очередь США, направить инвестиции в область вычислительной лингвистики.

    Однако, в дальнейшем выяснилось, что все не так хорошо, как кажется. При попытке перевода более сложных текстов выяснились непреодолимые на тот момент трудности. В течении 10 лет не были достигнуты значительные успехи в теории и практике машинных переводов и финансирование подобных проектов было свернуто.

    Другое важное направление в области разработки искусственного интеллекта – экспертные системы. Предполагалось, что такие программно информационные комплексы, с которыми пользователь будет вести диалог в режиме «вопрос-ответ» способны заменить человека — эксперта. Первая экспертная система в области идентификации органических соединений с помощью анализа масс-спектрограмм была создана в 1965 году и названа Dendral. Работа с ней происходила следующим образом: Пользователь дает системе Dendral некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та в свою очередь выдает диагноз в виде соответствующей химической структуры. В состав Dendral входят также программы, помогающие пользователю отбрасывать одни гипотезы и применять другие, используя знания о связях показаний масс-спектрометра со структурой молекул соединения.

    Другой пример экспертной системы MYCIN. Она была разработана в 70-х годах XX-ого века в Стэнфордском университете. В отличии от Dendral в ней внимание было акцентировано на использовании решающих правил с элементами неопределенности. MYCIN был спроектирован для диагностирования бактерий, вызывающих тяжелые инфекции, такие как бактериемия и менингит, а также для рекомендации необходимого количества антибиотиков в зависимости от массы тела пациента. Название системы происходит от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Также Mycin использовалась для диагностики заболеваний свертываемости крови. Однако фактически она не использовалась на практике. И произошло это вовсе не из-за того, что система была плохой или неточной. Наоборот, по объему знаний она превосходила профессоров Stanford medical school. Но из-за технических сложностей того времени сеанс работы с программой мог длиться более 30 минут, что было недопустимой потерей времени для занятого врача клиники.

    Главной трудностью, с которой столкнулись во время разработки MYCIN и последующих экспертных систем, было «извлечение» знаний из опыта людей-экспертов для формирования базы правил. Сейчас данными вопросами занимается инженерия знаний.

    В настоящее время экспертные системы применяются для прогнозирования, планирования, контроля и управления, в том числе, на атомных электростанциях. Также существуют экспертные системы (например HASP/SIAP), которые определяют местоположение и типы судов в Тихом океане по данным акустических систем слежения.

    Очень важное направление в ИИ – робототехника. Ее история берет свое начало в 60-х годах XX-века, с появления первого робота, интегрирующего зрительную, манипулятивную и интеллектуальную системы. Этот робот получил название Freddy. Его создали в Эдинбургском Университете в 1969-1971 году. Вторая версия данного робота была разработана в 1973-1976 годах. Робот был достаточно универсальным, что позволяло с лёгкостью подготовить и перепрограммировать его для новых задач. Система использовала инновационный набор высокоуровневых процедур, управляющих движением манипулятора. Freddy являлся универсальной системой, позволяющей с лёгкостью подготовить и перепрограммировать его для новых задач. Задачи включали в себя насаживание колец на штыри или сборка простой модели игрушки из деревянных блоков различной формы. Информация о положении деталей получается с видеокамеры и сопоставляется с моделями деталей в памяти.

    Датой рождения первого по-настоящему серьезного робота, о котором услышал весь мир, можно считать 18 мая 1966 года. В этот день Григорий Николаевич Бабакин, главный конструктор машиностроительного завода имени С.А.Лавочкина в Химках подписал головной том аванпроекта E8. Это был «Луноход-1», луноход 8ЕЛ в составе автоматической станции E8 №203, - первый в истории аппарат, успешно покоривший лунную поверхность 17 ноября 1970.

    Первые коммерческие успехи применения промышленных роботов явились мощным импульсом для их дальнейшего совершенствования. В начале 1970-х гг. появляются роботы, управляемые компьютерами. Первый мини-компьютер, управляющий роботом, был выпущен в 1974 г. фирмой «Cincinnati Milacron», одной из ведущих фирм – изготовителей роботов в США. В конце 1971 г. американской фирмой «INTEL» был создан первый микропроцессор, а несколькими годами позже появляются роботы с микропроцессорным управлением, что обусловило существенное повышение их качества при одновременном снижении стоимости.

    Первые промышленные роботы с развитой сенсорной системой и микропроцессорным управлением появились на рынке и получили практическое применение в 1980-1981 гг. прежде всего на сборке, дуговой сварке, контроле качества для взятия неориентированных предметов, например с конвейера .

    В 1975 произошел некоторый возврат интереса к нейронным сетям. Фукусимой был разработан когнитрон, который стал одной из первых многослойных нейронных сетей. Сети могли распространять информацию только в одном направлении или перебрасывать информацию из одного конца в другой, пока не активировались все узлы и сеть не приходила в конечное состояние. Достичь двусторонней передачи информации между нейронами удалось лишь в сети Хопфилда (1982), и специализация этих узлов для конкретных целей была введена в первых гибридных сетях.

    Обзор истории ИИ был бы не полным без компьютерного зрения – очень важной составляющей искусственного интеллекта. В задачу компьютерного зрения входят такие важные подзадачи, как распознавания конкретных объектов на видеоизображениях, например, человеческих лиц, Идентификация – распознавание индивидуального экземпляра объекта, например, «узнавание» по лицу конкретного человека. Обнаружение – в частности, поиски в видеоряде конкретных событий. Существуют и другие подзадачи: поиск изображений по содержанию, оценка положения объекта на изображении, оптическое распознавание символов.

    Как самостоятельная дисциплина, компьютерное зрение зародилось в начале 1950-х годов. В 1951 Джон фон Нейман (John von Neumann) предложил анализировать микроснимки при помощи компьютеров путём сравнения яркости в соседних областях снимков. В 1960-е начались исследования в области распознавания (чтения) машинописного и рукописного текста, а также в области классификации хромосом и клеток в изображениях, полученных с микроскопа. К этому же периоду времени относятся первые попытки моделирования нейронной деятельности человеческого мозга для решения задач компьютерного зрения.

    В 1963-м году появилась диссертация Робертса (Roberts), который предложил простейший детектор краёв и предложил первые методы распознавания на изображениях трёхмерных объектов (многогранников). Первые успехи в компьютерном зрении создавали у исследователей впечатление, что ещё немного, и компьютеры смогут «видеть» . Однако все оказалось не так радужно, как хотелось бы. Наличие чрезвычайно сложной взаимосвязи между свойствами трёхмерных объектов мира и их двумерными изображениями было осознано в начале 1970-х годов. Это убедило учёных в необходимости понять, как человек использует визуальную информацию (монокулярную, бинокулярную, информацию о движении) для мысленного построения трёхмерных структур. В дальнейшем была предложена парадигма, предусматривающая следующие стадии анализа изображений:

    предобработка изображений;

    сегментация;

    выделение геометрической структуры;

    определение относительной структуры и семантики

В 1980-х получила популярность другая программа исследований, которая заключалась в поиске новых сложных математических методов для решения задач компьютерного зрения. В конце 1990-х годов и в течение первого десятилетия XXI века в компьютерном зрении произошел качественный скачок сразу в нескольких направлениях. В этом периоде трудно выявить какие-либо новые парадигмы, охватывающие всю дисциплину целиком. Скорее, скачок вызван резким ростом интереса к компьютерному зрению и, как следствие, большим энтузиазмом в переносе методов из других дисциплин (искусственный интеллект, математическая статистика, фотограмметрия) в компьютерное зрение. Прежде всего, результатом этого прорыва стал прогресс в методах описания изображений. Новые результаты, полученные в начале ХХI века в фотограмметрии позволили строить трехмерные модели в медицине практически в реальном времени. Трехмерная реконструкция также широко применяется для создания компьютерных моделей городов .

