Спектральный состав излучения. Огромное значение спектроскопия приобрела в астрофизике

2.1. Современная модель природы света

Физическое тело, температура которого выше абсолютного нуля, излучает в окружающее пространство энергию излучения, а само тело называется излучателем. Энергию излучают как естественные излучатели (Солнце, звезды, биоорганизмы) за счет проходящих в них различных физических процессов, так и искус­ственные излучатели за счет приложенной к ним тепловой, элект­рической, механической и других видов энергии, вызывающих на­грев физического тела.

Энергия излучается в окружающее пространство в виде эле­ментарных частиц – фотонов, каждый из которых обладает кван­том энергии. Рассмотрим на рис 1.2.1 упрощенную схему излучения энергии.

Рис. 1.2.1 – Упрощённая схема излучения лучистой энергии.

Известно, что атом вещества состоит из ядра и электронов, связанных между собой электромагнитными силами. Электроны находятся на опре­деленных энергетических уровнях. Самый ближний к ядру уровень, на котором находятся электроны при спокойном состоянии атома, на­зывается основным (О ), соответствующим минимальной доли энер­гии. Остальные уровни, наиболее удаленные от ядра – возбужден­ные (В ). Для перехода электронов с основного уровня на возбуж­денные нужно сообщить электронам и всему атому в целом до­полнительную энергию (W ). Поглощая приложенную энергию, атом приходит в возбужденное состояние и электроны удаляются от ядра атома на более высокие энергетические уровни (возбуж­денные уровни). Чем больше приложенная энергия, тем на более высокий уровень удаляются электроны. Но это состояние неустой­чивое, и в силу электромагнитных притяжений электроны стре­мятся вернуться на основной уровень. При переходе электронов с одного энергетического уровня на другой выделяется минималь­ная порция лучистой энергии W ф =Q квант , переносимая фото­ном.

Фотон обладает конечной массой и скоростью и существует только в движении. Поглощая энергию, атом поглощает фотоны, которые перестают существовать, а их энергия передается атому. При излучении энергии атом создает фотон и его энергия форми­руется атомом. Фотоны излучаются в пространство и поглощаются телами отдельными порциями, т. е. дискретно и эта дискретность определяет частоту излучений. Движение фотонов в пространстве происходит в форме волн гармонических синусои­дальных электромагнитных колебаний, которые характеризуются рядом величин (рис.1.2.2):

Длина волны, определяющая расстояние между двумя точками, находящимися в одной фазе волнового колебания. Длина волны обозначается λ и измеряется в метрах (м ). Для световых излучений длины волн обычно приводятся в нанометрах (нм ). Нано­метр является удобной международной единицей и он эквивален­тен миллимикрону. В таблице 1.2.1 показана взаимосвязь различных единиц длины и их можно легко переводить друг в друга.

Таблица 1.2.1.

Частота, определяющая число волновых колебаний в единицу времени. Частота обозначается ν и измеряется в герцах (Гц ).

Период колебаний, определяющий время, за которое проис­ходит полное волновое колебание. Период обозначается Т и изме­ряется в секундах (с ).

Период является величиной, обратной часто­те:

Т=1/ν , с (1.2.1)

Частота колебаний и длина волны электромагнитных излучений связаны между собой такими соотношениями:

ν = С о /λ , Гц или λ= С о / ν , м , (1.2.2)

где С о – скорость распространения электромагнитных волн любой длины в вакууме, является величиной постоянной и равна скорос­ти распространения света 2,9979·10 8 ≈ 3·10 8 м/с .

Рис.1.2.2. Схема синусоидальных колебаний с различными длинами волн, где λ 2 >λ 1 , определяющими Т 1 – период, время движения фотона от т. 1 до т. 3 и Т 2 – период, время движения фотона от т. 1 до т. 4; по оси ординат Y~W.

Энергия фотона – квант, согласно формулы Планка, зависит от частоты электро­магнитных колебаний:

W ф =h ·ν , Дж ,(1.2.3)

где h = 6,626·10 -34 Дж·с – постоянный коэффициент, выведенный физиком М. Планком и названный постоянной Планка .

Физическая природа всех видов электромагнитных излучений единая, т. е, во всех случаях энергия распространяется в виде элект­ромагнитных волн разной длины, которым соответствуют элект­ромагнитные колебания разных частот. В простой электромагнитной волне со­держатся электрическая и магнитная волны, перпендикулярные друг другу, но совершающие колебания в одной фазе (Рис.1.2.3).

Рис.1.2.3 – Модульное изображение простой электромагнитной волны (а ) и вид пакета волн (вдоль оси z ), совпадающих по фазе (б ).

Они ко­леблются в направлении, перпендикулярном оси z , которая на­зывается вектором распространения волны. Скорость света от­носится к скорости прохождения света в направлении распро­странения (направление z ). Электрическая и магнитная волны также часто описываются векторами. Вектор электрического по­ля волны взаимодействует с электрическими полями в атомах, и поэтому он очень важен для последующего изложения материала.

Cледуя волновой модели, интенсивность потока света можно определить квадратом амплитуды а электрического вектора (рис.1.2.3), т. е.

I =ka 2 , (1.2.4)

где k – постоянная величина. Поэтому, чем больше амплитуда волны, тем интенсивнее излучение. Однако в корпускулярной теории света амплитуда не имеет значения, так как модель основыва­ется на понятии фотонов. Следовательно, необходим другой путь описания интенсивности света. В корпускулярной модели интен­сивность света пропорциональна числу фотонов, приходящихся на единицу объема светового потока, или, иными словами, про­порциональна «фотонной плотности». Можно показать, что оба понятия интенсивности – плотность и амплитуда – согласуются друг с другом и уравнение (1.2.4) справедливо независимо от ис­пользуемой световой модели. Об интенсивности света можно го­ворить как о потоке фотонов или об амплитуде волны. Оба понятия используются в зависимости от их применения.

Магнитный вектор электромагнитного излучения не представляет здесь такого интереса, как электрический век­тор, поскольку только электрический вектор может взаимодей­ствовать с электронами и электрическими полями в атоме или молекуле. Это взаимодействие электрического вектора вызыва­ет отражение, преломление и пропускание волны, а также цвет, химические реакции и нагревание в большинстве веществ. Все эти явления будут рассматриваться в других разделах книги.

Выражение hv часто используется в описании химиче­ских реакций для того, чтобы указать, что для их протекания необходим фотон электромагнитного излучения. Например, важ­ная для человеческого зрения реакция включает вызванную све­том изомеризацию витамина А, содержащегося в сетчатке глаза. Величина hv характеризует энергию света и не нарушает баланса масс химической реакции.

2.2. Лучистая энергия и лучистый поток.

Энергию, излучаемую в области оптического спектра излучений, называют лучистой энергией или энергией излучения и обозначают W е (можно также встретить обозначение энергии буквой Q ). Если энергия переносится всей совокупностью длин волн, входящих в состав излучения, то она называется интегральной и измеряется в тех же единицах,что и другие виды энергии (джоуль, электрон-вольт ).

Общая мощность, переносимая электромагнитным излучением независимо от его спектрального состава, в светотехнике получила название поток излучения или лучистый поток, обозначается F e и измеряется в ваттах (Вт ):

F e = W e /t , Вт . (1.2.5)

2.3. Спектральный состав оптических излучений.

Общий спектр электромагнитных излучений можно разделить на ряд основных областей:

1. Область космических излучений.

2. Область гамма-излучений.

3. Область рентгеновских излучений.

4. Область оптического спектра излучений.

5. Радиоволновая область.

6. Ультразвуковая и звуковая область.

7. Силовая область.

Область оптических излучений соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и её можно разделить на три области: ультрафиолетовую (УФ), видимую и инфракрасную (ИК).

Ультрафиолетовая область оптического излучения лежит в пределах 1…380 нм . Международная комиссия по освещению (МКО) предложила следующее деление УФ-излучений с длинами волн от 100 нм до 400 нм : УФ-А – 315…400 нм ; УФ-В – 280…315 нм ; УФ-С –100…280 нм .

Видимое излучение (свет), попадая на сетчатую оболочку глаза, в результате осознанного превращения энергии внешнего раздражителя вызывает зрительное ощущение. Диапазон длин волн монохроматичеких составляющих данного излучения соответствует 380…780 нм .

Длины волн монохроматических составляющих инфракрасного излучения больше длин волн видимого излучения (но не более 1 мм ). МКО предложила следующее деление области ИК-излучений: ИК-А – 780…1400 нм ; ИК-В – 1400…3000 нм ; ИК-С – 3000 нм (3 Мкм )…10 6 нм (1 мм ).

