Роль эвм в моделировании процессов техногенного характера. Понятие и виды компьютерного моделирования. Компьютерные модели и их виды

Майер Р.В. Компьютерное моделирование

Майер Р.В., Глазовский пединститут

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ:

    МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ.

КОМПЬЮТЕРНЫЕ МОДЕЛИ И ИХ ВИДЫ

Вводится понятие модели, анализируются различные классы моделей, связь моделирования с общей теорией систем. Обсуждается численное, статистическое и имитационное моделирование, его место в системе других методов познания. Рассматриваются различные классификации компьютерных моделей и области их применения.

1.1. Понятие модели. Цели моделирования

В процессе изучения окружающего мира субъекту познания противостоит исследуемая часть объек­тивной реальности –– объект познания . Ученый, используя эмпирические методы познания (наблюдение и эксперимент), устанавливает факты , характеризующие объект. Элементарные факты обобщаются и формулируются эмпирические законы . Следующий шаг состоит в развитии теории и построении теоретической модели , объясняющей поведение объекта и учитывающей наиболее существенные факторы, влияющие на изучаемое явление. Эта теоретическая модель должна быть логичной и соответствовать установленным фактам. Можно считать, что любая наука представляет собой теоретическую модель определенной части окружающей действительности.

Часто в процессе познания реальный объект заменяется некоторым другим идеальным, воображаемым или материальным объектом
, несущим изучаемые черты исследуемого объекта , и называемым моделью. Эта модель подвергается исследованию: на нее оказывают различные воздействия, изменяют параметры и начальные условия, и выясняют, как изменяется ее поведение. Результаты исследования модели переносят на объект исследования , сопоставляют с имеющимися эмпирическими данными и т.д.

Таким образом, модель –– это материальный или идеальный объект, замещающий исследуемую систему и адекватным образом отображающий ее существенные стороны. Модель должна в чем–то повторять исследуемый процесс или объект со степенью соответствия, позволяющей изучить объект–оригинал . Чтобы результаты моделирования можно было бы перенести на исследуемый объект, модель должна обладать свойством адекватности. Преимущество подмены исследуемого объекта его моделью в том, что часто модели проще, дешевле и безопаснее исследовать. Действительно, чтобы создать самолет, следует построить теоретическую модель, нарисовать чертеж, выполнить соответствующие расчеты, изготовить его уменьшенную копию, исследовать ее в аэродинамической трубе и т.д.

Модель объекта должна отражать его наиболее важные качества, пренебрегая второстепенными . Тут уместно вспомнить притчу о трех незрячих мудрецах, решивших узнать что такое слон. Один мудрец подержал слона за хобот, и заявил, что слон ­­–– гибкий шланг. Другой потрогал слона за ногу и решил, что слон – это колонна. Третий мудрец подергал за хвост и пришел к мнению, что слон – это веревка. Ясно, что все мудрецы ошиблись: ни один из названных объектов (шланг, колонна, веревка) не отражают существенных сторон изучаемого объекта (слон), поэтому их ответы (предлагаемые модели) не являются правильными.

При моделировании могут преследоваться различные цели: 1) познание сущности изучаемого объекта, причин его поведения, “устройства” и механизма взаимодействия элементов; 2) объяснение уже известных результатов эмпирических исследований, верификация параметров модели по экспериментальным данным; 3) прогнозирование поведения систем в новых условиях при различных внешних воздействиях и способах управления; 4) оптимизация функционирования исследуемых систем, поиск правильного управления объектом в соответствии с выбранным критерием оптимальности.

1.2. Различные виды моделей

Используемые модели чрезвычайно разнообразны. Системный анализ требует классификации и систематизации , то есть структурирование изначально неупорядоченного множества объектов и превращение его в систему. Известны различные способы классификации существующего многообразия моделей. Так, в выделяют следующие виды моделей: 1) детерминированные и стохастические; 2) статические и динамические; 3) дискретные, непрерывные и дискретно–непрерывные; 4) мысленные и реальные. В других работах , модели классифицируют по следующим основаниям (рис. 1): 1) по характеру моделируемой стороны объекта; 2) по отношению ко времени; 3) по способу представления состояния системы; 4) по степени случайности моделируемого процесса; 5) по способу реализации.

При классификации по характеру моделируемой стороны объекта выделяют следующие виды моделей (рис. 1): 1.1. Кибернетические или функциональные модели; в них моделируемый объект рассматривается как “черный ящик”, внутреннее устройство которого неизвестно. Поведение такого “черного ящика” может описываться математическим уравнением, графиком или таблицей, которые связывают выходные сигналы (реакции) устройства с входными (стимулами). Структура и принципы действия такой модели не имеют ничего общего с исследуемым объектом, но функционирует она похожим образом. Например, компьютерная программа, моделирующая игру в шашки. 1.2. Структурные модели –– это модели, структура которых соответствует структуре моделируемого объекта. Примерами являются командно-штабные учения, день самоуправления, модель электронной схемы в Electronics Workbench и т.д. 1.3.Информационные модели, представляющие собой совокупность специальным образом подобранных величин и их конкретных значений, которые характеризуют исследуемый объект. Выделяют вербальные (словесные), табличные, графические и математические информационные модели. Например, информационная модель студента может состоять из оценок за экзамены, контрольные и лабораторные работы. Или информационная модель некоторого производства представляет набор параметров, характеризующих потребности производства, его наиболее существенные характеристики, параметры выпускаемого товара.

По отношению ко времени выделяют: 1. Статические модели ­–– модели, состояние которых не изменяется с течением времени: макет застройки квартала, модель кузова машины. 2. Динамические модели представляют собой функционирующие объекты, состояние которых непрерывно изменяется. К ним относятся действующие модели двигателя и генератора, компьютерная модель развития популяции, анимационная модель работы ЭВМ и т.д.

По способу представления состояния системы различают: 1. Дискретные модели –– это автоматы, то есть реальные или воображаемые дискретные устройства с некоторым набором внутренних состояний, преобразующие входные сигналы в выходные в соответствии с заданными правилами. 2. Непрерывные модели –– это модели, в которых протекают непрерывные процессы. Например, использование аналоговой ЭВМ для решения дифференциального уравнения, моделирования радиоактивного распада с помощью конденсатора, разряжающегося через резистор и т.д. По степени случайности моделируемого процесса выделяют (рис. 1): 1. Детерминированные модели, которым свойственно переходить из одного состояния в другое в соответствии с жестким алгоритмом, то есть между внутренним состоянием, входными и выходными сигналами имеется однозначное соответствий (модель светофора). 2. Стохастические модели, функционирующие подобно вероятностным автоматам; сигнал на выходе и состояние в следующий момент времени задается матрицей вероятностей. Например, вероятностная модель ученика, компьютерная модель передачи сообщений по каналу связи с шумом и т.д.


Рис. 1. Различные способы классификации моделей.

По способу реализации различают: 1. Абстрактные модели, то есть мысленные модели, существующие только в нашем воображении. Например, структура алгоритма, которая может быть представлена с помощью блок–схемы, функциональная зависимость, дифференциальное уравнение, описывающее некоторый процесс. К абстрактным моделям также можно отнести различные графические модели, схемы, структуры, а также анимации. 2. Материальные (физические) модели представляют собой неподвижные макеты либо действующие устройства, функционирующие в чем–то подобно исследуемому объекту. Например, модель молекулы из шариков, макет атомной подводной лодки, действующая модель генератора переменного тока, двигателя и т.д. Реальное моделирование предусматривает построение материальной модели объекта и выполнение с ней серии экспериментов. Например, для изучения движения подводной лодки в воде строят ее уменьшенную копию и моделируют течение с помощью гидродинамической трубы.

Нас будут интересовать абстрактные модели, которые в свою очередь подразделяются на вербальные, математические и компьютерные. К вербальным или текстовым моделям относятся последовательности утверждений на естественном или формализованном языке, описывающие объект познания. Математические модели образуют широкий класс знаковых моделей, в которых используются математические действия и операторы. Часто они представляют собой систему алгебраических или дифференциальных уравнений. Компьютерные модели представляют собой алгоритм или компьютерную программу, решающую систему логических, алгебраических или дифференциальных уравнений и имитирующую поведение исследуемой системы. Иногда мысленное моделирование подразделяют на: 1. Наглядное, –– предполагает создание воображаемого образа, мысленного макета, соответствующих исследуемому объекту на основе предположений о протекающем процессе, или по аналогии с ним. 2. Символическое, –– заключается в создании логического объекта на основе системы специальных символов; подразделяется на языковое (на основе тезауруса основных понятий) и знаковое. 3. Математическое, –– состоит в установлении соответствия объекту исследования некоторого математического объекта; подразделяется на аналитическое, имитационное и комбинированное. Аналитическое моделирование предполагает написание системы из алгебраических, дифференциальных, интегральных, конечно–разностных уравнений и логических условий. Для исследования аналитической модели могут быть использованы аналитический метод и численный метод. В последнее время численные методы реализуются на ЭВМ, поэтому компьютерные модели можно рассматривать как разновидность математических.