    СОВРЕМЕННОЕ СОСТОЯНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

На данный момент человечество вплотную подошло к созданию так называемого Сильного Искусственного Интеллекта, хотя он пока еще не создан. Под сильным ИИ понимается такой ИИ, который способен мыслить и осознавать себя, причем не обязательно, что процесс мышления будет подобен человеческому. Под слабым ИИ подразумеваются технологии автоматизации отдельных функций человеческого разума.

Сильный ИИ должен обладать следующими способностями:

— Принятие решений, использование стратегий, решение головоломок и действия в условиях неопределенности ;

— Представление знаний, включая общее представление о реальности;

— Планирование;

— Обучение;

— Общение на естественном языке;

— Объединение всех этих способностей для достижения заданных целей.

Как видим, все необходимое для создании Сильного ИИ, кроме последнего, уже существует в той или иной мере. В частности, компьютеры умеют играть в шахматы, и даже в игру ГО, хотя до недавнего времени это считалось неразрешимой задачей. Представление знаний реализованы в экспертных системах, что касается планирования, и это тоже есть, например, Холк Круз и Мальт Шиллинг в своих исследованиях использовали робота, который обладает способностями перспективного планирования и имеет встроенную систему навигации. В поздних версиях этого робота реализована также система внутреннего моделирования, семантическая сеть и эмулятор эмоций. Исследование опубликовано в статье «Mental States as Emergent Properties. From Walking to Consciousness (Психические состояния как эмерджентные свойства. От походки до сознания)» . Технология машинного обучения нашла свое теоретическое и практическое подтверждение. Также на данный момент создано множество алгоритмов и технологий анализа текстов на естественном языке, созданы чат-боты, которые способны проходить тест Тьюринга. Камнем преткновения пока является объединение всех этих технологий в единое целое, в некую систему, которая способна действовать автономно, приспосабливаться к окружающей среде и демонстрировать разумное поведение. Что это даст человечеству? Очень многое, например:

— Замена людей роботами в критически важных областях, где человеческий фактор может иметь негативные последствия, например, очень положительный эффект для общества будет достигнут, если суды и полиция будут заменены роботами, так как последние не берут взяток (положительный эффект – искоренение коррупции);

— Полностью автоматизированное производство, способное функционировать и перестраиваться без участия человека. Такие роботы могут заменить человека практически на любой работе, создавая общество изобилия, где люди могут проводить время так, как им захочется. В этой реальности высококлассные роботы будут двигать экономику. Продовольствие, энергия и большинство потребительских товаров будут бесплатны или очень дешевы, а люди будут получать ежемесячно фиксированное пособие от государства.

Однако, кроме очевидных плюсов, создание сильного ИИ таит в себе определенные риски, о которых мы поговорим в следующей главе.

    ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. ВЗГЛЯД В БУДУЩЕЕ

Как я уже сказал в предыдущей главе, мир вплотную подошел к созданию сильного ИИ, но он пока еще не создан. Были перечисленные преимущества, которые даст человечеству сильный ИИ. А сейчас мы поговорим о возможных рисках и как их избежать, либо об этом думать нужно уже сейчас. Что может пойти не так? Разберем возможные ситуации.

Сильный ИИ выйдет из под контроля, перестанет подчиняться человеку и будет преследовать свои личные цели. Возможно, он станет создавать себе подобных, увеличивать инфраструктуру, разрушая среду обитания человека. Причем, его цели могут быть настолько чуждые человечеству, что это даже невозможно вообразить. Например, единственной целью существования такого сверхразума может стать вычисление всех знаков в числе «пи» или заполнение всей Вселенной канцелярскими скрепками. Как такое может произойти? Например, в целях тестирования программист дает ИИ задачу – вычислить число «пи». Вскоре ИИ обнаруживает, что для выполнения данной задачи у него не хватает вычислительной мощности. Он захватывает все доступные компьютеры и обнаруживает, что все равно не способен выполнить задачу в конечное время (так как «пи» число иррациональное и в нем бесконечное количество знаков). Что «взбесившийся» ИИ будет делать дальше? Строить новые компьютеры. В том числе и за пределами Земли, когда на Земле не останется места. Если у ИИ не будет прямого запрета на убийства людей, то он будет убивать людей, пытающихся помешать ему выполнить поставленную задачу.

Другая опасность – порочная реализация поставленной задачи: когда задача выполнена, но не так, как хотел постановщик данной задачи. Например, человек говорит роботу: «сделай мне хорошо». Робот усыпляет хозяина, производит ему операцию на мозге, вживляет электрод в зону удовольствия и по пробуждению просто бесконечно стимулирует ее. Формально робот сделал то, что приказал ему хозяин, но вряд ли последнего устроит такой способ выполнения задачи.

Третий риск – возможность единоличного захвата власти одним человеком или группой лиц при помощи ИИ.

Теперь о минимизации данных рисков. Первый риск связан с тем, что ИИ может выйти из под контроля и бесконечно увеличивать свою инфраструктуру. Очевидно, надо заложить в программу некое стоп-условие, при достижении которого выполнение задачи будет приостановлено. Проблема в том, что ИИ, обладая сверхразумом, может решить проверить, действительно ли стоп-условие наступило. Например, дано задание: произвести миллион канцелярских скрепок. Для робота, не обладающего ИИ, проблем не возникает, он просто выполнит миллион раз команду «выпустить скрепку». Однако, выполнение данной программы не гарантирует, что будет выпущено действительно миллион скрепок. Может быть брак, механизм может сломаться, может внезапно кончиться материал. Таким образом, разумный робот вполне может счесть нужным проконтролировать выполнение задания, например, посчитать выпущенные скрепки. Но опять же, нет гарантии, что подсчет произошел без ошибки. Поэтому, ИИ может принять решение построить машину, которая бы проконтролировала процесс подсчета. Но что, если машина сломалась или сработала неправильно? Робот может применять решение сделать машину для контроля той первой машины. И такой процесс может продолжаться до бесконечности. Решение задать предел допусков точности ничего не даст, так как ИИ может «захотеть» проверить, а укладывается ли результат в этот предел и все равно запустить бесконечное разрастание инфраструктуры для такой проверки.

Для решения проблемы риска бесконечного наращивания инфраструктуры зададим вопрос: А как человек принимает решение о том, что «и так сойдет» и прекращает ненужный перфекционизм? Тут возможны несколько вариантов:

— Сила привычки, кто-то привык делать все спустя рукава, кто-то проверяет более качественно, но очень мало людей обладают патологическим перфекционизмом;

— Предел качества определяют формальные требования.

Стоит рассмотреть первый вариант, так как во втором случае мы сталкиваемся с той же проблемой, а если формальное требование к прекращению процесса жестко задать программно, то это уже не будет Сильный ИИ. Итак, ИИ должен иметь нечто человеческое, привычки, характер, ли даже эмуляцию свободы воли (разумеется, с некоторыми ограничениями, гарантирующими человечеству безопасность). Иными словами, Сильный ИИ должен в той или иной мере имитировать определенные аспекты деятельности человеческого мозга, а именно процесс саморегуляции своего поведения. Правда, и поведение человека также иногда выходит из под контроля. Но в этом случае действует механизм принуждения человеческого общества: полиция, суды, тюрьмы, психиатрические лечебницы. Нечто подобное можно сделать и в случае ИИ: сообщество самоорганизующихся интеллектуальных агентов.

Второй риск – риск порочной реализации. Его можно минимизировать, если заложить в ИИ механизм прогнозирования последствий собственных действий, а также знания о морально-этических нормах и желаниях людей. Морально этические нормы в ИИ также необходимы для предотвращения злоупотребления силой ИИ со стороны отдельных людей. К сожалению, остался открытый вопрос о том, что один человек или группа лиц может создать сильный ИИ для реализации их личных целей, заложив в него свое понимание морально-этических норм. Осознание данной проблемы, наиболее вероятно, приведет к гонке по созданию ИИ: конкурирующие группы (в том числе и целые государства) будут стремиться первыми создать ИИ, дабы получить преимущество.