Именно эти три области оптических излучений представляют наибольший интерес для светотехники. Но практически все электромагнитные излучения в той или иной степени воздействуют на атомы и молекулы различных веществ. В таблице 1.2.2 обобщены те явления, которые происходят в молекулах при воздействии на них электромагнитных излучений различных длин волн.

Таблица 1.2.2.

Все энергии электромагнитного излучения, которые одновременно облучают Землю, воспроизводят только небесные явления. Однако в земных условиях, если необходимо воспроизвести излучение в широком диапазоне энергий, необходимо обладать несколькими источниками энергии; например, явление, при котором возника­ет рентгеновское излучение, не возбуждает одновременно радио­волн и наоборот. Следует отметить, что явления, перечислен­ные в табл. 1.2.2 в качестве примера реакций молекул при воз­действии на вещество различных энергетических зон, часто удоб­но использовать для того, чтобы воспроизводить эту энергию. Так, видимый свет будет вызывать низкоэнергетические элек­тронные возбуждения в валентной оболочке атома, однако он может быть воспроизведен электронным снятием возбуждения в валентной оболочке атома при его переходе с высших уров­ней вниз в основное состояние.

Вид электромагнитной волны с самой низкой энергией встре­чается в генераторах, используемых для получения электрического тока. В Украине частота промышленного электрического переменного тока стандартизована и равна 50 Гц . Такая частота воспроизводит длину волны 6·10 6 м . Так называемый звуковой и ультразвуковой диапазон электромагнитного излучения используется в аудио- и ультразвуковой технике.

Радиоволны являются электромагнитными волнами с наи­меньшей энергией, которые могут оказывать непосредственное воздействие на отдельные атомы. Однако энергия этих волн на­столько мала, что она может только передвигать целые молеку­лы на короткое расстояние в пространстве (трансляция) и пе­реориентировать некоторые ядра по отношению к другим яд­рам в молекулах. Последний эффект лежит в основе спектроско­пического метода ядерного магнитного резонанса. Энергии, со­ответствующие микроволновой области, заставляют молекулы газа вращаться вокруг их центров масс и также меняют взаим­ную ориентацию электронов. Первый эффект составляет основу микроволновой спектроскопии, используемой для изучения мо­лекулярных вращений, второй – основу электронной спиновой резонансной спектроскопии, применяемой при изучении состоя­ния неспаренных электронов в химических системах.

Энергии, соответствующие инфракрасной области, вступают в резонанс с колебаниями атомов в химических связях. Этот эффект используется в инфракрасной спектроскопии. Энергии видимой и ультрафиолетовой областей могут вызывать возбуж­дение электронов в атомах и молекулах с их переводом из ниж­них энергетических состояний в верхние. Так как энергия лучей возрастает, возбуждаемые электроны переходят в новое состоя­ние с более стабильных энергетических уровней. Видимая аб­сорбционная спектроскопия имеет дело с возбуждением элект­ронов наиболее удаленных оболочек атомов и молекул, в то время как ультрафиолетовая абсорбционная спектроскопия – с возбуждениями электронов более высоких энергий как с уда­ленных, так и с внутренних оболочек. Рентгеновское излучение вызывает возбуждения электронов во внутренних электронных оболочках, поскольку имеет длину волны, которая близка к размерам самих атомов. Атомы могут вызывать дифракцию рентгеновских лучей. Возбуждение лежит в основе рентгено-спектрального флуоресцентного анализа и спектроскопии рент­геновских фотоэлектронов (ESCA), в то время как дифрак­ция используется для идентификации кристаллической решетки и определения кристаллической структуры. Гамма-лучи пригод­ны для применения электромагнитного излучения с наибольшей энергией. Они вызывают возбуждение ядер с их переводом из нижних энергетических состояний в высшие и лежат в основе мёссбауэровской спектроскопии.

Большая часть диапазона энергий электромагнитного излу­чения имеет важные применения в физике, химии и биологии.

Однако, что касается произведений искусства и светотехнических материалов, то наибольшее значение имеют средние энергии (ультрафиолетовая, видимая и инфракрасная) в связи с тем, что именно они воздействуют на них. Если последовально расположить ультрафилетовую, видимую и инфракрасную область излучений, то получим более подробную их классификацию (Рис.1.2.4).

Рис.1.2.4 – Развёрнутая область спектра электромагнитных излучений.

Мощное ультрафиолетовое и инфракрасное излучение оказывают на человека вредное воздействие: ульт­рафиолетовое вызывает ожоги кожи и глаз, а инфракрасное затрудняет работу из-за большого количества выделяемого тепла.

2.4. Ультрафиолетовое излучение.

В электромагнитном спектре излучений область ультрафиолета занимает промежуточное положение между видимым светом и лучами Рентгена.

Ультрафиолетовое излучение было открыто И. В. Риттером в 1801 г., который в своих опытах использовал солнечный свет, стеклянную призму и пластинку, покрытую хлоридом серебра. Галогены серебра чувствительны к УФ-излучению. Риттер обнаружил, что пластинка темнела вначале вне фиолетового края спектра, затем в фиолетовой области и в конце концов в синей области, что служило доказательством существования из­лучения с длинами волн короче, чем у фиолетовых лучей. Эта область длин волн, невидимых глазом, и была названа ультрафиолето­вой. В настоящее время ультрафиолетовый диапазон опреде­ляется приблизительно как область длин волн 1–400 нм . Для удобства эта область иногда подразделяется на более мелкие участки.

Диапазон 1–180 нм получил название вакуумного ультрафиолета вследствие того, что такое излучение пропуска­ется только вакуумом. Эта коротковолновая часть ультрафиолетового излучения особенно с длинами волн короче 120 нм, практически полностью поглощается всеми известными материалами и средами, включая воздух.
Диапазон 180–280 нм называется ко­ротковолновым или дальним ультрафиолетом (далекая область ультрафиолетового спектра). В этом диапазоне излучения про­пускают кварц и фотографический желатин. Излучения в дальней областиобладают свойством озонировать воздух и
убивать бактерии. Эта же область ультрафиолетового излучения используется в газосветных люминесцентных источниках света для получения яркой флуоресценции светящихся составов, которыми покрыты трубки (с внутренней стороны) люминесцентных ламп.

Диапазон длин волн 280–300 нм известен как средний ультрафиолет. Эти излучения характеризуется способностью вызывать покраснение и загар человеческой кожи, а также благотворным воздействием (в определенных дозах) на рост и развитие животных и растений.

Диапазон 300–400 нм называют длин­новолновым или ближним ультрафиолетом (ближняя область ультрафиолетового спектра) и именно эти излучения пропускает обычное стекло. За исключением солнца и ртутных газоразрядных трубок, ультрафиолетовое излучение нельзя получить с помощью источников, обычно используемых для создания видимого света. Ближняя к видимому спектру область ультрафиолетового излучения (320–400 нм )содержит лучи, широко применяемые для люминесцентного анализа, а также для возбуждения светящихся веществ при люминесцентной фотографии и киносъемке.

Важной особенностью ультрафиолетовых лучей, отличающих их
от лучей Рентгена и других, более коротковолновых излучений, является то, что они преломляются на границе раздела сред с различной плотностью и отражаются от зеркальных поверхностей. Это дает возможность фокусировать их с помощью объектива, сделанного из пропускающих ультрафиолетовые лучи материалов (флюорит, кварцевое стекло, в определенной мере – оптическое стекло), и получать действительное ультрафиолетовое невидимое изображение, которое можно зафиксировать на фотопленке и таким образом сделать видимым.

Наиболее мощным естественным источником ультрафиолетового излучения является солнце. Однако земной поверхности достигают только ультрафиолетовые лучи с длиной волны не менее 290 нм. Более коротковолновые ультрафиолетовые лучи полностью поглощаются озоном, содержащимся в относительно большом количестве в стратосфере. Спектральное распределение ультрафиолетового излучения зависит от высоты солнца над горизонтом. Чем ближе солнце к горизонту, тем меньше в солнечном свете ультрафиолетовых лучей. При высоте солнца 1° над горизонтом в составе солнечной радиации, достигающей поверхности земли, не содержится излучений с длинами волн короче 420 нм, то есть ультрафиолетовые лучи в спектре излучения восходящего и заходящего солнца полностью отсутствуют.

Основными же искусственными источниками ультрафиолетового излучения во всех участках ультрафиолетовой области спектра являются ртутные лампы высокого давления и ртутные лампы сверхвысокого давления.