Математические модели довольно разнообразны и тоже могут быть классифицированы по разным основаниям . По степени абстрагирования при описании свойств системы они делятся на мета–, макро– и микромодели. В зависимости от формы представления различают инвариантные, аналитические, алгоритмические и графические модели. По характеру отображаемых свойств объекта модели классифицируют на структурные, функциональные и технологические. По способу получения различают теоретические, эмпирические и комбинированные. В зависимости от характера математического аппарата модели бывают линейные и нелинейные, непрерывные и дискретные, детерминированные и вероятностные, статические и динамические. По способу реализации различают аналоговые, цифровые, гибридные, нейронечеткие модели, которые создаются на основе аналоговых, цифровых, гибридных вычислительных машин и нейросетей.

1.3. Моделирование и системный подход

В основе теории моделирования лежит общая теория систем , также известная как системный подход. Это общенаучное направление, согласно которому объект исследования рассматривается как сложная система, взаимодействующая с окружающей средой. Объект является системой, если он состоит из совокупности взаимосвязанных между собой элементов, сумма свойств которых не равна свойствам объекта. Система отличается от смеси наличием упорядоченной структуры и определенных связей между элементами. Например, телевизор, состоящий из большого числа радиодеталей, соединенных между собой определенным образом, является системой, а те же радиодетали, беспорядочно лежащие в ящике, системой не являются. Различают следующие уровни описания систем: 1) лингвистический (символический); 2) теоретико-множественный; 3) абстрактно-логический; 4) логико-математический; 5) теоретико-информа-ционный; 6) динамический; 7) эвристический.


Рис. 2. Исследуемая система и окружающая среда.

Система взаимодействует с окружающей средой, обменивается с ней веществом, энергией, информацией (рис. 2). Каждый ее элемент является подсистемой. Система, включающая анализируемый объект как подсистему, называется надсистемой . Можно считать, что система имеет входы , на которые поступают сигналы, и выходы , выдающие сигналы в среду. Отношение к объекту познания как к целому, составленному из многих взаимосвязанных между собой частей, позволяет увидеть за огромным количеством несущественных деталей и особенностей нечто главное и сформулировать системообразующий принцип . Если внутреннее устройство системы неизвестно, то ее считают “черным ящиком” и задают функцию, связывающую состояния входов и выходов. В этом состоит кибернетический подход . При этом анализируется поведение рассматриваемой системы, ее отклик на внешние воздействия и изменения окружающей среды.

Исследование состава и структуры объекта познания называется системным анализом . Его методология нашла свое выражение в следующих принципах : 1) принцип физичности : поведение системы описывается определенными физическими (психологическими, экономическими и др.) законами; 2) принцип моделируемости : система может быть промоделирована конечным числом способов, каждый из которых отражает ее существенные стороны; 3) принцип целенаправленности : функционирование достаточно сложных систем приводит к достижению некоторой цели, состояния, сохранения процесса; при этом система способна противостоять внешним воздействиям.

Как указывалось выше, система имеет структуру –– множество внутренних устойчивых связей между элементами, определяющее основные свойства данной системы. Ее можно представить графически в виде схемы, химической или математической формулы или графа. Это графическое изображение характеризует пространственное расположение элементов, их вложенность или подчиненность, хронологическую последовательность различных частей сложного события. При построении модели рекомендуется составлять структурные схемы изучаемого объекта, особенно если он достаточно сложен. Это позволяет понять совокупность всех интегративных свойств объекта, которыми не обладают его составные части.

Одной из важнейших идей системного подхода является принцип эмерджентности , –– при объединении элементов (частей, компонентов) в единое целое возникает системный эффект: у системы появляются качества, которым не обладает ни один из входящих в нее элементов. Принцип выделения основной структуры системы состоит в том, что изучение достаточно сложного объекта требует выдвижения на первый план некой части его структуры, являющейся главной или основной. Иными словами, нет необходимости учитывать все многообразие деталей, а следует отбросить менее существенное и укрупнить важные части объекта для того, чтобы понять основные закономерности.

Любая система взаимодействует с другими не входящими в нее системами и образующими среду. Поэтому ее следует рассматривать как подсистему некоторой более обширной системы. Если ограничиться анализом только внутренних связей, то в некоторых случаях не удастся создать правильной модели объекта. Следует учесть существенные связи системы со средой, то есть внешние факторы, и тем самым “замкнуть” систему. В этом состоит принцип замкнутости.

Чем сложнее исследуемый объект, тем больше разнообразных моделей (описаний) можно построить. Так, глядя на цилиндрическую колонну с различных сторон, все наблюдатели скажут, что ее можно промоделировать однородным цилиндрическим телом определенных размеров. Если вместо колонны наблюдатели станут рассматривать какую–то сложную архитектурную композицию, то каждый увидит свое и построит свою модель объекта. При этом, как и в случае с мудрецами, получатся различные результаты, противоречащие друг другу. И дело тут не в том, что истин много или объект познания непостоянен и многолик, а в том, что объект сложен и истина сложна, а используемые методы познания поверхностны и не позволили понять сущность до конца.

При изучении больших систем исходят из принципа иерархичности , который заключается в следующем.Изучаемый объект содержит несколько связанных подсистем первого уровня, каждая из которых сама является системой, состоящая из подсистем второго уровня и т.д. Поэтому описание структуры и создание теоретической модели должно учитывать “расположение” элементов на различных “уровнях”, то есть их иерархию. К основным свойствам систем относятся: 1) целостность , то есть несводимость свойств системы к сумме свойств отдельных элементов; 2) структурность , –– неоднородность, наличие сложной структуры; 3) множественность описания , –– система может быть описана различными способами; 4) взаимозависимость системы и среды , –– элементы системы связаны с объектами, не входящими в нее и образующими окружающую среду; 5) иерархичность , –– система имеет многоуровневую структуру.

1.4. Качественные и количественные модели

Задача науки состоит в построении теоретической модели окружающего мира, которая бы объясняла известные и предсказывала неизвестные явления. Теоретическая модель может быть качественной или количественной. Рассмотрим качественное объяснение электромагнитных колебаний в колебательном контуре, состоящем из конденсатора и катушки индуктивности. При подключении заряженного конденсатора к катушке индуктивности он начинает разряжаться, через катушку индуктивности течет ток, энергия электрического поля переходит в энергию магнитного поля. Когда конденсатор полностью разрядился, ток через катушку индуктивности достигает максимального значения. За счет инерционности катушки индуктивности, обусловленной явлением самоиндукции, происходит перезарядка конденсатора, он заряжается в обратном направлении и т.д. Эта качественная модель явления позволяет проанализировать поведение системы и предсказать, например, что при уменьшении емкости конденсатора частота собственных колебаний контура возрастет.

Важным шагом на пути познания является переход от качественно–описательных методов к математическим абстракциям . Решение многих проблем естествознания потребовало оцифровки пространства и времени, введения понятия системы координат, разработки и совершенствования методов измерения различных физических, психологических и иных величин, что позволило оперировать с численными значениями. В результате были получены достаточно сложные математические модели, представляющие систему алгебраических и дифференциальных уравнений. В настоящее время исследование природных и иных явлений уже не ограничивается качественными рассуждениями, а предусматривает построение математической теории.

Создание количественной модели электромагнитных колебаний в RLC-цепи предполагает введение точных и однозначных способов определения и измерения таких величин, как сила тока , заряд , напряжение , емкость , индуктивность , сопротивление . Не зная, как измерить силу тока в цепи или емкость конденсатора, бессмысленно говорить о каких–то количественных соотношениях. Имея однозначные определения перечисленных величин, и установив процедуру их измерения, можно приступать к построению математической модели, записи системы уравнений. В результате получается неоднородное дифференциальное уравнение второго порядка . Его решение позволяет, зная заряд конденсатора и ток через катушку индуктивности в начальный момент, определить состояние цепи в последующие моменты времени.