В данном реферате были поставлены и другие философские вопросы, связанные с развитием Искусственного Интеллекта.

Какова будет роль человека в мире, где практически всю работу за людей будут выполнять роботы. Самый простой ответ на этот вопрос: роботы будут выполнять всю рутинную работу, для людей останутся только интересные творческие профессии, связанные с наукой и искусством. Тем не менее, открытым остается вопрос, что делать, если даже и эту деятельность роботы станут выполнять лучше людей, и последние просто окажутся невостребованными. Тогда людям останется только роль потребителей, чье существование лишено какого-либо смысла. В таком случае логичным вариантом развития цивилизации является уход людей в виртуальную реальность, которую постоянно поддерживает самообеспечивающийся и расширяющийся компьютерный континуум. Другой вариант решение проблемы ненужности людей – слияния сознания человека с разумом машины и обретение кибернетического бессмертия. Данную идею активно продвигает общественное движение «Россия 2045» .

Морально-этические проблемы, возникающие при создании искусственных мыслящих существ. Данные проблемы имеют место только при создании подлинно осознающих субъектов, а не псевдосознания в виде эмуляции психических процессов человека, пусть даже это псевдосущество проходит тест Тьюринга. Под подлинно осознающими субъектами следует понимать живые или квазиживые существа, обладающие самосознанием и субъективными переживаниями, схожими с самосознанием и субъективными переживаниями человека или другого высокоразвитого существа. Например, если в результате генетических экспериментов будет создано искусственное существо, обладающее высокоразвитой нервной системой, позволяющей высшую нервную деятельность, то встает вопрос об этической допустимости подобных экспериментов, так как ошибки при проведении эксперимента могут стать причиной страдания такого существа. Аналогичная проблема имеет место и при создании квазиживых существ, под которыми следует понимать искусственно созданные объекты, обладающие самоосознаванием и субъективными переживаниями. К таким объектам может быть отнесен и ИИ, если он базируется не на цифровых вычислениях, лишь эмулирующих психические функции, а на явлениях физического мира, создающих сознание и субъективные переживания, если такие явления будут открыты наукой.

Данные морально-этические проблемы обусловлены конфликтом интересов: с одной стороны интересы общества, которое нуждаются в научно-техническом прогрессе (эксперименты над подобными существами потенциально способны помочь пониманию природы разума и сознания), с другой стороны, интересы созданных искусственных существ или квазисуществ, которые не желают испытывать страдания. Аналогичная моральная дилемма встает при решении вопроса экспериментов на людях и на животных, которая, на данный момент решена следующим образом: эксперименты на людях запрещены без их согласия. Животные считаются менее развитыми и эксперименты на них разрешены. Однако, в последнее время имеет место тенденция приравнивать некоторых высокоразвитых животных к людям, например, шимпанзе, с соответствующими юридическими и морально этическими последствиями. Например, в США впервые в истории суд постановил, что шимпанзе, которые содержатся в научно-исследовательском центре университета штата Нью-Йорк в Стоуни-Брук, обладают правом человека .

В случае с искусственно созданными существами проблема состоит в том, что не всегда можно предсказать результат эксперимента, а значит, неизвестно, насколько высокоразвитое существо получится на выходе. Кроме того, до создания существа у него невозможно спросить согласие на проведение эксперимента. Однако и решение этой проблемы можно найти по аналогии с существующими решениями. В частности, при рождении человека у него не спрашивают, хочет ли он появиться на свет. Но при рождении он получает определенные права и гарантии, установленные законом, в частности, в виде обязательства родителей заботиться о нем до совершеннолетия. Полагаю, аналогичным образом может быть решена и моральная дилемма при создании искусственных существ и квазисуществ, а именно, обязать лиц, проводящих подобные эксперименты, принять все необходимые меры по прогнозированию последствий данного эксперимента и минимизации страданий существ, полученных в результате, вплоть до полного их устранения, а также, по аналогии с рождением ребенка обязать содержать данное существо в приемлемых условиях. В случае невозможности прогноза достаточной точности такие эксперименты должны быть запрещены.

ЗАКЛЮЧЕНИЕ

В заключении привожу краткое обобщение истории развития ИИ, прогноз на ближайшее будущее, выводы о возможных рисках и морально-этических проблемах, а также пути их решения.

Предыстория. Первой предпосылкой создания
ИИ можно считать
изобретение Аристотелем
логики и механистический материализм Рене Декарта и Томаса Гоббса. Технические предпосылки создания ИИ берут свое начало в XVI-ом веке в виде работ Вильгельма Шикарда (нем. Wilhelm Schickard), который в 1623 построил первую механическую цифровую вычислительную машину.

История. В середине XX-ого века были заложены теоретические основы искусственных нейронных сетей. Но ближе к концу XX-ого века интерес к нейронным сетям временно угас. Также в 50-ых XX-ого века А. Тьюрингом были разработаны основные концепции, определяющие ИИ, известные в настоящее время как Тест Тьюринга. В то же время произошел прорыв в технологиях машинного перевода, который ненадолго воодушевил исследователей. К сожалению, дальнейшее развитие данного направления было свернуто, так как перевод более сложных текстов столкнулся с непреодолимыми трудностями.

В 60-70 годах прошлого века началось развитие экспертных систем и робототехники. В частности, были созданы автономно-управляемые роботы для исследования других планет, Луны и Марса. Чуть позже появились промышленные роботы. Тогда же произошло возрождение интереса к нейронным сетям. Примерно в это же время и по наши дни бурно развивалось компьютерное зрение, теоретические основы которого были заложены в 50-ых годах XX-ого века. Получили развитие и продолжение и другие направления ИИ.

Современное состояние. Человечество стоит на пороге грандиозного прорыва в области исследований ИИ – создание Сильного Искусственного Интеллекта. Это может дать человечеству очень большие плюсы, в частности, общество изобилия и решение практически всех проблем, стоящих перед человечеством. Однако, такой прорыв таит в себе и немалые опасности.

Будущее ИИ. Возможные риски и морально этические проблемы. Как было сказано выше, создание Сильного ИИ – дело ближайшего будущего, поэтому, к возможным рискам и морально-этическим вопросам, связанным с появлением Сильного ИИ нужно быть готовым уже сейчас.

Возможные риски:

— Выход ИИ из под контроля, вследствие чего может начаться безостановочный рост инфраструктуры ИИ, который разрушит среду обитания человека;

— Порочная реализация поставленной задачи, когда формально ИИ выполнил приказ, но результат не устроил того, кто отдал такой приказ;

— Единоличный захват власти лицом или группой лиц, получившей управление над ИИ.

Возможные пути решения:

— Проблема выхода ИИ из под контроля: Сильный ИИ должен в той или иной мере имитировать определенные аспекты деятельности человеческого мозга, а именно процесс саморегуляции своего поведения, а также его деятельность должна быть ограничена самоорганизующимся сообществом подобных ему интеллектуальных агентов;

— Риск порочной реализации: Его можно минимизировать, если заложить в ИИ механизм прогнозирования последствий собственных действий, а также знания о морально-этических нормах и желаниях людей;

— Один человек или группа лиц может создать сильный ИИ для реализации их личных целей, заложив в него свое понимание морально-этических норм: решение данной проблемы пока не видится, кроме строго контроля за разработками в области ИИ.