Излучение в диапазоне длин волн 200–400 нм является пре­обладающим, оно вызывает фотохимические реакции и разрыв связей во многих органических соединениях. Однако в этих фотохимических реакциях есть и положитель­ная сторона. Художникам известно, что, подвергая свежеокрашенный предмет воздействию дневного света, они ускоряют сушку и окисление масел, и что это необходимо сделать, прежде чем покрывать его лаком. Ультрафиолетовое излучение можно использовать при исследовании пленок кра­сок и лаков для доказательства внесенных исправлений. Под действием ультрафиолетового излучения органические соедине­ния часто оказывают воздействие на флуоресценцию друг дру­га. Например, смола мастикового дерева и даммаровая смола в старом лаке дают желто-зеленую флуоресценцию, интенсив­ность которой может с течением времени меняться. Свежий ис­кусственный лак не флуоресцирует. Воск флуоресцирует ярко-белым, а шеллак – оранжевым светом. С увеличением срока службы интенсивность флуоресценции автомобильных красок часто имеет тенденцию к возрастанию. При ультрафиолетовом освещении недавние исправления на картинах выглядят пурпур­ными или черными. Однако с годами они становятся серее, в то время как не покрытые лаком участки темной краски имеют глубокий пурпурно-коричневый цвет. При ультрафиолетовом ос­вещении становятся явными покрытые бурыми («лисьими») пятнами повреждения на бумаге, так же как изменения и под­чистки на старой бумаге. Такие материалы, как минералы, кос­ти и зубы, флуоресцируют при воздействии ультрафиолетового излучения. Искусственные драгоценности, которые выглядят точ­но так же, как настоящие при дневном свете, могут показаться совершенно другими при ультрафиолетовом освещении. Вместе с тем ультрафиолетовое излучение очень вредно для многих произведений изобразительного искусства.

Мощное ультрафиолетовое излучение оказывают на человека вредное воздействие и вызывает ожоги кожи и глаз.

Нужно отметить, что деление ультрафиолетового спектра на перечисленные области условно, так как свойства ультрафиолетовых лучей, характерные для одной области спектра, присущи частично и соседним областям, хотя и в меньшей степени.

2.5. Видимое излучение.

Практически все представители животного мира обладают способностью что-то «видеть». Человеческий глаз реагирует только на крошечную часть диапазона электромагнитных излучений. Именно эта область и называется видимой . Принято, что для человеческого глаза диапазон видимых длин волн занимает промежуток от 380 до 780 нм . Однако не для всех животных и насекомых эта область является видимой. Например, пчёлы могут видеть в ближней ультрафиолетовой области. Это даёт им возможность ощутить различия в цветах, недоступных человеческому зрению. Реакция человеческого гла­за и мозга на разные длины волн и интенсивность света различается в диапазоне 380 – 780 нм и это дает ощущения, которые называются цветом, текстурой, прозрачностью и т. д. Белый свет можно создать смесью всей последовательности монохроматических излучений видимой части спектра, т.е. смесью отдельных цветов (Рис. 1.2.5). Что касается человеческого глаза, то возможна такая комбинация отдельных монохроматических излучений, когда только создаётся впечатление бе­лого света, хотя он может и не быть таким по спектральному составу.

Рис. 1.2.5 – Разложение «белого» видимого света на спектральные составляющие с различными длинами волн от красного (К) до фиолетового (Ф).

Цвет и его происхождение занимали воображение многих ве­ликих естествоиспытателей. Однако лишь И.Ньютону удалось раз­работать основы теории цвета. В 1672 г. Ньютон экспе­риментально показал, что проходящий через стеклянную приз­му пучок белого света разлагается в спектр, состоящий из боль­шого числа цветов (от красного до фиолетового), которые в местах перехода посте­пенно меняются один на другой. Эти цвета являются составля­ющими, а не видоизменениями белого света. Рис. 1.2.5 иллюстри­рует это хорошо знакомое свойство прозрачных материалов и света. Объяснение экспериментальных наблюдений Ньютона с призмой заключается в том факте, что свет всех длин волн про­ходит с одной и той же скоростью только в пустоте – вакууме. Однако в любой другой среде свет разных длин волн распространяется с разной скоростью. В результате этого может проис­ходить разделение волн. Разложение средой белого света на разные цвета, или, что равнозначно, на разные длины волн, на­зывается дисперсией. Тем самым удобно подразделить видимый диапазон в соответствии с различной реакцией на цвет, вызван­ной в человеческом глазе, на семь интервалов, простирающих­ся от самой длинной до самой короткой длины волны. Эти ин­тервалы соответствуют красному, оранжевому, желтому, зеле­ному, голубому, синему и фиолетовому цвету.

Поскольку при разложении призмой видимого (белого) света в непрерыв­ный спектр в последнем цвета плавно переходят один в другой, то точно определить границы каждого цвета и связать их с определенной длиной волны затруднительно. Но приблизительно они выглядят так:

фиолетовый – 380…440 нм ;

синий – 440…480 нм ;

голубой – 480…510нм ;

зеленый – 510…550 нм ;

желто-зеленый – 550…575 нм ;

желтый – 575…585 нм ;

оранжевый – 585…620 нм ;

красный – 620…780 нм .

Электромагнитные излучения с длиной волны более 700 нм и менее 400 нм практически уже не воспринимаются глазом и поэтому достаточно часто в популярной литературе именно в этом диапазоне задают пределы видимых излучений, что не соответствует действительному положению.

Случай нормальной дисперсии представлен на рис. 1.2.5. Он наблюдается для бесцветной прозрачной среды. Этот вид дис­персии называется нормальной в связи с тем, что красный свет (наибольшая длина волны) имеет самую высокую скорость и наименьшую дисперсию, а фиолетовый свет (са­мая короткая длина волны) имеет самую низкую скорость и наибольшую дисперсию. Между красным и фиолетовым после­довательно размещаются другие цвета. Более точно – дисперсия видимого света с длиной волны изменяется прибли­зительно по закону 1/λ 3 . По этой причине самые короткие дли­ны волн обладают наибольшей дисперсией (1/λ 3 возрастает) и большой степенью ее изменения при малых вариациях (функ­ция 1/λ 3 нелинейна по λ) по сравнению с длинными волнами. Следует упомянуть, что иной тип разделения света по длинам волн, называемый аномальной дисперсией, наблюдается в цвет­ной среде. В области спектра, в которой происходит поглощение света, при аномальной дисперсии самые длинные волны имеют большую дисперсию по сравнению с короткими. Следователь­но, последовательность цветов в соответствии с рис. 1.2.5 не со­блюдается. Видимый свет может также вызвать многие химические реакции.

Подробно механизм восприятия видимых излучений изложен в §4.

2.6. Инфракрасное излучение.

Инфракрасные лучи – невидимые, они не воспринимаются человеческим глазом. Обнаружить их присутствие и действие можно лишь различными косвенными способами. Существование излучения за красной областью видимого спектра было открыто ещё в 1800 г. Уильямом Гершелем. Он заметил, что помещенный в спектр солнечного света зачерненный термометр обнаруживает значительное повышение температуры. Этот эксперимент раскрыл, что в природе существуют невидимые волны, с длиной волны больше, чем красные, и это излучение стало известно под названием инфракрасного. Разумеется, воздействия инфракрасного излучения было известно с давних времен. Ведь инфракрасное излучение, выз­ванное пламенем костра, было одним из явлений, оказавших наиболь­шее влияние на развитие человечества. Ближние инфракрасные лучи, прилегающие к длинноволновому окончанию видимой части спектра, могут быть зарегистрированы фотографическим способом. Инфракрасная фотография используется начиная с 1925 года, когда были получены сенсибилизаторы, очувствляющие фотографическую эмульсию к инфракрасной области спектра. Диапазон энергии инфракрасного излучения занимает ши­рокую область, начиная с низкоэнергетической стороны видимого спектра, т.е. реально инфракрасная область лежит за пределами красной части видимого спектра, начиная с λ= 760 нм (темно-красная линия калия), и распространяется далее, в сторону увеличения длин волн. Область от λ=760 нм до λ=3500 нм является областью практических применений инфракрасных излучений.

Существуют различные способы получения изображения в инфракрасных лучах: с помощью электронно-оптических преобразователей, способы, основанные на свойствах инфракрасных лучей гасить фосфоресценцию, водействовать на фотографический слой и оказывать тепловое действие.

Исходя из теории фотохимических реакций, можно предположить, что фотография в инфракрасных лучах, основанная на сенсибилизации фотографических материалов, вряд ли осуществима в лучах с длиной волны более 2000 нм.