Построение математической модели требует определения независимых величин, однозначно описывающих состояние исследуемого объекта. Например, состояние механической системы определяется координатами входящих в нее частиц и проекциями их импульсов. Состояние электрической цепи задается зарядом конденсатора, силой тока через катушку индуктивности и т.д. Состояние экономической системы определяется набором таких показателей, как количество денежных средств, вложенных в производство, прибыль, число рабочих, занятых изготовлением продукции и т.д.

Поведение объекта во многом определяется его параметрами, то есть величинами, которые характеризуют его свойства. Так, параметрами пружинного маятника являются жесткость пружины и масса подвешенного к ней тела. Электрическая RLC–цепь характеризуется сопротивлением резистора, емкостью конденсатора, индуктивностью катушки. К параметрам биологической системы относятся коэффициент размножения, количество биомассы, потребляемой одним организмом и т.д. Другим важным фактором, влияющим на поведение объекта, является внешнее воздействие. Очевидно, что поведение механической системы зависит от действующих на нее внешних сил. На процессы в электрической цепи влияет приложенное напряжение, а развитие производства связано с внешней экономической ситуацией в стране. Таким образом, поведение исследуемого объекта (а значит и его модели) зависит от его параметров, начального состояния и внешнего воздействия.

Создание математической модели требует определения совокупности состояний системы, множества внешних воздействий (входных сигналов) и откликов (выходных сигналов), а также задания соотношений, связывающих отклик системы с воздействием и ее внутренним состоянием. Они позволяют исследовать огромное количество различных ситуаций, задавая иные параметры системы, начальные условия и внешние воздействия. Искомая функция, характеризующая отклик системы, получается в табличном или графическом виде.

Все существующие способы исследования математической модели можно разделить на две группы.Аналитическое решение уравнения часто предусматривает проведение громоздких и сложных математических выкладок и в результате приводит к уравнению, выражающему функциональную связь между искомой величиной, параметрами системы, внешним воздействием и временем. Результаты такого решения нуждаются в интерпретации, предполагающей анализ полученных функций, построение графиков. Численные методы исследования математической модели на ЭВМ предполагают создание компьютерной программы, которая решает систему соответствующих уравнений и выводит на экран таблицу либо графическое изображение. Получающиеся статические и динамические картинки наглядно пояснять сущность исследуемых процессов.

1.5. Компьютерное моделирование

Эффективным способом изучения явлений окружающей действительности является научный эксперимент , состоящий в воспроизведении изучаемого явления природы в управляемых и контролируемых условиях. Однако часто проведение эксперимента невозможно либо требует слишком больших экономических затрат и может привести к нежелательным последствиям. В этом случае исследуемый объект заменяют компьютерной моделью и исследуют ее поведение при различных внешних воздействиях. Повсеместное распространение персональных компьютеров, информационных технологий, создание мощных суперЭВМ сделало компьютерное моделирование одним из результативных методов изучения физических, технических, биологических, экономических и иных систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели. За этим следует проведение серии вычислительных экспериментов на компьютере, интерпретация результатов, сопоставление результатов моделирования с поведением исследуемого объекта, последующее уточнение модели и т.д. Вычислительный эксперимент фактически является экспериментом над математической моделью исследуемого объекта, проводимого с помощью ЭВМ . Часто он значительно дешевле и доступнее натурного эксперимента, его выполнение требует меньшего времени, он дает более подробную информацию о величинах, характеризующих состояние системы.

Сущность компьютерного моделирования системы заключается в создании компьютерной программы (пакета программ), описывающей поведение элементов исследуемой системы в процессе ее функционирования, учитывающей их взаимодействие между собой и внешней средой, и проведении на ЭВМ серии вычислительных экспериментов. Это делается с целью изучения природы и поведения объекта, его оптимизации и структурного развития, прогнозирования новых явлений. Перечислим требования , которым должна удовлетворять модель исследуемой системы : 1. Полнота модели, то есть возможность вычисления всех характеристик системы с требуемой точностью и достоверностью. 2. Гибкость модели, что позволяет воспроизводить и проигрывать различные ситуации и процессы, изменять структуру, алгоритмы и параметры изучаемой системы. 3. Длительность разработки и реализации , характеризующая временные затраты на создание модели. 4. Блочность структуры , допускающая добавление, исключение и замену некоторых частей (блоков) модели. Кроме того, информационное обеспечение, программные и технические средства должны позволять модели обмениваться информацией с соответствующей базой данных и обеспечивать эффективную машинную реализацию и удобную работу пользователя.

К основным этапам компьютерного моделирования относятся (рис. 3): 1) постановка задачи , описание исследуемой системы и выявление ее компонентов и элементарных актов взаимодействия; 2) формализация , то есть создание математической модели, представляющей собой систему уравнений и отражающей сущность исследуемого объекта; 3) разработка алгоритма , реализация которого позволит решить поставленную задачу; 4) написание программы на конкретном языке программирования; 5) планирование и выполнение вычислений на ЭВМ, доработка программы и получение результатов; 6) анализ и интерпретация результатов , их сопоставление с эмпирическими данными. Затем все это повторяется на следующем уровне.

Разработка компьютерной модели объекта представляет собой последовательность итераций: сначала на основе имеющейся информации о системе S строится модель
, проводится серия вычислительных экспериментов, результаты анализируются. При получении новой информации об объекте S учитываются дополнительные факторы, получается модель
, поведение которой тоже исследуется на ЭВМ. После этого создаются модели
,
и т.д. до тех пор, пока не получится модель, с требуемой точностью соответствующая системе S.


Рис. 3. Этапы компьютерного моделирования.

В общем случае поведение исследуемой системы описывается законом функционирования , где
–– вектор входных воздействий (стимулов),
–– вектор выходных сигналов (откликов, реакций),
–– вектор воздействий внешней среды,
–– вектор собственных параметров системы . Закон функционирования может иметь вид словесного правила, таблицы, алгоритма, функции, совокупности логических условий и т.д. В случае, когда закон функционирования содержит время, говорят о динамических моделях и системах. Например, разгон и торможение асинхронного двигателя, переходный процесс в цепи, содержащей конденсатор, функционирование вычислительной сети, системы массового обслуживания. Во всех этих случаях состояние системы, а значит и ее модели, изменяется с течением времени.

Если поведение системы описывается законом
, не содержащим время явно, то речь идет о статических моделях и системах, решении стационарных задач и т.д. Приведем несколько примеров: расчет нелинейной цепи постоянного тока, нахождение стационарного распределения температуры в стержне при постоянных температурах его концов, формы упругой пленки, натянутой на каркас, профиля скоростей в установившемся течении вязкой жидкости и т.д.

Функционирование системы можно рассматривать как последовательную смену состояний
,
, … ,
, которым соответствуют некоторые точки в многомерном фазовом пространстве. Множество всех точек
, отвечающих всевозможным состояниям системы, называют пространством состояний объекта (или модели). Каждой реализации процесса соответствует одна фазовая траектория, проходящая через некоторые точки из множества . Если математическая модель содержит элемент случайности, то получается стохастическая компьютерная модель. В частном случае, когда параметры системы и внешние воздействия однозначно определяют выходные сигналы, говорят о детерминированной модели.

      Принципы компьютерного моделирования. Связь c другими методами познания

Итак, модель –– это объект, заменяющий исследуемую систему, и имитирующий ее структуру и поведение. Моделью может являться материальный объект, совокупность особым образом упорядоченных данных, система математических уравнений или компьютерная программа.Под моделированием понимают представление основных характеристик объекта исследования с помощью другой системы (материального объекта, совокупности уравнений, компьютерной программы). Перечислим принципы моделирования :

1. Принцип адекватности: Модель должна учитывать наиболее существенные стороны исследуемого объекта и отражать его свойства с приемлемой точностью. Только в этом случае результаты моделирования можно распространить на объект исследования.

2. Принцип простоты и экономичности: Модель должна быть достаточно простой для того чтобы ее использование было эффективно и экономически выгодно. Она не должна быть более сложной, чем это требуется для исследователя.

3. Принцип информационной достаточности: При полном отсутствии информации об объекте построить модель невозможно. При наличии полной информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.

4. Принцип осуществимости: Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.

5. Принцип множественности и единства моделей: Любая конкретная модель отражает лишь некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей, отражающих наиболее существенные стороны исследуемого процесса и имеющих что–то общее. Каждая последующая модель должна дополнять и уточнять предыдущую.