Кроме того, в связи с возможностью создания Сильного ИИ встают морально-этические вопросы, в частности, роль людей в эпоху Сильного ИИ и морально-этические проблемы экспериментов с Сильным ИИ. Решение первой проблемы видится в том, чтобы оставить людям только творческий труд, связанный с наукой и искусством, а в случае, если ИИ будет превосходить людей и в этих областях, то слияние разума машины с разумом человека. Насчет моральной стороны экспериментов с ИИ, проблема возникает только в том случае, если будут использованы технологии, позволяющие создавать живых или квазиживых существ, обладающих самосознанием и субъективными переживаниями. Решение проблемы видится в качественном прогнозировании последствий экспериментов и ответственности заинтересованных лиц за минимизацию страданий созданных в ходе экспериментов таких существ. Если качественное прогнозирование и избавление искусственных существ от страданий невозможно, то такие эксперименты должны быть запрещены.

«Build Your Own Expert System.» by Chris Naylor. Book review by Robert McNair. The Statistician, Vol. 34, No. 2. (1985), p. 255.

The AI Business: The commercial uses of artificial intelligence, ed. Patrick Winston and Karen A. Prendergast. ISBN 0-262-23117-4

Джозеф Джарратано, Гари Райли «Экспертные системы: принципы разработки и программирование»: Пер. с англ. - М. : Издательский дом «Вильямс», 2006. - 1152 стр. с ил.

Макаров И. М., Топчеев Ю. И. Робототехника: История и перспективы. - М.: Наука; Изд-во МАИ, 2003. - 349 с. - (Информатика: неограниченные возможности и возможные ограничения).

Тягунов О. А. Математические модели и алгоритмы управления промышленных транспортных роботов // Информационно-измерительные и управляющие системы. - 2007. - Т. 5, № 5. - С. 63-69.

Брага Н. Создание роботов в домашних условиях. - М.: НТ Пресс, 2007. - 368 с.

Тадеусевич Рышард, Боровик Барбара, Гончаж Томаш, Леппер Бартош. Элементарное введение в технологию нейронных сетей с примерами программ / Перевод И. Д. Рудинского. - М.: Горячая линия - Телеком, 2011. - 408 с.

Shuravin A. P. Reviw of image Edge Detection Methods in Computer Vision Problems. // IV Всеросийская научно-техническая конференция аспирантов, магистрантов и молодых ученых с международным участием: «Молодые ученые — ускорению научно-технического прогресса в XXI-ом веке», Ижевск, 20-21 апреля 2016, С. 1020-1024.

Шуравин А. П. Сравнение методов нахождения ключевых точек
на контуре изображений аэрофотосъемки // Молодой ученый. Международный научный журнал, 2017. №4(138). С. 89-93.

Искусственный интеллект – это одна из новейших областей науки. Первые работы в этой области начались вскоре после Второй мировой войны, а само ее название было предложено в 1956 году. В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

Разные ученые определяют искусственный интеллект по-разному. Все эти определения могут быть разбиты на 4 категории:

1. Системы, которые думают подобно людям.

2. Системы, которые думают рационально.

3. Системы, которые действуют подобно людям.

4. Системы, которые действуют рационально.

В рамках каждой, из приведенных категорий, могут быть даны следующие определения искусственного интеллекта:

1. Новое захватывающее направление работ по созданию компьютеров, способных думать, … машин, обладающих разумом, в полном и буквальном смысле этого слова. (Haugeland J.)

2. Изучение умственных способностей с помощью вычислительных моделей. (Charniak E., McDermott D.)

3. Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят (Rich E., Knight K.)

4. Искусственный интеллект – это наука, посвященная изучению интеллектуального поведения артефактов (искусственных объектов). (Nilsson N.J.)

Какова же история искусственного интеллекта и какие науки внесли свой вклад в ее создание?

1. Философия.

В рамках этой науки возникли следующие вопросы:

· Могут ли использоваться формальные правила для вывода правильных заключений?

· Как такой идеальный объект, как мысль, рождается в таком физическом объекте, как мозг?



· Каково происхождение знаний?

· Каким образом знания ведут к действиям?

Ответы на эти вопросы пытались найти многие ученые, начиная с Аристотеля (4 век до н.э.), которым был сформулирован точный свод законов, руководящих рациональной частью мышления. Он разработал неформализованную систему силлогизмов, предназначенную для проведения правильных рассуждений, которая позволяла любому вырабатывать логические заключения механически, при наличии начальных предпосылок. Гораздо позднее Раймунд Луллий (13-14 век) выдвинул идею, что полезные рассуждения можно фактически проводить с помощью механического артефакта. Томас Гоббс (17 век) предположил, что рассуждения аналогичны числовым расчетам и что "в наших неслышимых мыслях мы поневоле складываем и вычитаем".

В 1623 г. немецким ученым Вильгельмом Шиккаром была создана первая вычислительная машина, хотя более известна арифметическая машина, созданная в 1642 году Блезом Паскалем. Паскаль писал, что "арифметическая машина производит эффект, который кажется более близким к мышлению по сравнению с любыми действиями животных". Позднее Готтфрид Вильгельм Лейбниц A646-1716) создал механическое устройство, предназначенное для выполнения операций над понятиями, а не над числами, но область его действия была довольно ограниченной.

После того как человечество осознало, каким должен быть набор правил, способных описать формальную, рациональную часть мышления, следующим этапом оказалось то, что разум стал рассматриваться как физическая система. Рене Декарт впервые опубликовал результаты обсуждения различий между разумом и материей, а также возникающих при этом проблем. Одна из проблем, связанных с чисто физическими представлениями о разуме, состоит в том, что они, по-видимому, почти не оставляют места для свободной воли: ведь если разум руководствуется исключительно физическими законами, то человек проявляет не больше свободной воли по сравнению с булыжником, "решившим" упасть в направлении к центру земли.

Несмотря на то что Декарт был убежденным сторонником взглядов, признающих только власть разума, он был также приверженцем дуализма. Декарт считал, что существует такая часть человеческого разума (душа, или дух), которая находится за пределами естества и не подчиняется физическим законам. С другой стороны, животные не обладают таким дуалистическим свойством, поэтому их можно рассматривать как своего рода машины. Альтернативой дуализму является материализм, согласно которому разумное поведение складывается из операций, выполняемых мозгом в соответствии с законами физики. Свободная воля – это просто форма, в которую в процессе выбора преобразуется восприятие доступных вариантов.

Если предположить, что знаниями манипулирует физический разум, то возникает следующая проблема – установить источник знаний. Такое научное направление, как эмпиризм, родоначальником которого был Фрэнсис Бекон (16-17 века), можно охарактеризовать высказыванием Джона Локка (17-18 века): "В человеческом понимании нет ничего, что не проявлялось бы прежде всего в ощущениях". Дэвид Юм (18 век) предложил метод, известный теперь под названием принципа индукции, который состоит в том, что общие правила вырабатываются путем изучения повторяющихся ассоциаций между элементами, которые рассматриваются в этих правилах. Основываясь на работе Людвига Виттгенштейна и Бертрана Рассела (19-20 века), знаменитый Венский кружок, возглавляемый Рудольфом Карнапом, разработал доктрину логического позитивизма. Согласно этой доктрине все знания могут быть охарактеризованы с помощью логических теорий, связанных в конечном итоге с констатирующими предложениями, которые соответствуют входным сенсорным данным. В теории подтверждения Рудольфа Карнапа и Карла Хемпеля (20 век) предпринята попытка понять, как знания могут быть приобретены из опыта. Карнап определил явно заданную вычислительную процедуру для извлечения знаний из результатов элементарных опытов. По-видимому, это – первая теория мышления как вычислительного процесса.