Инфракрасное излучение вызывает тепловые эффекты, ко­торые могут механическим или химическим путем изменять ма­териалы, в то время как фотохимические механизмы редко при­водят к таким изменениям. При воздействии инфракрасного излучения на дерево, стекло и керамику в них происходят та­кие механические изменения, как сжатие, растрескивание и суш­ка. Не стоит упоминать о тех огромных повреждениях, которые может вызвать инфракрасное излучение на предметах из воска. Если происходят химические изменения, то обычно они являют­ся косвенным результатом инфракрасного излучения. Если хи­мическая реакция уже протекает, то независимо от того, мед­ленная она или быстрая, тепло от воздействия инфракрасного излучения всегда будет ускорять реакцию. Пожелтение пленок природного лака может быть прямым результатом воздействия инфракрасного излучения. Однако пленки искусственного лака обычно не чувствительны к инфракрасному излучению.

Инфра­красное излучение используется в инфракрасной фотографии, которая является важным методом проведения исследо­ваний произведений искусства в музеях, художественных галереях. В ряде случаев инфракрасные лучи могут про­никать сквозь зрительно непрозрачные лаки и тонкие пленки краски и с помощью электронно-оптических преобразователей, термовизионной аппаратуры, а также инфракрас­ной фотографии выявлять подкрашивание, рисунки или подправ­ленные участки. Т.е. инфракрасное излучение можно использовать для просмотра изображений через непрозрачные пленки поскольку оно является более длинноволновым по сравнению с видимым из­лучением. При этом в пленке лака инфракрасное излуче­ние рассеивается маленькими частицами значительно меньше, чем видимый свет. Поэтому инфракрасные лучи могут проникать сквозь верхние слои и преодолевать их непрозрач­ность. Становится возможным наблюдать детали рисунка в слое крас­ки, которая потемнела от старого лака и грязи. Иногда таким способом можно обнаружить подделки, поскольку нижний слой краски отличается от того, что находится на поверхности.

Фотографический способ фиксации изображения, образованного инфракрасными лучами, основан на некоторых свойствах инфракрасных излучений:

1. Инфракрасные лучи менее подвержены рассеянию в атмосфере, как и вообще в мутных средах. Они лучше проходят сквозь воздушную дымку и легкий туман по сравнению с лучами видимого света. Это дает возможность производить съемку объектов, находящихся на большом удалении, преодолевая воздушную дымку.

2. Поглощение и отражение инфракрасных лучей иное, чем лучей видимой области спектра. Поэтому многие объекты, кажущиеся по окраске и яркости одинаковыми в видимом свете, на фотографическом снимке, полученном в инфракрасных лучах, отличаются совершенно другим распределением тонов. Это позволяет обнаружить много интересных и важных особенностей снятого объекта. Например, хлорофилл, содержащийся в живой зелени листвы и травы, сильно поглощает коротковолновые видимые лучи и отражает большую часть инфракрасных лучей. Кроме того, поглощая ультрафио-
летовые лучи, хлорофилл флуоресцирует в инфракрасной области. Вследствие этого на фотографиях, сделанных на инфрахроматической пленке с применением красного светофильтра, зелень выходит неестественно белой, а голубое небо –темным. Многие краски, кажущиеся на глаз очень яркими, из-за почти полного поглощения ими инфракрасных лучей получаются на инфрахроматической пленке почти черными.

3. Инфракрасные лучи способны проникать через непрозрачные для видимого света среды. Кожа человека, тонкие слои дерева, эбонита, темные оболочки насекомых и растений и др. прозрачны для инфракрасных лучей.
Кровеносные сосуды хорошо видны через кожу, которая прозрачна для инфракрасных лучей.

4. Поскольку инфракрасные лучи невидимые, то съемка при освещении только инфракрасным светом, по существу, является съемкой в темноте. Такая фото- или киносъемка бывает необходима случаях, требующих темновой адаптации глаз, а также при всевозможных психологических исследованиях.

В настоящее время киносъемка в инфракрасных лучах применяется как в научной кинематографии, так и в производстве кинофильмов для решения некоторых изобразительных задач, для съемки «днем под ночь», для создания комбинированных кадров на фоне инфраэкрана – метод «блуждающей маски» и др.

Мощное инфракрасное излучение некоторых моделей осветительных приборов затрудняет работу персонала съёмочной группы из-за большого количества выделяемого тепла.

2.7.Виды спектров

Спектры источников света получаются при разложении их излучения по длинам волн (l ) спектральными приборами и ха­рактеризуются функцией распределения энергии испускаемо­го света в зависимости от длины волны. Излучение лучистого потока по спектру излучений может происходить с одной длиной волны, с несколькими длинами волн, а также непрерывно по отдельным участкам или по всей области оптического спектра излучений.

Монохроматическое (от греч. mόnos – один, единый и chrốma – цвет) излучение – это излучение с одной частотой или длиной волны. Излучение в интервале длин волн до 10 нм называется однородным. Совокупность монохроматических или однородных излуче­ний образует спектр .

Различают сплошные (непрерывные), полосатые, линейчатые и смешанные спектры. Сплошными (непрерывными) спектрами называются такие, в которых монохроматические составляющие заполняют без разрывов интервал длин волн, в пределах которого происходит излучение. Такой спектр ха­рактерен для ламп накаливания (рис.1.2.6) и других тепловых излучателей.

Рис. 1.2.6 – Сплошной спектр ламп накаливания

Рис. 1.2.7 – Линейчатый спектр из монохроматических излучений

Рис. 1.2.8 - Смешанный спектр люминесцентной лампы KinoFlo КF55

Рис. 1.2.9 - Сложный спектр люминесцентной лампы KinoFlo Green

Линейчатые спектры состоят из отдельных, не примыкающих друг к другу монохромати­ческих излучений (рис. 1.2.7), а смешанные содержат комбинацию спектров (рис.1.2.8). В полосатых спектрах монохромати­ческие составляющие образуют дискретные группы (полосы) в виде множества близко расположенных линий. Этот вид излучений ещё называют сложным (рис.1.2.9). Полосатые, линейчатые и смешанные спектры характерны для дуговых и газоразрядных источников света.

Из всего спектра излучений источников света только видимый свет, воздействуя на светочувствительные элементы глаза, вызыва­ет зрительное ощущение. Однородные, монохроматические видимые излучения, попадая в глаз, вызывают ощущение света определенного цвета.

Система световых величин

Нечеткое представление о тех или иных световых величинах часто является причиной серьезных ошибок, которые допускают специалисты при проектировании и эксплуатации светотехнических комплексов.

Знание световых величин необходимо студентам и профессионалам, работающим на теле-, видео- или киностудиях, и даже любителям, снимающим домашнее видео. Это поможет правильно ориентироваться в изобилии источников света, светофильтров, осветительных приборов, разобраться с функциями видеокамер, связанными со светочувствительностью, контрастностью и цветовоспроизведением.

Поскольку световые величины, являющихся численной характеристикой световых излучений, происходят от энергетических фотометрических величин, то их целесооб­разно рассматривать в совокупности, основываясь на первичнос­ти последних. Фотометрическими называют такие величины и единицы, которые характеризуют оптическое излучение. Термин "фотометрия" образован из двух греческих слов: "фос" - свет и" метрео" - измеряю, и означает световые изме­рения. Различают энергетические фотометрические и редуцированные фотометрические системы величин.

Энергетические величины – характеризуют излучение безотносительно к его воздействию на какой-либо приемник излучения. Такие энергетические величины как лучистая энергия (W e ) и лучистый поток (F e ) были рассмотрены в предыдущем разделе.Они выражаются в единицах, образованных на основе единицы энергии (Джоуль ), a в их обозначениях используется дополнительный индекс «е » (W e , F e , I e , Е e , L e ).

Редуцированные, или эффективные фотометрические величины характеризуют излучение, падающее на заданный селективный приемник излучения. Если в качестве такого приемника служит глаз человека, то полученные величины называют "световыми" , а их совокупность - "системой световых величин". В буквенных обозначенияхсветовых величин можно встретить индекс «v».

Схема формирования системы световых величин на основе энегетических представлена на рис. 1.3.1.


Рис. 1.3.1 – Схема формирования системы световых величин

Каждая из световых величин величин имеет свою энергетическую первооснову, из которой они получены:

· Световой поток F ( F v v )– первооснова лучистый поток (поток излучения) F e (Ф e )

· Сила света I (I v ) – энергетическая сила излучения (сила излучения) I e

· Освещенность Е (E v ) – энергетическая освещенность (облученность) Е e

· Яркость L (L v )– энергетическая яркость L e

Эти и другие основные энергетические и световые величины сведены в таблицу в конце раздела. Ниже будут подробно рассмотрены основные световые величины, используемые в практике телеоператора.