6. Принцип системности. Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.

7. Принцип параметризации. Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром (вектором, матрицей, графиком, формулой).

Модель должна удовлетворять следующим требованиям : 1) быть адекватной, то есть отражать наиболее существенные стороны исследуемого объекта с требуемой точностью; 2) способствовать решению определенного класса задач; 3) быть простой и понятной, основываться на минимальном количестве предположений и допущений; 4) позволять модифицировать и дополнять себя, переходить к другим данным; 5) быть удобной в использовании.

Связь компьютерного моделирования с другими методами познания показана из рис. 4. Объект познания исследуется эмпирическими методами (наблюдение, эксперимент), установленные факты являются основой для построения математической модели. Получившаяся система математических уравнений может исследоваться аналитическими методами или с помощью ЭВМ, –– в этом случае речь идет о создании компьютерной модели изучаемого явления. Проводится серия вычислительных экспериментов или компьютерных имитаций, и получающиеся результаты сопоставляются с результатами аналитического исследования математической модели и экспериментальными данными. Выводы учитываются для улучшения методики экспериментального изучения объекта исследования, развития математической модели и совершенствования компьютерной модели. Исследование социальных и экономических процессов отличается лишь невозможностью в полной мере использовать экспериментальные методы.


Рис. 4. Компьютерное моделирование среди других методов познания.

1.6. Виды компьютерных моделей

Под компьютерным моделированием в самом широком смысле будем понимать процесс создания и исследования моделей с помощью компьютера. Выделяют следующие виды моделирования :

1. Физическое моделирование : компьютер –– часть экспериментальной установки или тренажера, он воспринимает внешние сигналы, осуществляет соответствующие расчеты и выдает сигналы, управляющие различными манипуляторами. Например, учебная модель самолета, представляющая собой кабину, установленную на соответствующих манипуляторах, соединенных с компьютером, который реагирует на действия пилота и изменяет наклон кабины, показания приборов, вид из иллюминатора и т.д., имитируя полет реального самолета.

2. Динамическое или численное моделирование , предполагающее численное решение системы алгебраических и дифференциальных уравнений методами вычислительной математики и проведение вычислительного эксперимента при различных параметрах системы, начальных условиях и внешних воздействиях. Используется для моделирования различных физических, биологических, социальных и других явлений: колебания маятника, распространение волны, изменение численности населения, популяции данного вида животных и т.д.

3. Имитационное моделирование состоит в создании компьютерной программы (или пакета программ), имитирующей поведение сложной технической, экономической или иной системы на ЭВМ с требуемой точностью. Имитационное моделирование предусматривает формальное описание логики функционирования исследуемой системы с течением времени, которое учитывает существенные взаимодействия ее компонентов и обеспечивает проведение статистических экспериментов. Объектно-ориентированные компьютерные симуляции используются для исследования поведения экономических, биологических, социальных и иных систем, для создания компьютерных игр, так называемого “виртуального мира”, обучающих программ и анимаций. Например, модель технологического процесса, аэродрома, некоторой отрасли производства и т.д.

4. Статистическое моделирование используется для изучения стохастических систем и состоит в многократном проведении испытаний с последующей статистической обработкой получающихся результатов. Подобные модели позволяют исследовать поведение всевозможных систем массового обслуживания, многопроцессорных систем, информационно-вычислительных сетей, различных динамических систем, на которые воздействуют случайные факторы. Статистические модели применяются при решении вероятностных задач, а также при обработке больших массивов данных (интерполяция, экстраполяция, регрессия, корреляция, расчет параметров распределения и т.д.). Они отличаются от детерминированных моделей, использование которых предполагает численное решение систем алгебраических или дифференциальных уравнений, либо замену изучаемого объекта детерминированным автоматом.

5. Информационное моделирование заключается в создании информационной модели, то есть совокупности специальным образом организованных данных (знаков, сигналов), отражающих наиболее существенные стороны исследуемого объекта. Различают наглядные, графические, анимационные, текстовые, табличные информационные модели. К ним относятся всевозможные схемы, графы, графики, таблицы, диаграммы, рисунки, анимации, выполненные на ЭВМ, в том числе цифровая карта звездного неба, компьютерная модель земной поверхности и т.д.

6. Моделирование знаний предполагает построение системы искусственного интеллекта, в основе которой лежит база знаний некоторой предметной области (части реального мира). Базы знаний состоят из фактов (данных) и правил . Например, компьютерная программа, умеющая играть в шахматы (рис. 5), должна оперировать информацией о “способностях” различных шахматных фигур и “знать” правила игры. К данному виду моделей относят семантические сети, логических модели знаний, экспертные системы, логические игры и т.д. Логические модели используются для представления знаний в экспертных системах, для создания систем искусственного интеллекта, осуществления логического вывода, доказательства теорем, математических преобразований, построения роботов, использования естественного языка для общения с ЭВМ, создания эффекта виртуальной реальности в компьютерных играх и т.д.

Рис. 5. Компьютерная модель поведения шахматиста.

Исходя из целей моделирования , компьютерные модели подразделяют на группы: 1) дискриптивные модели , используемые для понимания природы исследуемого объекта, выявления наиболее существенных факторов, влияющих на его поведение; 2) оптимизационные модели , позволяющие выбрать оптимальный способ управления технической, социально-экономической или иной системой (например, космической станцией); 3) прогностические модели , помогающие прогнозировать состояние объекта в последующие моменты времени (модель земной атмосферы, позволяющая предсказать погоду); 4) учебные модели , применяемые для обучения, тренинга и тестирования учащихся, студентов, будущих специалистов; 5) игровые модели , позволяющие создать игровую ситуацию, имитирующую управление армией, государством, предприятием, человеком, самолетом и т.д., либо играющие в шахматы, шашки и другие логические игры.

      Классификация компьютерных моделей

по типу математической схемы

В теории моделирования систем компьютерные модели подразделяются на численные, имитационные, статистические и логические. При компьютерном моделировании, как правило, используют одну из типовых математических схем: дифференциальные уравнения, детерминированные и вероятностные автоматы, системы массового обслуживания, сети Петри и т.д. Учет способа представления состояния системы и степени случайности моделируемых процессов позволяет построить таблицу 1.

Таблица 1.


По типу математической схемы различают : 1. Непрерывно–детеминированные модели , которые используются для моделирования динамических систем и предполагают решение системы дифференциальных уравнений. Математические схемы этого вида называются D-схемами (от англ. dynamic). 2. Дискретно–детерминированные модели используются для исследования дискретных систем, которые могут находиться в одном из множества внутренних состояний. Они моделируются абстрактным конечным автоматом, задаваемым F–схемой (от англ. finite automata): . Здесь
, –– множества входных и выходных сигналов, –– множеством внутренних состояний,
–– функция переходов,
–– функция выходов. 3. Дискретно–стохастические модели предполагают использование схемы вероятностных автоматов, функционирование которых содержит элемент случайности. Они также называются P–схемами (от англ. probabilistic automat). Переходы такого автомата из одного состояния в другое определяется соответствующей матрицей вероятностей. 4. Непрерывно-стохастические модели как правило применяются для изучения систем массового обслуживания и называются Q–схемами (от англ. queueing system). Для функционирования некоторых экономических, производственных, технических систем присуще случайное появление требований (заявок) на обслуживание и случайное время обслуживания. 5. Сетевые модели используются для анализа сложных систем, в которых одновременно протекает несколько процессов. В этом случае говорят о сетях Петри и N–схемах (от англ. Petri Nets). Сеть Петри задается четверкой , где – множество позиций,
– множество переходов, – входная функция, – выходная функция. Маркированная N-схема позволяет промоделировать параллельные и конкурирующие процессы в различных системах. 6. Комбинированные схемы основываются на понятии агрегативной системы и называются A-схемами (от англ. aggregate system). Этот универсальных подход, разработанный Н.П.Бусленко , позволяет исследовать всевозможные системы, которые рассматриваются как совокупность взаимосвязанных между собой агрегатов. Каждый агрегат характеризуется векторами состояний, параметров, воздействия внешней среды, входных воздействий (управляющих сигналов), начальных состояний, выходных сигналов, оператором переходов, оператором выходов.