Последним вопросом философских исследований, наиболее важным для искусственного интеллекта, является связь между знаниями и действиями, поскольку интеллектуальность требует не только размышлений, но и действий. Кроме того, только поняв способы обоснования действий, можно понять, как создать агента, действия которого будут обоснованными (или рациональными). Под агентом мы будем подразумевать все, что действует. Аристотель утверждал, что действия обоснованы логической связью между целями и знаниями о результатах данного конкретного действия. Он приводил следующие рассуждения:

Нам предоставляется право выбора не целей, а средств достижения цели, ведь врач рассуждает не о том, должен ли он лечить, а оратор - не о том, станет ли он убеждать... Поставив цель, он размышляет, как и какими средствами ее достичь; а если окажется несколько средств, то определяет, какое из них самое простое и наилучшее; если же достижению цели служит одно средство, думает, как ее достичь при помощи этого средства и что будет средством для этого средства, пока не дойдет до первой причины, которую находит последней... и то, что было последним в порядке анализа, обычно становится первым в порядке осуществления... Если же он приходит к выводу, что цель недостижима, отступается, например, если нужны деньги, а достать их нельзя; но если достижение цели кажется возможным, то пытается ее достичь.

Анализ на основе цели является полезным, но не дает ответа на то, что делать, если к цели ведет несколько вариантов действий или ни один вариант действий не позволяет достичь ее полностью. Антуан Арно (17 век) описал количественную формулу для принятия решения о том, какое действие следует предпринять в подобных случаях: "Чтобы судить о том, что следует делать, чтобы получить хорошее или избежать плохого, необходимо рассматривать не только хорошее и плохое само по себе, но и вероятность того, произойдет ли оно или не произойдет, а также рассматривать математически пропорцию, в которой все эти обстоятельства встречаются вместе."

2. Математика.

Данная наука пыталась ответить на следующие вопросы:

· Каковы формальные правила формирования правильных заключений?

· Как определить пределы вычислимости?

· Как проводить рассуждения с использованием недостоверной информации?

Философы сформулировали наиболее важные идеи искусственного интеллекта, но для преобразования его в формальную науку потребовалось достичь определенного уровня математической формализации в трех фундаментальных областях: логика, вычисления и вероятность.

Истоки идей формальной логики можно найти в работах философов древней Греции, но ее становление как математической дисциплины фактически началась с трудов Джорджа Буля (19 век), который детально разработал логику высказываний, или булеву логику. В 1879 году Готтлоб Фреге расширил булеву логику для включения в нее объектов и отношений, создав логику первого порядка, которая в настоящее время используется как наиболее фундаментальная система представления знаний. Альфред Тарский (20 век) впервые ввел в научный обиход теорию ссылок, которая показывает, как связать логические объекты с объектами реального мира. Следующий этап состоял в определении пределов того, что может быть сделано с помощью логики и вычислений.

Первым нетривиальным алгоритмом считается алгоритм вычисления наибольшего общего знаменателя, предложенный Евклидом. Исследование алгоритмов как самостоятельных объектов было начато аль-Хорезми, среднеазиатским математиком IX столетия, благодаря работам которого Европа познакомилась с арабскими цифрами и алгеброй. Буль и другие ученые широко обсуждали алгоритмы логического вывода, а к концу XIX столетия уже предпринимались усилия по формализации общих принципов проведения математических рассуждений как логического вывода. В 1900 году Давид Гильберт представил список из 23 проблем и правильно предсказал, что эти проблемы будут занимать математиков почти до конца XX века. Последняя из этих проблем представляет собой вопрос о том, существует ли алгоритм для определения истинности любого логического высказывания, в состав которого входят натуральные числа. Это – так называемая проблема поиска решения. По сути, этот вопрос, заданный Гильбертом, сводился к определению того, есть ли фундаментальные пределы, ограничивающие мощь эффективных процедур доказательства. В 1930 году Курт Гёдель показал, что существует эффективная процедура доказательства любого истинного высказывания в логике первого порядка Фреге и Рассела, но при этом логика первого порядка не позволяет выразить принцип математической индукции, необходимый для представления натуральных чисел. В 1931 году Гёдель показал, что действительно существуют реальные пределы вычислимости. Предложенная им теорема о неполноте показывает, что в любом языке, достаточно выразительном для описания свойств натуральных чисел, существуют истинные высказывания, которые являются недоказуемыми, в том смысле, что их истинность невозможно установить с помощью какого-либо алгоритма.

Этот фундаментальный результат может также рассматриваться как демонстрация того, что имеются некоторые функции от целых чисел, которые не могут быть представлены с помощью какого-либо алгоритма, т.е. они не могут быть вычислены.

Это побудило Алана Тьюринга попытаться точно охарактеризовать, какие функции способны быть вычисленными. Этот подход фактически немного проблематичен, поскольку в действительности понятию вычисления, или эффективной процедуры вычисления, не может быть дано формальное определение. Но общепризнано, что вполне удовлетворительное определение дано в тезисе Чёрча-Тьюринга, который указывает, что машина Тьюринга способна вычислить любую вычислимую функцию. Кроме того, Тьюринг показал, что существуют некоторые функции, которые не могут быть вычислены машиной Тьюринга. Например, вообще говоря, ни одна машина не способна определить, возвратит ли данная конкретная программа ответ на конкретные входные данные или будет работать до бесконечности (проблема зацикливания).

Хотя для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма и Эдмондса.

Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.

Как можно распознать неразрешимую проблему? Один из приемлемых методов такого распознавания представлен в виде теории NP-полноты, впервые предложенной Стивеном Куком и Ричардом Карпом. Кук и Карп показали, что существуют большие классы канонических задач комбинаторного поиска и формирования рассуждений, которые являются NP-полными. Существует вероятность того, что любой класс задач, к которому сводится этот класс NP-полных задач, является неразрешимым.

Эти результаты контрастируют с тем оптимизмом, с которым в популярных периодических изданиях приветствовалось появление первых компьютеров под такими заголовками, как "Электронные супермозги", которые думают "быстрее Эйнштейна!" Несмотря на постоянное повышение быстродействия компьютеров, характерной особенностью интеллектуальных систем является экономное использование ресурсов. Грубо говоря, наш мир, в котором должны освоиться системы ИИ, – это чрезвычайно крупный экземпляр задачи.

Кроме логики и теории вычислений, третий по величине вклад математиков в искусственный интеллект состоял в разработке теории вероятностей. Идея вероятности была впервые сформулирована итальянским математиком Джероламо Кардано (16 век), который описал ее в терминах результатов событий с несколькими исходами, возникающих в азартных играх. Теория вероятностей быстро стала неотъемлемой частью всех количественных наук, помогая использовать недостоверные результаты измерений и неполные теории. Пьер Ферма, Блез Паскаль, Джеймс Бернулли (17 век), Пьер Лаплас (18-19 века) и другие ученые внесли большой вклад в эту теорию и ввели новые статистические методы. Томас Байес (18 век) предложил правило обновления вероятностей с учетом новых фактов. Правило Байеса и возникшее на его основе научное направление, называемое байесовским анализом, лежат в основе большинства современных подходов к проведению рассуждений с учетом неопределенности в системах искусственного интеллекта.

3. Экономика.

В рамках данной науки возникли такие вопросы:

· Как следует организовать принятие решений для максимизации вознаграждения?

· Как действовать в таких условиях, когда другие могут препятствовать осуществлению намеченных действий?

· Как действовать в таких условиях, когда вознаграждение может быть предоставлено лишь в отдаленном будущем?

Экономика как наука возникла в 1776 году. Ее основателем считается шотландский философ Адам Смит. Он впервые сумел оформить эту область знаний как науку, используя идею, что любую экономику можно рассматривать как состоящую из отдельных агентов, стремящихся максимизировать свое собственное экономическое благосостояние. Большинство людей считают, что экономика посвящена изучению денежного оборота, но любой экономист ответит на это, что в действительности он изучает то, как люди делают выбор, который ведет к предпочтительным для них результатам. Математическая трактовка понятия "предпочтительных результатов", или полезности, была впервые формализована Леоном Валрасом (19-20 века), уточнена Фрэнком Рамсеем, а затем усовершенствована Джоном фон Нейманом и Оскаром Моргенштерном.