Похожая информация.


Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Опытами Ньютона было установлено, что солнечный свет имеет сложный характер. Подобным же образом, т. е. ана­лизируя состав света при помощи призмы, можно убедить­ся, что свет большинства других источников (лампа нака­ливания, дуговой фонарь и т. д.) имеет такой же характер. Сравнивая спектры этих светящихся тел, обнаружим, что соответственные участки спектров обладают различной яр­костью, т. е. в различных спектрах энергия распределена по-разному. Еще надежнее удостовериться в этом можно, если исследовать спектры при помощи термоэлемента (см. § 149).

Для обычных источников эти различия в спектре не очень значительны, однако их можно без труда обнаружить. Наш глаз даже без помощи спектрального аппарата обнару­живает различия в качестве белого света, даваемого этими источниками. Так, свет свечи кажется желтоватым или даже красноватым по сравнению с лампой накаливания, а эта по­следняя заметно желтее, чем солнечный свет.

Еще значительнее различия, если источником света вме­сто раскаленного тела служит трубка, наполненная газом, светящимся под действием электрического разряда. Такие трубки употребляются в настоящее время для светящихся надписей или освещения улиц. Некоторые из этих газораз­рядных ламп дают ярко желтый (натриевые лампы) или крас­ный (неоновые лампы) свет, другие светятся беловатым све­том (ртутные), ясно отличным по оттенку от солнечного. Спектральные исследования света подобных источников показывают, что в их спектре имеются только отдель­ные более или менее узкие цветные участки.

В настоящее время научились изготовлять газоразряд­ные лампы, свет которых имеет спектральный состав, очень близкий к солнечному. Такие лампы получили наз­вание ламп дневного света (см. § 186).

Если исследовать свет солнца или дугового фонаря, профильтрованный через цветное стекло, то он окажется заметно отличным от первоначального. Глаз оце­нит этот свет как цветной, а спектральное разложение обна­ружит, что в спектре его отсутствуют или очень слабы более или менее значительные участки спектра источника.

§ 165. Свет и цвета тел. Опыты, описанные в § 164, показы­вают, что свет, вызывающий в нашем глазу ощущение того или иного цвета, обладает более или менее сложным спект­ральным составом. При этом оказывается, что глаз наш представляет собой довольно несовершенный аппарат для анализа света, так что лучи разнообразного спектраль­ного состава могут иногда производить почти одинаковое цветовое впечатление. Тем не менее именно при помощи глаза мы получаем знание о всем многообразии цветов в ок­ружающем мире.

Случаи, когда свет от источника направляется непо­средственно в глаз наблюдателя, сравнительно редки. Гораздо чаще свет предварительно проходит через тела, преломляясь и частично поглощаясь в них, либо в бо­лее или менее полной степени отражаясь от их поверхности. Таким образом, спектральный состав света, дошедшего до нашего глаза, может оказаться значительно изменен­ным благодаря описанным выше процессам отражения, поглощения и т. д. В громадном большинстве случаев все подобные процессы ведут только к ослаблению тех или иных спектральных участков и могут даже полностью устранить некоторые из таких участков, но не добавляют к свету, при­шедшему от источника, излучения тех длин волн, которых в нем не было. Однако и такие процессы могут иметь место (например, в явлениях флюоресценции).

§ 166. Коэффициенты поглощения, отражения и пропуска­ния. Цвет различных предметов, освещенных одним и тем же источником света (например, солнцем), бывает весьма разнообразен, несмотря на то, что все эти предметы осве­щены светом одного состава. Основную роль в таких эф­фектах играют явления отражения и пропускания света. Как уже было выяснено, световой поток, падающий на тело, частично отражается (рассеивается), частично пропускается и частично поглощается телом. Доля светового потока, уча­ствующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения r, пропускания t и поглощения a (см. § 76).

Каждый из указанных коэффициентов (a, r, t) может зависеть от длины волны (цвета), благодаря чему и возни­кают разнообразные эффекты при освещении тел. Нетрудно видеть, что какое-либо тело, у которого, например, для красного света коэффициент пропускания велик, а коэффи­циент отражения мал, а для зеленого, наоборот, будет казаться красным в проходящем свете и зеленым в отражен­ном. Такими свойствами обладает, например, хлорофилл - зеленое вещество, содержащееся в листьях растений и обус­ловливающее зеленый цвет их. Раствор (вытяжка) хлоро­филла в спирту оказывается на просвет красным, а на отражении - зеленым.

Тела, у которых для всех лучей поглощение велико, а отражение и пропускание очень малы, будут черными непрозрачными телами (например, сажа). Для очень белого непрозрачного тела (окись магния) коэффициент r близок к единице для всех длин волн, а коэффициенты a и t очень малы. Вполне прозрачное стекло имеет малые коэффициен­ты отражения r и поглощения a и коэффициент пропу­скания t, близкий к единице для всех длин волн; наоборот, у окрашенного стекла для некоторых длин волн коэффи­циенты t и r равны практически нулю и соответственно значение коэффициента а близко к единице. Различие в значениях коэффициентов a, t и r и их зависимость от цвета (длины волны) обусловливают чрезвычайное разно­образие в цветах и оттенках различных тел.



§ 167. Цветные тела, освещенные белым светом. Окра­шенные тела кажутся цветными при освещении белым све­том. Если слой краски достаточно толст, то цвет тела опре­деляется ею и не зависит от свойств лежащих под краской слоев. Обычно краска представляет собой мелкие зернышки, избирательно рассеивающие свет и погруженные в прозрач­ную связывающую их массу, например масло. Коэффициен­ты a, r и t этих зернышек и определяют собой свойства краски.

Действие краски схематически изображено на рис. 316. Самый верхний слой отражает практически одинаково все

Рис. 316. Схема действия слоя краски

лучи, т. е. от него идет белый свет. Доля его не очень зна­чительна, около 5%. Остальные 95% света проникают в глубь краски и, рассеиваясь ее зернами, выходят наружу. При этом происходит поглощение части света в зернах краски, причем те или иные спектральные участки поглоща­ются в большей или меньшей степени в зависимости от цвета краски. Часть света, проникающая еще глубже, рассеивается на следующих слоях зерен и т. д. В результате тело, освещенное белым светом, будет иметь цвет, обуслов­ленный значениями коэффициентов a, t и r для зерен по­крывающей егокраски.

Краски, поглощающие падающий на них свет в очень тонком слое, называются кроющими. Краски, действие ко­торых обусловлено участием многих слоев зерен, носят наз­вание лессировочных. Последние позволяют добиваться очень хороших эффектов путем смешивания нескольких сортов цветных зерен (стирание на палитре). В результате можно получить разнообразные цветовые эффекты. Инте­ресно отметить, что смешение лессировочных красок, соот­ветствующих дополнительным цветам, должно привести к очень темным оттенкам. Действительно, пусть в краске смешаны красные и зеленые зерна. Свет, рассеянный красными зернами, будет поглощаться зелеными и наоборот, так что из слоя краски свет почти не будет выходить. Та­ким образом, смешение красок дает совершенно иные результаты, чем смешение света соответствующих цветов. Это обстоятельство должен иметь в виду художник при смешивании красок.

§ 168. Цветные тела, освещенные цветным светом. Все вышесказанное относится к освещению белым светом. Если же спектральный состав падающего света значительно отличается от дневного, то эффекты освещения могут быть совершенно иными. Яркие красочные места цветной карти­ны выглядят темными, если в падающем свете отсутствуют как раз те длины волн, для которых эти места имеют большой коэффициент отражения. Даже переход от дневного освеще­ния к искусственному вечернему может значительно изме­нить соотношение оттенков. В дневном свете относительная доля желтых, зеленых и синих лучей гораздо больше, чем в искусственном свете. Поэтому желтые и зеленые материи кажутся при вечернем освещении более тусклыми, чем днем, а синяя при дневном свете ткань нередко кажется совсем черной при лампах. С этим обстоятельством должны счи­таться художники и декораторы, выбирающие краски для театрального представления или для парада, происходяще­го днем на открытом воздухе.

Во многих производствах, где важна правильная оценка оттенков, например при сортировке пряжи, работа при вечернем освещении очень затруднена или даже совсем невозможна. Поэтому в подобных условиях рационально применение ламп дневного света, т. е. ламп, спектральный состав света которых был бы по возможности близок к спектральному составу дневного освещения (см. § 187).