Исследование имитационной модели производится на цифровых и аналоговых вычислительных машинах. Используемая имитационная система включает в себя математическое, программное, информационное, техническое и эргономическое обеспечение. Эффективность имитационного моделирования характеризуется точностью и достоверностью получающихся результатов, стоимостью и временем создания модели и работы с ней, затратами машинных ресурсов (времени вычислений и требуемой памяти). Для оценки эффективности модели необходимо получающиеся результаты сравнить с результатами натурного эксперимента, а также результатами аналитического моделирования.

В некоторых случаях приходится объединять численное решение дифференциальных уравнений и имитацию функционирования той или иной достаточно сложной системы. В этом случае говорят о комбинированном или аналитико-имитационном моделировании . Его основное преимущество состоит в возможности исследования сложных систем, учета дискретных и непрерывных элементов, нелинейности различных характеристик, случайные факторы. Аналитическое моделирование позволяет проанализировать только достаточно простые системы.

Одним из эффективных методов исследования имитационных моделей является метод статистических испытаний . Он предусматривает многократное воспроизведение того или иного процесса при различных параметрах, изменяющихся случайным образом по заданному закону. ЭВМ может провести 1000 испытаний и зарегистрировать основные характеристики поведения системы, ее выходные сигналы, а затем определить их математическое ожидание, дисперсию, закон распределения. Недостаток использования машинной реализации имитационной модели состоит в том, что полученное с ее помощью решение имеет частный характер и соответствует конкретным параметрам системы, ее начальному состоянию и внешним воздействиям. Преимущество заключается в возможности исследования сложных систем.

1.8. Области применения компьютерных моделей

Совершенствование информационных технологий обусловило использование компьютеров практически во всех сферах деятельности человека. Развитие научных теорий предполагает выдвижение основных принципов, построение математической модели объекта познания, получение из нее следствий, которые могут быть сопоставлены с результатами эксперимента. Использование ЭВМ позволяет, исходя из математических уравнений, рассчитать поведение исследуемой системы в тех или иных условиях. Часто это единственный способ получения следствий из математической модели. Например, рассмотрим задачу о движении трех или более частиц, взаимодействующих друг с другом, которая актуальна при исследовании движении планет, астероидов и других небесных тел. В общем случае она сложна и не имеет аналитического решения, и лишь использование метода компьютерного моделирования позволяет рассчитать состояние системы в последующие моменты времени.

Совершенствование вычислительной техники, появление ЭВМ, позволяющей быстро и достаточно точно осуществлять вычисления по заданной программе, ознаменовало качественный скачок на пути развития науки. На первый взгляд кажется, что изобретение вычислительных машин не может непосредственно влиять на процесс познания окружающего мира. Однако это не так: решение современных задач требует создания компьютерных моделей, проведения огромного количества вычислений, что стало возможным лишь после появления электронно–вычислительных машин, способных выполнять миллионы операций в секунду. Существенным является и то, что вычисления производятся автоматически, в соответствии с заданным алгоритмом и не требуют вмешательства человека. Если ЭВМ относится к технической базе проведения вычислительного эксперимента, то ее теоретическую основу составляют прикладная математика, численные методы решения систем уравнений.

Успехи компьютерного моделирования тесно связаны с развитием численных методов, начавшегося с фундаментальных работ Исаака Ньютона, который еще в 17 веке предложил их использовать для приближенного решения алгебраических уравнений. Леонард Эйлер разработал метод решения обыкновенных дифференциальных уравнений. Из современных ученых весомый вклад в развитие компьютерного моделирования сделал академик А.А.Самарский , основоположник методологии вычислительного эксперимента в физике. Именно им была предложена знаменитая триада "модель – алгоритм – программа" и разработана технология компьютерного моделирования, успешно используемая для изучения физических явлений. Одним из первых выдающихся результатов компьютерного эксперимента в физике является открытие в 1968 году температурного токового слоя в плазме, создаваемой в МГД–генераторах (эффект Т–слоя). Оно было выполнено на ЭВМ и позволило предсказать исход реального эксперимента, проведенного через несколько лет. В настоящее время вычислительный эксперимент используется для выполнения исследований в следующих направлениях : 1) расчет ядерных реакций; 2) решение задач небесной механики, астрономии и космонавтики; 3) изучение глобальных явлений на Земле, моделирование погоды, климата, исследование экологических проблем, глобального потепления, последствий ядерного конфликта и т.д.; 4) решение задач механики сплошных сред, в частности, гидродинамики; 5) компьютерное моделирование различных технологических процессов; 6) расчет химических реакций и биологических процессов, развитие химической и биологической технологии; 7) социологические исследования, в частности, моделирование выборов, голосования, распространение сведений, изменение общественного мнения, военных действий; 8) расчет и прогнозирование демографической ситуации в стране и мире; 9) имитационное моделирование работы различных технических, в частности, электронных устройств; 10) экономические исследования развития предприятия, отрасли, страны.

Литература

    Боев В.Д., Сыпченко Р.П., Компьютерное моделирование. –– ИНТУИТ.РУ, 2010. –– 349 с. Булавин Л.А., Выгорницкий Н.В., Лебовка Н.И. Компьютерное моделирование физических систем. –– Долгопрудный: Издательский Дом “Интеллект”, 2011. – 352 c. Бусленко Н.П. Моделирование сложных систем. –– М.: Наука, 1968. –– 356 с. Дворецкий С.И., Муромцев Ю.Л., Погонин В.А. Моделирование систем. –– М.: Изд. центр “Академия”, 2009. –– 320 с. Кунин С. Вычислительная физика. –– М.: Мир, 1992. –– 518 с. Паничев В.В., Соловьев Н.А. Компьютерное моделирование: учебное пособие. –– Оренбург: ГОУ ОГУ, 2008. -- 130 с. Рубанов В.Г., Филатов А.Г. Моделирование систем учебное пособие. –– Белгород: Изд–во БГТУ, 2006. ­­–– 349 с. Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. –– М.: Физматлит, 2001. –– 320 с. Советов Б.Я., Яковлев С.А. Моделирование систем: Учеб для вузов ­­–– М.: Высш. Шк., 2001. – 343 с.

10. Федоренко Р.П. Введение в вычислительную физику: Учеб. пособие: Для вузов. –– М.: Изд–во Моск. физ.–техн. ин–та, 1994. –– 528 с.

11. Шеннон Р. Имитационное моделирование систем: искусство и наука. –– М.: Мир, 1978. –– 302 с.

Майер Р.В. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ: МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ.КОМПЬЮТЕРНЫЕ МОДЕЛИ И ИХ ВИДЫ // Научный электронный архив.
URL: (дата обращения: 15.01.2020).

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.

Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно, формализация – это замена реального объекта или процесса его формальным описанием.

Основное требование, предъявляемое к моделям – это их адекватность реальным процессам или объектам, которые замещает модель.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность. Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Более конкретно, необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует слишком много времени и средств.

В моделировании есть два различных подхода. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, домик из кубиков, деревянная модель самолета в натуральную величину, используемая в авиаконструировании и др. Модели такого рода называют натурными .

Модель может, однако, отображать реальность более абстрактно – словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.п. Будем называть такие модели абстрактными .

Классификация абстрактных моделей:

1. Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются милицейский протокол, правила дорожного движения).

2. Математические модели – очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), использующих те или иные математические методы. Например, математическая модель звезды будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Другой математической моделью являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.

3. Информационные модели – класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку, хранение и использование информации) в системах самой разнообразной природы. Примерами таких моделей могут служитьOSI– семиуровневая модель взаимодействия открытых систем в компьютерных сетях, или машина Тьюринга – универсальная алгоритмическая модель.

Подчеркнем, что граница между вербальными, математическими и информационными моделями может быть проведена весьма условно. Так, информационные модели иногда считают подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным.

Отметим, что существуют и иные подходы к классификации абстрактных моделей; общепринятая точка зрения здесь еще не установилась.

В прикладных науках различают следующие виды абстрактных моделей:

1) чисто аналитические математические модели, не использующие компьютерных средств;

2) информационные модели, имеющие приложения в информационных системах;

3) вербальные языковые модели;

4) компьютерные модели, которые могут использоваться для:

Численного математического моделирования;

Визуализации явлений и процессов (как для аналитических, так и для численных моделей);

Специализированных прикладных технологий, использующих компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками и т.п.