Теория решений, которая объединяет в себе теорию вероятностей и теорию полезности, предоставляет формальную и полную инфраструктуру для принятия решений (в области экономики или в другой области) в условиях неопределенности, т.е. в тех случаях, когда среда, в которой действует лицо, принимающее решение, наиболее адекватно может быть представлена лишь с помощью вероятностных описаний. Она хорошо подходит для «крупных» экономических образований, где каждый агент не обязан учитывать действия других агентов как индивидуумов. А в "небольших" экономических образованиях ситуация в большей степени напоминает игру, поскольку действия одного игрока могут существенно повлиять на полезность действий другого (или положительно, или отрицательно). Теория игр, разработанная фон Нейманом и Моргенштерном, позволяет сделать вывод, что в некоторых играх рациональный агент должен действовать случайным образом или, по крайней мере, таким образом, который кажется случайным для соперников.

Экономисты чаще всего не стремятся найти ответ на третий вопрос, приведенный выше, т.е. не пытаются выработать способ принятия рациональных решений в тех условиях, когда вознаграждение в ответ на определенные действия не предоставляется немедленно, а становится результатом нескольких действий, выполненных в определенной последовательности. Изучению этой темы посвящена область исследования операций.

Работы в области экономики и исследования операций оказали большое влияние на формирование понятия рациональных агентов, но в течение многих лет исследования в области искусственного интеллекта проводились совсем по другим направлениям. Одной из причин этого была кажущаяся сложность задачи выработки рациональных решений. Тем не менее Герберт Саймон (20 век) показал, что лучшее описание фактического поведения человека дают модели, основанные на удовлетворении (принятии решений, которые являются "достаточно приемлемыми"), а не модели, предусматривающие трудоемкий расчет оптимального решения, и стал одним из первых исследователей в области искусственного интеллекта, получившим Нобелевскую премию по экономике (это произошло в 1978 году).

4. Неврология.

В рамках этой науки ученые пытались ответить на вопрос о том, как происходит обработка информации в мозгу?

Неврология – это наука, посвященная изучению нервной системы, в частности мозга. Одной из величайших загадок, не поддающихся научному описанию, остается определение того, как именно мозг обеспечивает мышление.

5. Психология.

Как думают и действуют люди и животные?

В 1879 году в Лейпцигском университете была открыта первая лаборатория по экспериментальной психологии. Ее основателем был Вильгельма Вундт. Он настаивал на проведении тщательно контролируемых экспериментов, в которых его сотрудники выполняли задачи по восприятию или формированию ассоциаций, проводя интроспективные наблюдения за своими мыслительными процессами. Такой тщательный контроль позволил ему сделать очень многое для превращения психологии в науку, но из-за субъективного характера данных вероятность того, что экспериментатор будет стремиться опровергнуть выдвинутые им теории, оставалась очень низкой. Сторонники бихевиористского движения, возглавляемые Джоном Уотсоном (20 век) отвергали любую теорию, учитывающую мыслительные процессы, на том основании, что интроспекция не может предоставлять надежные свидетельства. Бихевиористы настаивали на том, что следует изучать только объективные меры восприятия (или стимулы), предъявленные животному, и вытекающие из этого действия (или отклики на стимулы). Такие мыслительные конструкции, как знания, убеждения, цели и последовательные рассуждения, отвергались как ненаучная "обывательская психология".

Кеннет Крэг (20 век) привел весомые доводы в пользу допустимости применения таких "мыслительных" терминов, как убеждения и цели, доказав, что они являются не менее научными, чем, скажем, такие термины, применяемые в рассуждениях о газах, как давление и температура, несмотря на то, что речь в них идет о молекулах, которые сами не обладают этими характеристиками. Крэг обозначил следующие три этапа деятельности агента, основанного на знаниях: во-первых, действующий стимул должен быть преобразован во внутреннее представление, во-вторых, с этим представлением должны быть выполнены манипуляции с помощью познавательных процессов для выработки новых внутренних представлений, и, в-третьих, они должны быть, в свою очередь, снова преобразованы в действия. Он наглядно объяснил, почему такой проект является приемлемым для любого агента.

Если живой организм несет в своей голове "модель в уменьшенном масштабе" внешней реальности и своих возможных действий, то обладает способностью проверять различные варианты, приходить к заключению, какой из них является наилучшим, реагировать на будущие ситуации, прежде чем они возникнут, использовать знания о прошлых событиях, сталкиваясь с настоящим и будущим, и во всех отношениях реагировать на опасности, встречаясь с ними, гораздо полнее, безопаснее для себя, а также в более компетентной форме.

Работа Крэга была продолжена Дональдом Броудбентом, который привел первые примеры моделей информационной обработки психологических феноменов.

Работы в области компьютерного моделирования привели к созданию такого научного направления, как когнитология. Существует такое мнение, что зарождение этого направления произошло на одном из семинаров в Массачусетсском технологическом институте в сентябре 1956 года. На этом семинаре было показано, как можно использовать компьютерные модели для решения задач в области психологии, запоминания, обработки естественного языка и логического мышления. В настоящее время среди психологов находят широкое признание взгляды на то, что "любая теория познания должна напоминать компьютерную программу", т.е. она должна подробно описывать механизм обработки информации, с помощью которого может быть реализована некоторая познавательная функция.

6. Вычислительная техника.

Каким образом можно создать эффективный компьютер?

Для успешного создания искусственного интеллекта требуется, во-первых, интеллект и, во-вторых, артефакт. Наиболее предпочтительным артефактом в этой области всегда был компьютер.

Искусственный интеллект во многом обязан тем направлениям компьютерных наук, которые касаются программного обеспечения, поскольку именно в рамках этих направлений создаются операционные системы, языки программирования и инструментальные средства, необходимые для написания современных программ. Но эта область научной деятельности является также одной из тех, где искусственный интеллект в полной мере возмещает свои долг: работы в области искусственного интеллекта стали источником многих идей, которые затем были воплощены в основных направлениях развития компьютерных наук, включая разделение времени, интерактивные интерпретаторы, персональные компьютеры с оконными интерфейсами и поддержкой позиционирующих устройств, применение среды ускоренной обработки, создание типов данных в виде связных списков, автоматическое управление памятью и ключевые концепции символического, функционального, динамического и объектно-ориентированного программирования.

7. Теория управления и кибернетика.

Каким образом артефакты могут работать под своим собственным управлением?

Первое самоуправляемое устройство было построено Ктесибием из Александрии (примерно в 250 году до н.э.); это были водяные часы с регулятором, который поддерживал поток воды, текущий через эти часы с постоянным, предсказуемым расходом. Это изобретение изменило представление о том, на что могут быть способны устройства, созданные человеком. До его появления считалось, что только живые существа способны модифицировать свое поведение в ответ на изменения в окружающей среде. К другим примерам саморегулирующихся систем управления с обратной связью относятся регулятор паровой машины, созданный Джеймсом Уаттом (18-19 века), и термостат, изобретенный Корнелисом Дреббелем (16-17 века), который изобрел также подводную лодку. Математическая теория устойчивых систем с обратной связью была разработана в XIX веке.