§ 169. Маскировка и демаскировка. Даже при ярком осве­щении мы не в состоянии различать тела, цвет которых не отличается от цвета окружающего фона, т. е. тела, для которых коэффициент r имеет для всех длин волн практически те же значения, что и для фона. Поэтому, например, так трудно различить животных с белым мехом или людей в белой одежде на снежной равнине. Этим пользуются в воен­ном деле для цветовой маскировки войск и военных объек­тов. В природе, в процессе естественного отбора, многие животные приобрели защитную окраску (мимикрия).

Из вышеизложенного понятно, что наиболее совершен­ной маскировкой является подбор такой окраски, у которой коэффициент отражения r для всех длин волн име­ет те же значения, что и у окружающего фона. Практически этого очень трудно достичь, и поэтому нередко ограничи­ваются подбором близких коэффициентов отражения для излучения, которое играет особо важную роль при дневном освещении и наблюдении глазом. Это - по преимуществу желто-зеленая часть спектра, к которой особенно чувстви­телен глаз и которая сильнее других представлена в сол­нечном (дневном) свете. Однако если замаскированные с таким расчетом объекты наблюдать не глазом, а фотографи­ровать, то маскировка может утратить свое значение. Действительно, на фотографическую пластинку особенно сильно действует фиолетовое и ультрафиолетовое излучение. Поэтому, если для этой области спектра коэффициенты отражения у объекта и фона заметно отличаются друг от друга, то при наблюдении глазом такой дефект маски­ровки останется незамеченным, но он резко даст себя знать на фотографии. Так же отчетливо скажется несовершенство маскировки, если вести наблюдение через светофильтр, практически устраняющий те длины волн, на которые маскировка по преимуществу рассчитана, например через синий фильтр. Несмотря на значительное понижение яр­кости всей картины при рассматривании через такой фильтр, на ней могут выступать детали, которые были скрыты при наблюдении в белом свете. Соединение фильтра с фотогра­фией может дать особенно сильный эффект. Поэтому при подборе маскирующих цветов надо быть внимательным к определению r для довольно широкой области спектра, в том числе для инфракрасной и ультрафиолетовой.

Светофильтрами пользуются иногда, чтобы улучшить правильную передачу освещенности при фотографировании. Ввиду того, что максимумы чувствительности глаза и фото­пластинки лежат в разных областях (для глаза - желто-зеленая, для фотопластинки - сине-фиолетовая), зритель­ное и фотографическое впечатления могут быть довольно различными. Фигура девушки, одетой в желтую блузку и фиолетовую юбку, кажется глазу светлой в верхней своей части и темной в нижней. На фотографической же карточке она может казаться одетой в темную блузку и светлую юбку. Если же перед фотографическим объективом поставить жел­тый светофильтр, он изменит соотношение освещенностей юбки и блузки в сторону, приближающуюся к зрительному впечатлению. Применяя, сверх того, фотопленку с повышен­ной по сравнению с обычными чувствительностью к длин­ным волнам (ортохроматические), мы можем добиться до­вольно правильной передачи освещенности фигуры.

§ 170. Насыщенность цветов. Кроме обозначения цвета - красный, желтый, синий и т. д.,- мы нередко различаем цвет по насыщенности, т. е. по чистоте оттен­ка, отсутствию белесоватости. Примером глубоких, или на­сыщенных, цветов являются спектральные цвета. В них представлена узкая область длин волн без примеси других цветов. Цвета же тканей и красок, покрывающих предметы, обычно бывают менее насыщенными и в большей или мень­шей степени белесоватыми. Причина лежит в том, что коэффициент отражения большинства красящих веществ не равняется нулю ни для одной длины волны. Та­ким образом, при осве­щении окрашенной тка­ни белым светом мы на­блюдаем в рассеянном свете по преимуществу одну область цвета (на­пример, красную), но к ней примешивается за­метное количество и дру­гих длин волн, дающих в совокупности белый свет. Но если такой рас­сеянный тканью свет с преобладанием одного цвета (например, крас­ного) направить не пря­мо в глаз, а заставить вторично отразиться от той же ткани, то доля преобладающего цвета значительно усилится по сравнению с остальными и белесоватость уменьшится.. Многократное повторение такого процесса (рис. 317) может привести к получению достаточно насыщенного цвета.

Рис. 317. Получение насыщенного цве­та при отражении от красной драпи­ровки

Если интенсивность падающего света какой-либо длины волны обоз­начить через I , а коэффициент отражения для той же длины волны - через r, то получим после однократного отражения интенсивность I r, после двукратного I r 2 , после трехкратного I r 3 и т. д. Отсюда видно, что если r для какого-то узкого спектрального участка равняется, напри­мер, 0,7, а для остальных равняется 0,1, то после однократного отраже­ния примесь белого цвета составляет 1/7, т. е. около 15%, после дву­кратного отражения 1/49, т. е. около 2%, и после трехкратного 1/343, т. е. меньше 0,3%. Такой свет можно считать вполне насыщенным.

Описанным явлением объясняется насыщенность цветов бархатных тканей, ниспадающих складками драпировок или реющих знамен. Во всех этих случаях имеются много­численные углубления (бархат) или складки окрашенной материи. Падая на них, белый свет претерпевает многократ­ное отражение, прежде чем достигнет глаза наблюдателя. При этом, конечно, ткань представляется более темной, чем, например, гладкая натянутая полоса цветного сатина; но насыщенность цвета увеличивается чрезвычайно сильно, и ткань выигрывает в красоте.

В § 167 мы упоминали, что поверхностный слой любой краски всегда рассеивает белый свет. Это обстоятельство портит насыщенность цветов картины. Поэтому картины, писанные масляными красками, обычно покрывают слоем лака. Заливая все неровности краски, лак создает гладкую зеркальную поверхность картины. Белый свет от этой по­верхности не рассеивается во все стороны, а отража­ется по определенному направлению. Конечно, если смот­реть на картину с неудачно выбранной позиции, то такой свет будет очень мешать {«отсвечивание»). Но если рассмат­ривать картину с других мест, то благодаря лаковому покрытию белый свет от поверхности в этих направлениях не распространяется, и цвета картины выигрывают в насы­щенности.

§ 171. Цвет неба и зорь. Изменение спектрального состава света, отраженного или рассеянного поверхностью тел, связано с наличием избирательного поглощения и отражения, выражающегося в зависимости коэффициентов a и r от длины волны.

В природе играет большую роль еще одно явление, ведущее к изменению спектрального состава солнечного света. Свет, доходящий до наблюдателя от участков безоб­лачного небесного свода, далеких от Солнца, характеризу­ется довольно насыщенным голубым или даже синим оттен­ком. Несомненно, что свет неба есть солнечный свет, рас­сеиваемый в толще воздушной атмосферы и по­этому доходящий до наблюдателя со всех сторон, даже по направлениям, далеким от направления на Солнце. Рис. 318 поясняет происхождение рассеянного света неба. Теоретическое исследование и опыты показали, что такое рассеяние происходит благодаря молекулярному строению воздуха; даже вполне свободный от пыли воздух рассеивает

Рис. 318. Происхождение цвета неба (свет Солнца, рассеянный атмо­сферой). До поверхности Земли (например, точки А) доходит как пря­мой свет Солнца, так и свет, рассеянный в толще атмосферы. Цвет этого рассеянного света и называется цветом неба

солнечный свет. Спектр рассеянного воздухом света замет­но отличается от спектра прямого солнечного света: в сол­нечном свете максимум энергии приходится на желто-зеленую часть спектра, а в свете неба максимум передвинут к голубой части. Причина лежит в том, что короткие све­товые волны рассеиваются значительно сильнее длинных. По расчетам английского физика Джона Стретта лорда Рэлея (1842-1919), подтвержденным измерениями, интен­сивность рассеянного света обратно пропорциональна чет­вертой степени длины волны, если рассеивающие частицы малы по сравнению с длиной волны света, следовательно, фиолетовые лучи рассеиваются почти в 9 раз сильнее крас­ных. Поэтому желтоватый свет Солнца при рассеянии пре­вращается в голубой цвет неба. Так обстоит дело при рассея­нии в чистом воздухе (в горах, над океаном). Наличие в воз­духе сравнительно крупных частичек пыли (в городах) добавляет к рассеянному голубому свету свет, отраженный частичками пыли, т. е. почти неизмененный свет Солнца. Благодаря этой примеси цвет неба становится в этих усло­виях более белесоватым.