Большая часть данного курса связана с прикладными математическими моделями, в реализации которых используются компьютеры. Это вызвано тем, что внутри информатики именно компьютерное математическое и компьютерное информационное моделирование могут рассматриваться как ее составные части. Компьютерное математическое моделирование связано с информатикой технологически; использование компьютеров и соответствующих технологий обработки информации стало неотъемлемой и необходимой стороной работы физика, инженера, экономиста, эколога, проектировщика ЭВМ и т.д. Неформализованные вербальные модели не имеют столь явно выраженной привязки к информатике – ни в принципиальном, ни в технологическом аспектах.

ЛЕКЦИЯ 4

« Классификация видов моделирования систем»

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функ­ционирования объекта.

Классификационные признаки. В качестве одного из первых при­знаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные , неполные и приближенные .

В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве.

Для неполного моделирования характерно неполное подобие модели изучаемому объекту.

В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.

Классификация видов моделирова­ния систем S приведена на рис. 1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминиро­ванные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные .

Детерминированное моде­лирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздейст­вий.

Cтохастическое моделирование отображает вероятностные про­цессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т. е. набор однородных реализаций.

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени.

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерыв­ное моделирование позволяет отразить непрерывные процессы в сис­темах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непре­рывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным спосо­бом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне усло­вий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому экспери­менту. Мысленное моделирование может быть реализовано в виде наглядного , символического и математического . При наглядном моделировании , на базе представлений человека о реальных объектах создаются различные наглядные модели, отоб­ражающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается не­которая гипотеза о закономерностях протекания процесса в реаль­ном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между вхо­дом и выходом изучаемого объекта. Гипотетическое моделирова­ние используется, когда знаний об объекте недостаточно для по­строения формальных моделей. Аналоговое моделирование основывается на применении анало­гий различных уровней. Наивысшим уровнем является полная ана­логия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уров­ней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта. Существенное место при мысленном наглядном моделировании занимает макетирование . Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшество­вать проведению других видов моделирования. В основе постро­ения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте . Если ввести условное обозначение отдель­ных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять от­дельные цепочки из слов и предложений. Используя операции объ­единения, пересечения и дополнения теории множеств, можно в от­дельных символах дать описание какого-то реального объекта. В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные раз­личия. Тезаурус - словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единствен­ное понятие, хотя в обычном словаре одному слову могут соответ­ствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью опреде­ленной системы знаков или символов.


Математическое моделирование . Для исследования характерис­тик процесса функционирования любой системы S математичес­кими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая мо­дель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристи­ки рассматриваемого реального объекта . Вид математической мо­дели зависит как от природы реального объекта, так и задач ис­следования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближе­ния к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем мож­но разделить на аналитическое, имитационное и комбинированное .

Для аналитического моделированияхарактерно то, что процессы функционирования элементов системы записываются в виде неко­торых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т. п.) или логических усло­вий. Аналитическая модель может быть исследована следующими методами :

аналитическим , когда стремятся получить в общем виде явные зависимости для искомых характеристик;

численным , когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;

качест­венным , когда, не имея решения в явном виде, можно найти неко­торые свойства решения (например, оценить устойчивость реше­ния).

Наиболее полное исследование процесса функционирования си­стемы можно провести, если известны явные зависимости, связыва­ющие искомые характеристики с начальными условиями, парамет­рами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложне­нии систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимы­ми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства систе­мы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим мето­дом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетво­рить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие каче­ственные методы широко используются, например, в теории авто­матического управления для оценки эффективности различных ва­риантов систем управления.

В настоящее время распространены методы машинной реализа­ции исследования характеристик процесса функционирования боль­ших систем. Для реализации математической модели на ЭВМ необ­ходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алго­ритм воспроизводит процесс функционирования системы S во вре­мени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последователь­ности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики систе­мы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно про­сто учитывать такие факторы, как наличие дискретных и непрерыв­ных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто созда­ют трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод ис­следования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования .

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управле­ния системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в ос­нову структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая являет­ся оптимальной по некоторым критериям оценки эффективности .

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алго­ритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска оптимального варианта системы. Далее в методологии машинного моделирования будем различать два основных раздела: статику и динамику,- основным содержани­ем которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитациоиное)моделирование при анализе и синтезе систем позволяет объединить достоинства анали­тического и имитационного моделирования. При построении ком­бинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели . Такой комбинированный подход позволяет охватить каче­ственно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного модели­рования в отдельности.

Другие виды моделирования . При реальном моделировании ис­пользуется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режи­мов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т. д.). Реальное моделирование является наиболее адек­ватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т. е. предприятием, что в большинстве случаев невозмож­но. Рассмотрим разновидности реального моделирования.

Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов экс­перимента на основе теории подобия . При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Надо отметить, что такие разновидности натурного эксперимента, как производст­венный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

С развитием техники и проникновением в глубь процессов, протекающих в реальных системах, возрастает техническая осна­щенность современного научного эксперимента. Он характеризуется широким использованием средств автоматизации проведения, при­менением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения экс­перимента, и в соответствии с этим появилось новое научное направление - автоматизация научных экспериментов.

Отличие эксперимента от реального протекания процесса заклю­чается в том, что в нем могут появиться отдельные критические ситуации и определяться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздейст­вия в процессе функционирования объекта. Одна из разновидностей эксперимента - комплексные испытания, которые также можно от­нести к натурному моделированию, когда вследствие повторения испытаний изделий выявляются общие закономерности о надеж­ности этих изделий, о характеристиках качества и т. д . В этом случае моделирование осуществляется путем обработки и обобщения све­дений, проходящих в группе однородных явлений. Наряду со специ­ально организованными испытаниями возможна реализация натур­ного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т. е. можно говорить о производствен­ном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получа­ют его обобщенные характеристики.

Другим видом реального моделирования являетсяфизическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физи­ческим подобием . В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или со­здаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдоре­альном) масштабах времени, а также может рассматриваться без учета времени. В последнем случае изучению подлежат так называ­емые «замороженные» процессы, которые фиксируются в некото­рый момент времени. Наибольшие сложность и интерес с точки зрения верности получаемых результатов представляет физическое моделирование в реальном масштабе времени.

С точки зрения математического описания объекта и в зависи­мости от его характера модели можно разделить на модели анало­говые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные) .

Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины.

Под цифровой понимают модель , которая описывается уравнениями, связывающими дискретные величины, представлен­ные в цифровом виде.

Под аналого-цифровой понимается модель , которая может быть описана уравнениями, связывающими непре­рывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подо­бие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибер­нетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некото­рых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной моде­ли в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроиз­вести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

ЛЕКЦИЯ 5

«ВОЗМОЖНОСТИ И ЭФФЕКТИВНОСТЬ МОДЕЛИРОВАНИЯ СИСТЕМ НА ЗВМ»

Обеспечение требуемых показателей качества функционирова­ния больших систем, связанное с необходимостью изучения проте­кания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экс­периментальных исследований, взаимно дополняющих друг друга. Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экс­периментов с реальной системой либо требует больших материаль­ных затрат и значительного времени, либо вообще практически невозможно (например, на этапе проектирования, когда реальная система отсутствует). Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и до­стоверности могут быть представлены в виде аналитических соот­ношений или моделирующих алгоритмов, пригодных для получе­ния соответствующих характеристик процесса функционирования исследуемых систем.

1.Средства моделирования систем .

Появление современных ЭВМ было решающим условием широкого внедрения аналитических ме­тодов в исследование сложных систем. Стало казаться, что модели и методы, например математического программирования, станут практическим инструментом решения задач управления в больших системах. Действительно, были достигнуты значительные успехи и создании новых математических методов решения этих задач, однако математическое программирование так и не стало прак­тическим инструментом исследования процесса функционирования сложных систем, так как модели математического программирова­ния оказались слишком грубыми и несовершенными для их эффек­тивного использования. Необходимость учета стохастических свойств системы, недетерминированности исходной информации, наличия корреляционных связей между большим числом перемен­ных и параметров, характеризующих процессы в системах, приво­дят к построению сложных математических моделей, которые не могут быть применены в инженерной практике при исследовании таких систем аналитическим методом. Пригодные для практических расчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Поэтому в последнее время все ощутимее потребность в разработке методов, которые дали бы возможность уже на этапе проектирования систем исследо­вать более адекватные модели. Указанные обстоятельства приводят к тому, что при исследовании больших систем все шире применяют методы имитационного моделирования.