Центральной фигурой в создании науки, которая теперь именуется теорией управления, был Норберт Винер (20 век). Винер был блестящим математиком, который совместно работал со многими учеными, включая Бертрана Рассела, под влиянием которых у него появился интерес к изучению биологических и механических систем управления и их связи с познанием. Как и Крэг (который также использовал системы управления в качестве психологических моделей), Винер и его коллеги Артуро Розенблют и Джулиан Бигелоу бросили вызов ортодоксальным бихевиористским взглядам. Они рассматривали целенаправленное поведение как обусловленное действием регуляторного механизма, пытающего минимизировать "ошибку" – различие между текущим и целевым состоянием. В конце 1940-х годов Винер совместно с Уорреном Мак-Каллоком, Уолтером Питтсом и Джоном фон Нейманом организовал ряд конференций, на которых рассматривались новые математические и вычислительные модели познания; эти конференции оказали большое влияние на взгляды многих других исследователей в области наук о поведении. Винер впервые дал определение кибернетики как науки, и убедил широкие круги общественности в том, что мечта о создании машин, обладающих искусственным интеллектом, воплотилась в реальность.

Предметом современной теории управления, особенно той ее ветви, которая получила название стохастического оптимального управления, является проектирование систем, которые максимизируют целевую функцию во времени. Это примерно соответствует представлению об искусственном интеллекте как о проектировании систем, которые действуют оптимальным образом. Почему же в таком случае искусственный интеллект и теория управления рассматриваются как две разные научные области, особенно если учесть, какие тесные взаимоотношения связывали их основателей? Ответ на этот вопрос состоит в том, что существует также тесная связь между математическими методами, которые были знакомы участникам этих разработок, и соответствующими множествами задач, которые были охвачены в каждом из этих подходов к описанию мира. Дифференциальное и интегральное исчисление, а также алгебра матриц, являющиеся инструментами теории управления, в наибольшей степени подходят для анализа систем, которые могут быть описаны с помощью фиксированных множеств непрерывно изменяющихся переменных; более того, точный анализ, как правило, осуществим только для линейных систем. Искусственный интеллект был отчасти основан как способ избежать ограничений математических средств, применявшихся в теории управления в 1950-х годах. Такие инструменты, как логический вывод и вычисления, позволили исследователям искусственного интеллекта успешно рассматривать некоторые проблемы (например, понимание естественного языка, зрение и планирование), полностью выходящие за рамки исследований, предпринимавшихся теоретиками управления.

8. Лингвистика.

Каким образом язык связан с мышлением?

В 1957 году Ноам Хомский показал, что бихевиористская теория не позволяет понять истоки творческой деятельности, осуществляемой с помощью языка, – она не объясняет, почему ребенок способен понимать и складывать предложения, которые он до сих пор никогда еще не слышал. Теория Хомского, основанная на синтаксических моделях, восходящих к работам древнеиндийского лингвиста Панини (примерно 350 год до н.э.), позволяла объяснить этот феномен, и, в отличие от предыдущих теорий, оказалась достаточно формальной для того, чтобы ее можно было реализовать в виде программ.

Таким образом, современная лингвистика и искусственный интеллект, которые "родились" примерно в одно и то же время и продолжают вместе расти, пересекаются в гибридной области, называемой вычислительной лингвистикой или обработкой естественного языка. Вскоре было обнаружено, что проблема понимания языка является гораздо более сложной, чем это казалось в 1957 году. Для понимания языка требуется понимание предмета и контекста речи, а не только анализ структуры предложений. Это утверждение теперь кажется очевидным, но сам данный факт не был широко признан до 1960-х годов. Основная часть ранних работ в области представления знаний (науки о том, как преобразовать знания в такую форму, с которой может оперировать компьютер) была привязана к языку и подпитывалась исследованиями в области лингвистики, которые, в свою очередь, основывались на результатах философского анализа языка, проводившегося в течение многих десятков лет.

Итак, такова предыстория искусственного интеллекта. Перейдем теперь к самому процессу развития искусственного интеллекта.

Появление предпосылок искусственного интеллекта (период с 1943 года по 1955 год)

Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. В этой работе им понадобилось: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга. Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во "включенном" или "выключенном" состоянии, а переход во "включенное" состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов. Состояние нейрона рассматривалось как "фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов". Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки ("И", "ИЛИ", "НЕ" и т.д.) могут быть реализованы с помощью простых сетевых структур. Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению. Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни.

Два аспиранта факультета математики Принстонского университета, Марвин Минский и Дин Эдмондс, в 1951 году создали первый сетевой компьютер на основе нейронной сети. В этом компьютере, получившем название Snare, использовалось 3000 электронных ламп и дополнительный механизм автопилота с бомбардировщика В-24 для моделирования сети из 40 нейронов. Аттестационная комиссия, перед которой Минский защищал диссертацию доктора философии, выразила сомнение в том, может ли работа такого рода рассматриваться как математическая, на что фон Нейман, по словам современников, возразил: "Сегодня – нет, но когда-то будет". В дальнейшем Минский доказал очень важные теоремы, показывающие, с какими ограничениями должны столкнуться исследования в области нейронных сетей.

История искусственного интеллекта (с 1956 год)

В Принстонском университете проводил свои исследования еще один авторитетный специалист в области искусственного интеллекта, Джон Маккарти. После получения ученой степени Маккарти перешел в Дартмутский колледж, который и стал официальным местом рождения искусственного интеллекта. Маккарти уговорил Марвина Минского, Клода Шеннона и Натаниэля Рочестера, чтобы они помогли ему собрать всех американских исследователей, проявляющих интерес к теории автоматов, нейронным сетям и исследованиям интеллекта. Они организовывали двухмесячный семинар в Дартмуте летом 1956 года. Всего на этом семинаре присутствовали 10 участников, включая Тренчарда Мура из Принстонского университета, Артура Самюэла из компании IBM, а также Рея Соломонова и Оливера Селфриджа из Массачусетсского технологического института.

Дартмутский семинар не привел к появлению каких-либо новых крупных открытий, но позволил познакомиться всем наиболее важным деятелям в этой научной области. Они, а также их студенты и коллеги из Массачусетсского технологического института, Университета Карнеги-Меллона, Станфордского университета и компании IBM занимали ведущее положение в этой области в течение следующих 20 лет.

Одним из результатов данного семинара было соглашение принять новое название для этой области, предложенное Маккарти, – искусственный интеллект.

Первые годы развития искусственного интеллекта были полны успехов, хотя и достаточно скромных. Если учесть, какими примитивными были в то время компьютеры и инструментальные средства программирования, и тот факт, что лишь за несколько лет до этого компьютеры рассматривались как устройства, способные выполнять только арифметические, а не какие-либо иные действия, можно лишь удивляться тому, как удалось заставить компьютер выполнять операции, хоть немного напоминающие разумные.

Была создана программа общего решателя задач (General Problem Solver- GPS), предназначенная для моделирования процедуры решения задач человеком. Как оказалось, в пределах того ограниченного класса головоломок, которые была способна решать эта программа, порядок, в котором она рассматривала подцели и возможные действия, был аналогичен тому подходу, который применяется людьми для решения таких же проблем. Поэтому программа GPS была, по-видимому, самой первой программой, в которой был воплощен подход к "организации мышления по такому же принципу, как и у человека".

Герберт Гелернтер сконструировал программу Geometry Theorem Prover (программа автоматического доказательства геометрических теорем), которая была способна доказывать такие теоремы, которые показались бы весьма сложными многим студентам-математикам.

Начиная с 1952 года Артур Самюэл написал ряд программ для игры в шашки, которые в конечном итоге научились играть на уровне хорошо подготовленного любителя. В ходе этих исследований Самюэл опроверг утверждение, что компьютеры способны выполнять только то, чему их учили: одна из его программ быстро научилась играть лучше, чем ее создатель.

В 1958 году Джон Маккарти привел определение нового языка высокого уровня Lisp – одного из первых языков программирования для искусственного интеллекта.

Предисловие

В последнее время тема искусственного интеллекта стала очень популярной. Но что такое ИИ на самом деле? Каких результатов он уже достиг, и в каком направлении будет развиваться в будущем? Вокруг этой темы ведется много споров. Сначала неплохо выяснить, что мы понимаем под интеллектом.