Преимущественное рассеяние коротких волн приводит к тому, что доходящий до Земли прямой свет Солнца оказы­вается более желтым, чем при наблюдении с большой высоты. На пути через толщу воздуха свет Солнца частично рассеивается в стороны, причем сильнее рассеиваются ко­роткие волны, так что достигший Земли свет становится от­носительно богаче излучением длинноволновой части спект­ра. Это явление особенно резко сказывается при восходе и закате Солнца (или Луны), когда прямой свет проходит зна­чительно большую толщу воздуха (рис. 319). Благодаря это­му Солнце и Луна на восходе (или закате) имеют медножелтый, иногда даже красноватый оттенок. В тех случаях,

Рис. 319. Объяснение красного цвета Луны и Солнца на восходе и за­кате: S 1 - светило в зените - короткий путь в атмосфере (АВ); S 2 - светило на горизонте - длинный путь в атмосфере (СВ)

когда в воздухе имеются очень мелкие (значительно мень­шие длины волны) частички пыли или капельки влаги (туман), рассеяние, вызываемое ими, также идет по закону,

Рис. 320. Рассеяние света мутной жидкостью: падающий свет - белый, рассеянный свет - синеватый, проходящий свет - красноватый

близкому к закону Рэлея, т. е. по преимуществу рассеива­ются короткие волны. В этих случаях восходящее и захо­дящее Солнце может быть совершенно красным. В красный же цвет окрашиваются и плавающие в атмосфере облака. Таково происхождение прекрасных розовых и красных оттенков утренней и вечерней зорь.

Можно наблюдать описанное изменение цвета при рас­сеянии, если пропустить пучок света от фонаря через сосуд (рис. 320), наполненный мутной жидкостью, т. е. жид­костью, содержащей мелкие взвешенные частицы (напри­мер, водой с несколькими каплями молока). Свет, идущий в стороны (рассеянный), заметно синее, чем прямой свет фонаря. Если толща мутной жидкости довольно значитель­на, то свет, прошедший сквозь сосуд, теряет при рассеянии столь значительную часть коротковолновых лучей (синих и фиолетовых), что оказывается оранжевым и даже красным. В 1883 г. произошло сильнейшее извержение вулкана на острове Кракатау, наполовину разрушившее остров и вы­бросившее в атмосферу огромное количество мельчайшей пыли. На протяжении нескольких лет пыль эта, развеянная воздушными течениями на огромные расстояния, засоряла атмосферу, обусловливая интенсивные красные зори.

Вспомните: солнечный летний день — и вдруг на небе появилась тучка, пошел дождик, который будто «не замечает», что солнце продолжает светить. Такой дождь в народе называют слепым. Дождик еще не успел закончиться, а на небе уже засияла разноцветная радуга (рис. 13.1). Почему она появилась?

Раскладываем солнечный свет в спектр.

Еще в древности было замечено, что солнечный луч, пройдя сквозь стеклянную призму, становится разноцветным. Считалось, что причина этого явления — в свойстве призмы окрашивать свет. Так ли это на самом деле, выяснил в 1665 г. выдающийся английский ученый Исаак Ньютон (1643-1727), проведя серию опытов.

Рис. 13.1. Радугу можно наблюдать, например, в брызгах фонтана или водопада

Чтобы получить узкий пучок солнечного света, Ньютон сделал небольшое круглое отверстие в ставне. Когда перед отверстием он устанавливал стеклянную призму, на противоположной стене появлялась разноцветная полоска, которую ученый назвал спектром. На полоске (как и в радуге), Ньютон выделил семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый (рис. 13.2, а).

Затем ученый с помощью экрана с отверстием выделял из широкого разноцветного пучка лучей узкие одноцветные (монохроматические) пучки света и снова направлял их на призму. Такие пучки отклонялись призмой, но уже не раскладывались в спектр (рис. 13.2, б). При этом больше других отклонялся пучок фиолетового света, а меньше других — пучок красного света.

Результаты опытов позволили Ньютону сделать следующие выводы:

1) пучок белого (солнечного) света состоит из света разных цветов;

2) призма не «окрашивает» белый свет, а разделяет его (раскладывает в спектр) из-за разного преломления световых пучков разного цвета.

рис. 13.2. Схема опытов И. Ньютона по выяснению спектрального состава света

Сравните рис. 13.1 и 13.2: цвета радуги — это и есть цвета спектра. И это не удивительно, потому что на самом деле радуга — огромный спектр солнечного света. Одна из причин появления радуги состоит в том, что множество маленьких капелек воды преломляют белый солнечный свет.


Узнаём о дисперсии света

Опыты Ньютона продемонстрировали, в частности, что, преломляясь в стеклянной призме, пучки фиолетового света всегда отклоняются больше, чем пучки красного света. Это означает, что для световых пучков разного цвета показатель преломления стекла — разный. Именно поэтому пучок белого света раскладывается в спектр.

Явление разложения света в спектр, обусловленное зависимостью показателя преломления среды от цвета светового пучка, называют дисперсией света.

Для большинства прозрачных сред наибольший показатель преломления имеет фиолетовый свет, наименьший — красный.

Световой пучок какого цвета — фиолетового или красного — распространяется в стекле с большей скоростью? Подсказка:вспомните, как показатель преломления среды зависит от скорости распространения света в этой среде.

Характеризуем цвета

В спектре солнечного света традиционно выделяют семь цветов, можно выделить и больше. Но вы никогда не сможете выделить, например, коричневый или сиреневый цвет. Эти цвета являются составными— они образуются в результате наложения (смешения) спектральных (чистых) цветовв разных пропорциях. Некоторые спектральные цвета при наложении друг на друга образуют белый цвет. Такие пары спектральных цветов называют дополнительными(рис. 13.3).

Для зрения человека особое значение имеют три основных спектральных цвета — красный, зеленый и синий: при наложении эти цвета дают самые разнообразные цвета и оттенки.

На наложении трех основных спектральных цветов в разных пропорциях основано цветное изображение на экранах компьютера, телевизора, телефона (рис. 13.4).

Рис. 13.5. Разные тела по-разному отражают, преломляют и поглощают солнечный свет, и благодаря этому мы видим окружающий мир разноцветным

Выясняем, почему мир разноцветный

Зная, что белый свет является составным, можно объяснить, почему окружающий мир, освещенный только одним источником белого света — Солнцем, мы видим разноцветным (рис. 13.5).

Так, поверхность листа офисной бумаги одинаково хорошо отражает лучи всех цветов, поэтому лист, освещенный белым светом, кажется нам белым. Синий рюкзак, освещенный тем же белым светом, преимущественно отражает лучи синего цвета, а остальные поглощает.

Как вы думаете, какой цвет преимущественно отражают лепестки подсолнечников? листья растений?

Синий свет, направленный на красные лепестки розы, почти полностью будет поглощен ими, так как лепестки отражают преимущественно красные лучи, а остальные — поглощают. Поэтому роза, освещенная синим светом, будет казаться нам практически черной. Если же синим светом осветить белый снег, он будет казаться нам синим, ведь белый снег отражает лучи всех цветов (в том числе синие). А вот черная шерсть кота хорошо поглощает все лучи, поэтому кот будет казаться черным при освещении любым светом (рис. 13.6).

Обратите внимание! Поскольку цвет тела зависит от характеристики падающего света, в темноте понятие цвета не имеет смысла.

Рис. 13.6. Цвет тела зависит как от оптических свойств его поверхности, так и от характеристик падающего света


Подводим итоги

Пучок белого света состоит из света разных цветов. Выделяют семь спектральных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Показатель преломления света, а значит, скорость распространения света в среде зависят от цвета светового пучка. if Зависимость показателя преломления среды от цвета светового пучка называют дисперсией света. Мы видим окружающий мир разноцветным благодаря тому, что разные тела по-разному отражают, преломляют и поглощают свет.

Контрольные вопросы

1. Опишите опыты И. Ньютона по выяснению спектрального состава света.

2. Назовите семь спектральных цветов. 3. Световой пучок какого цвета преломляется в веществе больше других? меньше других? if 4. Дайте определение дисперсии света. Какое природное явление связано с дисперсией? 5. Какие цвета называют дополнительными? 6. Назовите три основных цвета спектра. Почему их так называют? 7. Почему окружающий мир мы видим разноцветным?

Упражнение № 13

1. Какими будут казаться черные буквы на белой бумаге, если смотреть на них сквозь зеленое стекло? Каким при этом будет казаться цвет бумаги?

2. Свет каких цветов проходит сквозь синее стекло? поглощается им?

3. Через стекло какого цвета нельзя увидеть текст, написанный фиолетовыми чернилами на белой бумаге?

4. В воде распространяются световые пучки красного, оранжевого и голубого цветов. Скорость распространения какого пучка наибольшая?