Наиболее конструктивным средством решения инженерных за­дач на базе моделирования в настоящее время стали ЭВМ. Со­временные ЭВМ можно разделить на две группы: универсальные, прежде всего предназначенные для выполнения расчетных работ, и управляющие, позволяющие проводить не только расчетные ра­боты, но прежде всего приспособленные для управления объектами в реальном масштабе времени. Управляющие ЭВМ могут быть использованы как для управления технологическим процессом, экспериментом, так и для реализации различных имитацион­ных моделей.

В зависимости от того, удается ли построить до­статочно точную математическую модель реального процесса, или вследствие сложности объекта не удается проникнуть в глубь функ­циональных связей реального объекта и описать их какими-то ана­литическими соотношениями, можно рассматривать два основных пути использования ЭВМ:

как средства расчета по полученным аналитическим моделям и

как средства имитационного моделиро­вания.

Для известной аналитической модели, полагая, что она достато­чно точно отображает исследуемую сторону функционирования реального физического объекта, перед вычислительной машиной стоит задача расчета характеристик системы по каким-либо мате­матическим соотношениям при подстановке числовых значений. В этом направлении вычислительные машины обладают возмож­ностями, практически зависящими от порядка решаемого уравнения и от требований к скорости решения, причем могут быть исполь­зованы как ЭВМ, так и АВМ.

При использовании ЭВМ разрабатывается алгоритм расчета характеристик, в соответствии с которым составляются программы (либо генерируются с помощью пакета прикладных программ), дающие возможность осуществлять расчеты по требуемым анали­тическим соотношениям. Основная задача исследователя заключа­ется в том, чтобы попытаться описать поведение реального объекта одной из известных математических моделей.

Использование АВМ, с одной стороны, ускоряет для достаточно простых случаев процесс решения задачи, с другой стороны, могут возникать погрешности, обусловленные наличием дрейфа парамет­ров отдельных блоков, входящих в АВМ, ограниченной точностью, с которой могут быть заданы параметры, вводимые в машину, а также неисправностями технических средств и т. д.

Перспективно сочетание ЭВМ и АВМ, т. е. использование гиб­ридных средств вычислительной техники - гибридных вычислите­льных комплексов (ГВК), что в ряде случаев значительно ускоряет процесс исследования.

В ГВК удается сочетать высокую скорость функционирования аналоговых средств и высокую точность расчетов на базе цифровых средств вычислительной техники. Одновременно удается за счет наличия цифровых устройств обеспечить контроль проведения опе­раций. Опыт использования вычислительной техники в задачах моделирования показывает, что с усложнением объекта большую эффективность по скорости решения и по стоимости выполнения операций дает использование гибридной техники.

Конкретным техническим средством воплощения имитационной модели могут быть ЭВМ, АВМ и ГВК. Если использование анало­говой техники ускоряет получение конечных результатов, сохраняя некоторую наглядность протекания реального процесса, то приме­нение средств цифровой техники позволяет осуществить контроль за реализацией модели, создать программы по обработке и хране­нию результатов моделирования, обеспечить эффективный диалог исследователя с моделью.

Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функциониро­вания объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно после­довательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.

Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математичес­кую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитаци­онную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой - имеется реальная часть объекта. Это значительно расширяет возможности и повыша­ет достоверность результатов моделирования.

Моделирующая система реализуется на ЭВМ и позволяет ис­следовать модель М , задаваемую в виде определен­ной совокупности отдельных блочных моделей и связей между ними в их взаимодействии в пространстве и времени при реализации какого-либо процесса. Можно выделить три основные группы бло­ков:

блоки, характеризующие моделируемый процесс функциониро­вания системы S;

блоки, отображающие внешнюю среду Е и ее воздействие на реализуемый процесс;

блоки, играющие служебную вспомогательную роль, обеспечивая взаимодействие первых двух, а также выполняющие дополнительные функции по получению и обработке результатов моделирования.

Кроме того, моделирующая система характеризуется набором переменных, с помощью которых удается управлять изучаемым процессом, и набором на­чальных условий, когда можно изменять условия проведения ма­шинного эксперимента.

Таким образом, моделирующая система есть средство проведе­ния машинного эксперимента, причем эксперимент может ставиться многократно, заранее планироваться, могут определяться условия его проведения. Необходимо при этом выбрать методику оценки адекватности получаемых результатов и автоматизировать как про­цессы получения, так и процессы обработки результатов в ходе машинного эксперимента.

2.Обеспечение моделирования .

Моделирующая система характеризуется наличием математического, программного, инфор­мационного, технического, эргономического и других видов обес­печения.

Математическое обеспечение моделирующей системы включает в себя совокупность математических соотношений, опи­сывающих поведение реального объекта, совокупность алгоритмов, обеспечивающих как подготовку, так и работу с моделью. Сюда могут быть отнесены алгоритмы: ввода исходных данных, имита­ции, вывода, обработки.

Программное обеспечение по своему содержанию включает в себя совокупность программ: планирования эксперимента, модели системы, проведения эксперимента, обработки и интерпре­тации результатов. Кроме того, программное обеспечение должно обеспечивать синхронизацию процессов в модели, т. е. необходим блок, организующий псевдопараллельное выполнение процессов в модели. Машинные эксперименты с моделями не могут проходить без хорошо разработан­ного и реализованного информационного обеспечения.

Информационное обеспечение включает в себя средства и технологию организации и реорганизации базы данных модели­рования, методы логической и физической организации массивов, формы документов, описывающих процесс моделирования и его результаты. Информационное обеспечение является наименее разработанной частью, поскольку только в на­стоящее время наблюдается переход к созданию сложных моделей и разрабатывается методология их использования при анализе и синтезе сложных систем с использованием концепции базы данных и знаний.

Техническое обеспечение включает в себя прежде всего средства вычислительной техники, связи и об­мена между оператором и сетью ЭВМ, ввода и вывода инфор­мации, управления проведением эксперимента.

Эргономическое обеспечение пред­ставляет собой совокупность научных и прикладных методик и ме­тодов, а также нормативно-технических и организационно-методи­ческих документов, используемых на всех этапах взаимодействия человека-экспериментатора с инструментальными средствами (ЭВМ, гибридными комплексами и т. д.). Эти документы, использу­емые на всех стадиях разработки и эксплуатации моделирующих систем и их элементов, предназначены для формирования и поддер­жания эргономического качества путем обоснования и выбора ор­ганизационно-проектных решений, которые создают оптимальные условия для высокоэффективной деятельности человека во взаимо­действии с моделирующим комплексом.

Таким образом, моделирующая система может рассматриваться как машинный аналог сложного реального процесса. Она позволяет заменить эксперимент с реальным процессом функционирования системы экспериментом с математической моделью этого процесса в ЭВМ. В настоящее время имитационные эксперименты широко используют в практике проектирования сложных систем, когда реальный эксперимент невозможен.

Возможности и эффективность моделирования систем на ЭВМ

Несмотря на то что имитационное моделирование на ЭВМ является мощным инстру­ментом исследования систем, его применение рационально не во всех случаях. Известно множество задач, решаемых более эффектив­но другими методами. Вместе с тем для большого класса задач исследования и проектирования систем метод имитационного моде­лирования наиболее приемлем. Правильное его употребление воз­можно лишь в случае четкого понимания сущности метода имита­ционного моделирования и условий его использования в практике исследования реальных систем при учете особенностей конкретных систем и возможностей их исследования различными методами.

В качестве основных критериев целесообразности применения метода имитационного моделирования на ЭВМ можно указать следующие: отсутствие или неприемлемость аналитических, числен­ных и качественных методов решения поставленной задачи; наличие достаточного количества исходной информации о моделируемой системе S для обеспечения возможности построения адекватной имитационной модели; необходимость проведения на базе других возможных методов решения очень большого количества вычисле­ний, трудно реализуемых даже с использованием ЭВМ; возмож­ность поиска оптимального варианта системы при ее моделирова­нии на ЭВМ.

Имитационное моделирование на ЭВМ, как и любой метод исследований, имеет достоинства и недостатки, проявляющиеся в конкретных приложениях. К числу основных достоинств ме­тода имитационного моделирования при исследовании сложных систем можно отнести следующие: машинный эксперимент с имита­ционной моделью дает возможность исследовать особенности про­цесса функционирования системы S в любых условиях; применение ЭВМ в имитационном эксперименте существенно сокращает продо­лжительность испытаний по сравнению с натурным экспериментом; имитационная модель позволяет включать результаты натурных испытаний реальной системы или ее частей для проведения даль­нейших исследований; имитационная модель обладает известной гибкостью варьирования структуры, алгоритмов и параметров мо­делируемой системы, что важно с точки зрения поиска оптималь­ного варианта системы; имитационное моделирование сложных систем часто является единственным практически реализуемым ме­тодом исследования процесса функционирования таких систем на этапе их проектирования.