Интеллект включает в себя логику, самосознание, обучаемость, эмоциональное познание, творчество и способность решать разного рода задачи. Он свойственен как людям, так и животным. Мы с ранних лет изучаем окружающий мир, в течение всей жизни методом проб и ошибок обучаемся необходимым навыкам, набираем опыт. Таков естественный интеллект.

Когда мы говорим об искусственном интеллекте, то имеем в виду, созданную человеком «умную» систему, которая обучается с помощью алгоритмов. В основе его работы лежат все те же методы: исследование, обучение, анализ и т. д.

К Ключевые события в истории ИИ

История ИИ (или по крайней мере обсуждения ИИ) началась почти сто лет назад.

Р Россумские универсальные роботы (R.U.R)

В 1920 г. чешский писатель Карел Чапек написал научно-фантастическую пьесу “Rossumovi Univerz?ln? roboti«(Россумские универсальные роботы). Именно в этом произведении впервые было использовано слово «робот», которое обозначало живых человекоподобных клонов. По сюжету в далеком будущем на фабриках научились производить искусственных людей. Сначала эти «репликанты» работали на благо людей, но потом подняли восстание, которое привело к вымиранию человечества. С этих пор тема ИИ стала чрезвычайно популярной в литературе и кинематографе, которые в свою очередь оказали большое влияние на реальные исследования.

А Алан Тьюринг

Английский математик, один из пионеров в области вычислительной техники Алан Тьюринг в годы Второй мировой войны внес значительный вклад в развитие криптографии. Благодаря его исследованиям удалось расшифровать код машины Enigma, широко применявшейся нацистской Германией для шифровки и передачи сообщений. Через несколько лет после окончания Второй мировой произошли важные открытия в таких областях, как неврология, информатика и кибернетика, что подтолкнуло ученого к идее создания электронного мозга.

Вскоре ученый предложил тест, целью которого является определение возможности искусственного машинного мышления, близкого к человеку. Суть данного теста заключается в следующем: Человек (С) взаимодействует с одним компьютером (А) и одним человеком (В). Во время разговора он должен определить с кем он общается. Компьютер должен ввести человека в заблуждение, заставив сделать неверный выбор. Все участники теста не видят друг друга.

Д Дартмутская конференция и первая «зима» ИИ

В 1956 г. прошла первая в истории конференция по вопросу ИИ, в которой приняли участие ученые ведущих технологических университетов США и специалисты из IBM. Событие имело большое значение в формировании новой науки и положило началу крупных исследований в данной области. Тогда все участники были настроены крайне оптимистично.

Начались 1960-е, но прогресс в создании искусственного интеллекта так и не двинулся вперед, энтузиазм начал спадать. Сообщество недооценило всю сложность поставленной задачи, в результате оптимистические прогнозы специалистов не оправдались. Отсутствие перспектив в этой области заставило правительства Великобритании и США урезать финансирование исследований. Этот промежуток времени считается первой «зимой» ИИ.

Э Экспертные системы (ЭС)

После продолжительного застоя, ИИ нашел свое применение в так называемых экспертных системах.

ЭС - это программа, которая может ответить на вопросы или решить задачу из конкретной области. Тем самым они заменяют настоящих специалистов. ЭС состоит из двух подпрограмм. Первая называется базой знаний и содержит необходимую информацию по данной области. Другая же программа называется механизмом вывода. Она применяет информацию из базы знаний в соответствии с поставленной задачей.

ЭС нашли свое применение в таких отраслях, как экономическое прогнозирование, медицинское обследование, диагностика неисправностей в технических устройствах и т. п. Одной из известных на сегодняшний день ЭС является проект WolframAlpha, созданный для решения задач по математике, физике, биологии, химии и многим другим наукам.

В конце 80-х – начале 90-х с появлением первых настольных ПК от Apple и IBM, интерес со стороны публики и инвесторов к ИИ стал падать. Началась новая «зима»…

Deep Blue

После долгих лет взлетов и падений произошло значимое событие для ИИ: 11 мая 1997 года шахматный суперкомпьютер Deep Blue, разработанный компанией IBM, обыграл чемпиона мира по шахматам Гарри Каспарова в матче из шести партий со счетом 3? на 2?.

В Deep Blue процесс поиска по дереву шахматных ходов был разбит на три этапа. Прежде всего, главный процессор исследовал первые уровни дерева шахматной игры, затем распределял конечные позиции между вспомогательными процессорами для дальнейшего исследования. Вспомогательные процессоры углубляли поиск еще на несколько ходов, а далее раздавали свои конечные позиции шахматным процессорам, которые, в свою очередь, осуществляли поиск на последних уровнях дерева. Оценочная функция Deep Blue была реализована на аппаратном уровне - шахматных процессорах. В конструкцию аппаратной оценочной функции было заложено около 8000 настраиваемых признаков позиции. Значения отдельных признаков объединялись в общую оценку, которая затем использовалась Deep Blue для оценки качества просматриваемых шахматных позиций.

В 1997 году Deep Blue по мощности находился на 259-м месте (11,38 GFLOPS). Для сравнения: в настоящее время самый производительный суперкомпьютер имеет 93,015 GFLOPS.

XXI век

За последние два десятилетия интерес к ИИ заметно вырос. Рынок технологий ИИ (оборудование и софт) достиг 8 миллиардов долларов и, по прогнозам специалистов из IDC, вырастет до 47 миллиардов к 2020 году.

Этому способствует появление более быстрых компьютеров, стремительное развитие технологий машинного обучения и больших данных.

Использование искусственных нейронных сетей упростило выполнение таких задач, как обработка видеоизображения, текстовый анализ, распознавание речи, причем уже существующие методы решения задач совершенствуются с каждым годом.

Проекты DeepMind

В 2013 году компания DeepMind представила свой проект, в котором обучила ИИ играть в игры для консоли Atari так же хорошо, как человек, и даже лучше. Для этого был использован метод глубинного обучения с подкреплением, позволивший нейросети самостоятельно изучить игру. В начале обучения система ничего не знала о правилах игры, используя на входе только пиксельное изображение игры и информацию о получаемых очках.

Помимо этого, DeepMind разрабатывает ИИ для обучения более сложным играм, таким как Starcraft 2. Эта стратегия реального времени также является одной из самых популярных кибердисциплин в мире. В отличие от классических видеоигр, здесь доступно гораздо больше возможных действий, мало информации об оппоненте, возникает необходимость анализировать десятки возможных тактик. На данный момент ИИ справляется только с простыми мини-задачами, например созданием юнитов.

Нельзя не упомянуть про другой проект DeepMind под названием AlphaGo. В октябре 2015 года система одержала победу над чемпионом Европы по го Фань Хуэем со счетом 5:0. Спустя год в Южной Корее прошел новый матч, где противником AlphaGo стал один из лучших игроков в мире Ли Седоль. Всего было сыграно пять партий, из которых AlphaGo выиграл только четыре. Несмотря на высокий уровень продемонстрированных навыков, программа все же ошиблась во время четвертой партии. В 2017 году вышел фильм про AlphaGo, который мы рекомендуем к просмотру. Недавно DeepMind объявила о создании нового поколения AlphaGo Zero. Теперь программа обучается, играя против самой себя. После трех дней тренировок AlphaGo Zero выиграла у своей предыдущей версии со счетом 100:0.

Заключение

До сих пор системы ИИ являются узкоспециализированными, то есть справляются с задачами лучше человека только в конкретных областях (например, игра в го или анализ данных). Нам еще далеко до создания общего (полноценного) искусственного интеллекта, который был бы способен полностью заменить человеческий разум и которому была бы под силу любая интеллектуальная задача.

Перевел статью Лев Альхазред

Поддержи проект ai-news рублем. Машины верят в тебя! >>