5. Воспользуйтесь дополнительными источниками информации и узнайте, почему небо голубое; почему Солнце на закате часто бывает красным.

Экспериментальное задание

«Творцы радуги». Наполните неглубокий сосуд водой и поставьте его у светлой стены. На дне сосуда разместите под углом плоское зеркало (см. рисунок). Направьте на зеркало пучок света — на стене появится «солнечный зайчик». Рассмотрите его и объясните наблюдаемое явление.

Физика и техника в Украине

киевский национальный университет им. тараса Шевченко (КНУ) основан в ноябре 1833 г. как Императорский университет Святого Владимира. Первый ректор университета — выдающийся ученый-энциклопедист Михаил Александрович Максимович.

С КНУ связаны имена известных ученых — математиков, физиков, кибернетиков, астрономов: Д. А. Граве, М. Ф. Кравчука, Г. В. Пфейффера, Н. Н. Боголюбова, В. М. Глушкова, А. В. Скорохода, И. И. Гихмана, Б. В. Гнеденко, В. С. Михалевича, М. П. Авенариуса, Н. Н. Шиллера, И. И. Косоногова, А. Г. Ситенко, В. Е. Лашкарева, Р. Ф. Фогеля, М. Ф. Хан-дрикова, С. К. Всехсвятского.

В мире известны научные школы КНУ — алгебраическая, теории вероятностей и математической статистики, механики, физики полупроводников, физической электроники и физики поверхности, металлогеническая, оптики новых материалов и др. С 2008 г. ректор КНУ — академик НАНУ и НАПНУ, Герой Украины Леонид Васильевич Губерский.

Это материал учебника

Спектральный состав солнечной радиации меняется в зависимости от высоты Солнца над горизонтом.

По международной классификации выделяют:

1. Инфракрасное излучение – 760-2600 (3000) нм

2. Видимое излучение – 400-760 нм

3. Ультрафиолетовое излучение – на границе с атмосферой 400-100 нм, на поверхности земли – 400-290 нм

Все виды излучений отличаются друг от друга длиной волны (частотой колебаний) и энергией кванта. Чем меньше длина волны, тем больше энергия кванта и тем соответственно более выражено биологическое действие данного излучения. Следовательно, наибольшей биологической активностью характеризуется ультрафиолетовое излучение.

Инфракрасное излучение составляет большую часть солнечного спектра (до 50%). Ультрафиолетовые лучи занимают 5% спектра на границе с атмосферой и 1% УФ-излучения достигает поверхности земли. Коротковолновая часть УФ-излучения (менее 300 нм) задерживается озоновым слоем Земли.

Реакция организма на действие солнечного света является результатом действия всех частей спектра. Солнечную радиацию воспринимают кожа и глаза. В основе физиологического действия солнечных лучей лежат различные фотохимические реакции, возникновение которых зависит от длины волны и энергии поглощенных квантов действующего излучения.

Инфракрасное излучение

Инфракрасное излучение образуется всяким телом, температура которого выше абсолютного нуля. Чем больше оно нагрето, то есть чем выше его температура, тем выше интенсивность излучения. Инфракрасное излучение проникает сквозь атмосферу, воду, почву, одежду, оконные стекла.

Коэффициент поглощения инфракрасных лучей связан с длиной волны, которая обусловливает глубину проникновения.

По длине волны инфракрасное излучение подразделяется на :

1. длинноволновое (свыше 1400 нм) - задерживается поверхностными слоями кожи и проникает на глубину до 3 мм, в результате ускоряется обмен веществ, усиливается кровоток, рост клеток и регенерация тканей, но в больших дозах может вызывать чувство жжения.

2. средневолновое (длина волны 1000 – 1400 нм)

3. коротковолновое (длина волны от 760 до 1000 нм) обладает большой проникающей способностью. Проникает на глубину 4-5 см, 14% лучей в пределах длин волн 1000-1400 нм - на глубину 3-4 см.

ИК-излучение оказывает :

1. тепловое действие - воздействуя на молекулы и атомы веществ, усиливая их колебательные движения, ИК-излучение приводит к повышению температуры биосубстрата.

2. фотохимическое действие – связано с поглощением энергии тканями и клетками, что ведет к активизации ферментных процессов и, как следствие, к ускорению обмена веществ, образованию БАВ, усилению процессов регенерации, иммуногенеза. ИК-излучение оказывает местное и общее воздействие.

При локальном воздействии на ткани ИФ-излучение несколько ускоряет биохимические реакции, ферментативные и иммунобиологические процессы, рост клеток и регенерацию тканей, кровоток, усиливает биологическое действие УФ-лучей.

Общее действие проявляется противовоспалительным, болеутоляющим, общетонизирующим эффектами. Эти эффекты широко используются в физиотерапии - с помощью использования искусственных источников ИК-излучения для лечения заболеваний воспалительного характера с целью уменьшения болевого синдрома при ревматизме, остеохондрозе и т.д.

3. влияет на климат и микроклимат. Вследствие неравномерного нагревания земной поверхности и испарения воды происходит движение воздуха и водных масс, формирование циклонов и антициклонов, теплых и холодных течений, разнообразие климатических зон, погодных условий, которые опосредованно влияют на человека.

При оптимальной интенсивности ИК-излучение вызывает приятное тепловое ощущение.

Отрицательное воздействие ИК-излучения связано с тепловым эффектом, так как возможно перегревание организма с развитием теплового или солнечного удара.

Видимое излучение

Видимое излучение воздействует на кожу (проникает на глубину 2,5 см) и глаза. Кожа неодинаково поглощает видимые лучи. Красные лучи проникают на глубину 2,5 см в количестве 20%, фиолетовые до 1%.

Биологическое действие :

1. вызывает световое ощущение. Связано с фотохимическим действием, которое проявляется в возбуждении молекул зрительных пигментов сетчатки глаза. В результате в сетчатке возникают электрические импульсы, вызывающие ощущение света. Таким образом, видимые лучи имеют информационное значение (информация об объеме, цвете, форме и т.д.)

2. оказывает благоприятное действие на организм, стимулирует его жизнедеятельность, улучшает общее самочувствие, эмоциональное настроение, повышает работоспособность. Плохое освещение отрицательно сказывается на функции зрительного анализатора, в результате чего быстро развивается утомление.

3. усиливает обмен веществ, иммунологическую реактивность, улучшает деятельность других анализаторов, активизирует процессы возбуждения в коре головного мозга.

4. тепловое действие – около 50% общей тепловой энергии солнечного спектра приходится на видимое излучение.

5. оздоровление окружающей среды

6. психогенное значение. Видимое излучение способно создавать гамму цветов, которые оказывают различное действие на человека. Отношение к цветам очень индивидуальное и каждый цвет вызывает у человека определенные ощущения (голубой – чувство прохлады, успокаивающее действие, зеленый – спокойствие, надежность, ярко-желтый – раздражение, красный – возбуждение, фиолетовый и синий – угнетают и способствуют засыпанию, синий способен усиливать состояние депрессии).

7. интенсивность и цвет видимого света на протяжении суток меняется, что имеет сигнальный характер и определяет суточный биологический ритм активности человека, служит источником рефлекторной и условнорефлекторной деятельности.

В процессе эволюции человек стал вести активный образ жизни в светлый период суток. Видимый свет влияет на режим сна и бодрствования, а, следовательно, и на физиологические функции организма (регуляция температуры тела, уровня гормонов и т. д.). Сейчас существует понятие синдрома «световое голодание», которое характеризуется снижением работоспособности, эмоциональной нестабильностью, повышенным аппетитом и потребностью во сне. Такой синдром возникает у людей в осенне-зимний период, при проживании за Полярным кругом, у работающих в ночную смену и т.д

7. Основные законы поглощения и рассеяния солнечной радиации в атмосфере. Характеристики прозрачности атмосферы.

Лучистая энергия Солнца является основным, а практически единственным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и от Луны, ничтожно мала по сравнению с солнечной радиацией. Также ничтожно мал и поток тепла, направленный к земной поверхности и в атмосферу из глубин Земли.

Часть солнечной радиации представляет собой видимый свет. Тем самым Солнце является для Земли источником не только тепла, но и света, важного для жизни на земной поверхности. Лучистая энергия Солнца превращается в тепло отчасти в самой атмосфере, но главным образом на земной поверхности. Она идет здесь на нагревание верхних слоев почвы и воды, а от их и воздуха. Нагретая земная поверхность и нагретая атмосфера в свою очередь сами излучают невидимую инфракрасную радиацию. Отдавая эту радиацию в мировое пространство, земная поверхность и атмосфера охлаждаются.