Основным недостатком, проявляющимся при машинной реали­зации метода имитационного моделирования, является то, что ре­шение, полученное при анализе имитационной модели М, всегда носит частный характер, так как оно соответствует фиксированным элементам структуры, алгоритмам поведения и значениям парамет­ров системы S, начальных условий и воздействий внешней среды Е. Поэтому для полного анализа характеристик процесса функциони­рования систем, а не получения только отдельной точки приходится многократно воспроизводить имитационный эксперимент, варьи­руя исходные данные задачи. При этом, как следствие, возникает увеличение затрат машинного времени на проведение эксперимента с имитационной моделью процесса функционирования исследуемой системы S.

Эффективность машинного моделирования. При имитационном моделировании, так же как и при любом другом методе анализа и синтеза системы S, весьма существен вопрос его эффективности. Эффективность имитационного моделирования может оцениваться рядом критериев, в том числе точностью и достоверностью резуль­татов моделирования, временем построения и работы с моделью М, затратами машинных ресурсов (времени и памяти), стоимостью разработки и эксплуатации модели . Очевидно, наилучшей оценкой эффективности является сравнение получаемых результатов с реаль­ным исследованием, т. е. с моделированием на реальном объекте при проведении натурного эксперимента. Поскольку это не всегда удается сделать, статистический подход позволяет с определенной степенью точности при повторяемости машинного эксперимента получить какие-то усредненные характеристики поведения системы. Существенное влияние на точность моделирования оказывает число реализаций, и в зависимости от требуемой достоверности можно оценить необходимое число реализаций воспроизводимого случай­ного процесса.

Существенным показателем эффективности являются затраты машинного времени. В связи с использованием ЭВМ различного типа суммарные затраты складываются из времени по вводу и выводу данных по каждому алгоритму моделирования, времени на проведение вычислительных операций, с учетом обращения к опера­тивной памяти и внешним устройствам, а также сложности каждого моделирующего алгоритма. Расчеты затрат машинного времени являются приближенными и могут уточняться по мере отладки программ и накопления опыта у исследователя при работе с имита­ционной моделью. Большое влияние на затраты машинного време­ни при проведении имитационных экспериментов оказывает рацио­нальное планирование таких экспериментов. Определенное влияние на затраты машинного времени могут оказать процедуры обработ­ки результатов моделирования, а также форма их представления.

Курсовая по предмету Математическое моделирование Требования к оформлению по следующей ссылке: http://www.mfua.ru/for-students-and-postgraduates/materials-for-a-session-and-yoke/oformlenie-kursovoy-raboty/ Тип файла необходимо загружать с расширением ".doc" или "docx". Нужно сделать в 3 этапа (прикладываю скриншот), а так же основные темы: 1.Моделирование как процесс с отражением конкретных этапов. 2.Основное содержание каждого этапа 3.Реализация модели в общем случае (выбор среды реализации, требования к ней, удобство или неудобство и т.д.) 4.Разработка конкретной модели процесса по вашей теме, как пример использования генератора случайных величин с анализом полученных результатов (ознакомьтесь с методами по вашей теме и формализуйте в среде)

Курсовая по предмету Математическое моделирование Требования к оформлению по следующей ссылке: http://www.mfua.ru/for-students-and-postgraduates/materials-for-a-session-and-yoke/oformlenie-kursovoy-raboty/ Тип файла необходимо загружать с расширением ".doc" или "docx". Нужно сделать в 3 этапа (прикладываю скриншот), а так же основные темы: 1. Подробнее

Фрагмент выполненной работы: ВВЕДЕНИЕ Эффективное использование имитационного моделирования невозможно без применения ЭВМ. Термины «моделированием на ЭВМ» и «имитационное моделирование» стали уже практически синонимами. Применение ЭВМ при математическом моделировании открывает возможность решения целого класса задач, и не только для имитационного моделирования. При других видах моделирования компьютер также весьма полезен. Например, выполнение одного из основных этапов исследования - построение математических моделей по экспериментальным данным - в настоящее время просто немыслимо без использования компьютера. (работа была выполнена специалистами Автор 24) В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие получило компьютерное, структурно-функциональное моделирование. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта. Таким образом, понятие "компьютерное моделирование" значительно шире традиционного понятия "моделирование на ЭВМ". В настоящее время под компьютерной моделью обычно понимают: описание объекта или некоторой системы объектов (или процессов) с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов и т. д., отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида называют структурно-функциональными; отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на него различных, в том числе случайных, факторов. Такие модели называют имитационными. В РФ добывают в значительном количестве энергетические полезные ископаемые - нефть, уголь, торф, уран. В общем балансе потребления энергетического сырья в России доля природного газа и нефти составляет более 60%. Поиск, разведка и разработка нефтяных месторождений ставит перед разработчиками Задачи по реализации: учета различных факторов, внедрение новых информационных технологий для организации систем сбора хранения и соответствующей обработки количественной и качественной информации сдля поддержки принятия решений специалистами при управлении процессом разработки таких месторождений. Это объясняет интенсивность научных исследований в данной области, которые обусловлены низким уровнем формализации знаний и необходимостью уточнения существующих математических моделей

Математическая модель. Классификация математических моделей.

Математическая модель выражает существенные черты объекта или процесса языком уравнений и других мат. средств.

Математическое моделирование не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся мат. моделированием делает все возможное для исследования. Аналитическое решение (представление формулами) обычно удобнее и информативнее численных. Понятия «аналитическое решение» и «компьютерное решение» не противостоят друг другу, т.к.:

1) все чаще компьютеры при мат. моделировании используются не только для численных расчетов, но и для аналитических преобразований.

2) результат аналитического исследования мат. модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия, описываемого ей процесса.

Классификация мат. моделей.

1. Дескриптивные (описательные) модели.

2. Оптимизационные модели.

3. Многокритериальные модели.

4. Игровые.

5. Имитационные.

Моделируя движение кометы, вторгшейся Солнечную систему, мы описываем траекторию ее полета, расстояние, на котором она пройдет от Земли, т.е. ставим описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить.

На другом уровне процессов мы можем воздействовать на них, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т.е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей как можно полезнее и дешевле, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс.

Есть специальный достаточно сложный раздел современной математики – теория игр, - изучающий методы принятия решений в условиях неполной информации.

Бывает, что модель в большей мере подражает реальному процессу, т.е. имитирует его. Например, моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, создаются условия поведения этих шариков при столкновении друг с другом и со стеной, при этом не нужно использовать никаких уравнений движения. Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано.



Компьютерная модель – это модель реализованная средствами программной среды.


1. Моделирование физических процессов. Физика – наука, в которой мат. моделирование является чрезвычайно важным методом исследования.

Численное моделирование (как и лабораторные эксперименты) чаще всего являются инструментом познания качественных закономерностей природы. Важнейшим его этапом, когда расчеты уже завершены, является осознание результатов, представление их в максимально наглядной и удобной для восприятия форме. Забить числами экран компьютера или получить распечатку тех же чисел не означает закончить моделирование (даже если числа эти верны). Тут на помощь приходит другая замечательная особенность компьютера, дополняющая способность к быстрому расчету – возможность визуализации абстракций. Представление результатов в виде графиков, диаграмм, траектории движения динамических объектов в силу особенностей человеческого восприятия обогащает исследователя качественной информацией.

2. Компьютерное моделирование в экологии. Цели создания мат. моделей в экологии.

1. Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.

2. Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.

3. Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.

4. Модели действительно могут пролить свет на реальный мир, несовершенными имитациями которого они являются.

При построении моделей в мат. экологии используется опыт мат. моделирования механических и физических систем, однако с учетом специфических особенностей биологических систем:

Сложности внутреннего строения каждой особи;

Зависимости условий жизнедеятельности организмов от многих факторов внешней среды;

Не замкнутости экологических систем;

Огромного диапазона внешних характеристик, при которых сохраняется жизнеспособность систем.

3. Компьютерное мат. моделирование в экономике – это мат. описание исследуемого объекта. Эта модель выражает закономерности экономического процесса в абстрактном виде с помощью мат. соотношений. Использование мат. моделирования в экономике позволяет углубить количественный экономический анализ, расширить область экономической информатики.