Дифракционная решетка и ее характеристики. Оптика. Дифракционная решетка. Современные дифракционные решетки для спектральных приборов

Дифракционная решетка оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а ) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:

с = а + б. (19.28)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом a относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода d = А"В". Такая же разность хода будет для вторич-ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие ÷А"В ¢÷= ± k l, или

с sin a = ± k l, (19.29)

где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, a = 0). Равенство (19.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом a от соответственных тoчек соседних щелей, равна l/N, т. е.

d = с sin a= l/N, (19.30)

где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз Dj= 2 p/N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2 p/N, от третьей — 4 p/N, от четвертой — 6p/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2 p/N, равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей d = 2( l/N) илиразности фаз Dj = 2(2p/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.


В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а ), 120° (б), 180° (в), 240° (г) и 300° (д).

Рис. 19.14

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N -1 добавочных минимумов, удовлетворяющих условию

с sin a = ± l/N ; 2l/N, ..., ± (N - 1)l/N. (19.31)

Между первым и вторым главными максимумами также расположены N - 1 добавочных минимумов, удовлетворяющих условию

с sin a = ± (N + 1)l/N, ± (N + 2)l/N, ..., (2N - 1)l/N, (19.32)

и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N - 1 добавочных минимумов.

При большом количестве щелей отдельные добавочные минимумы практически не различаются, а все пространство между главными максимумами выглядит темным. Чем больше число щелей дифракционной решетки, тем более резки главные максимумы. На рис. 19.15 представлены фотографии дифракционной картины, полученной от решеток с разным числом N щелей (постоянная дифракционной решетки одинакова), а на рис. 19.16 — график распределения интенсивности.

Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

arcsin (l/a ) > a > - arcsin (l/a ) (19.33)

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.

Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию da между двумя линиями спектра, длины волн которых различаются на единицу (dl. = 1):

D = da/ dl.

Дифференцируя (19.29) и используя только положительные значения величин, получаем

с cos a da = ..k dl.

Из последних двух равенств имеем

D = ..k /(c cos a). (19.34)

Так как обычно используют небольшие углы дифракции, то cos a » 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.

Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.

Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются.

При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изображены зависимости интенсивности I отдельных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразрешенность двух линий (а ) и предельную разрешенность (б ), когда максимум одной линии совпадает с ближайшим минимумом другой.

Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

R = l./ Dl.. (19.35)

Так, если имеются две близкие линии с длинами волн l 1 ³ l 2 , Dl = l 1 - l 2 , то (19.35) можно приближенно записать в виде

R = l 1 /(l 1 - l 2), или R = l 2 (l 1 - l 2) (19.36)

Условие главного максимума для первой волны

с sin a = k l 1 .

С ним совпадает ближайший минимум для второй волны, условие которого

с sin a = k l 2 + l 2 /N.

Приравнивая правые части последних двух равенств, имеем

k l 1 = k l 2 + l 2 /N, k (l 1 - l 2) = l 2 /N,

откуда [с учетом (19.36)]

R = k N .

Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.

Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны l = 600 нм. При какой наименьшей разности длин волн Dl эти линии различаются в спектре третьего порядка (k = 3)?

Для ответа на этот вопрос приравняем (19.35) и (19.37), l/Dl = kN, откуда Dl = l/(kN ). Подставляя числовые значения в эту формулу, находим Dl = 600 нм/(3 . 10 000) = 0,02 нм.

Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм

Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, b — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.

Проведем перпендикуляры А"В кпадающим лучам и АВ" ко вторичным волнам, идущим под углом a к перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А¢В лучи имеют одинаковую фазу, от АВ" и далее разность фаз лучей сохраняется. Следовательно, разность хода есть

d = ВВ"-АА". (19.38)

Из D АА"В имеем АА¢ = АВ sin b = с sin b. Из DВВ"А находим ВВ" = АВ sin a = с sin a. Подставляя выражения для АА¢ и ВВ" в (19.38) и учитывая условие для главных максимумов, имеем

с (sin a - sin b) = ± kl. (19.39)

Центральный главный максимум соответствует направлению падающих лучей (a= b).

Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.

В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

Продолжая рассуждения для пяти, шести щелей и т. д., можно установить следующее правило: при наличии щелей между двумя соседними максимумами образуется минимумов; разность хода лучей от двух соседних щелей для максимумов должна равняться целому числу X, а для минимумов - Дифракционный спектр от щелей имеет вид, показанный на рис Дополнительные максимумы, расположенные между двумя соседними минимумами, создают на экране весьма слабую освещенность (фон).

Основная часть энергии световой волны, прошедшей через дифракционную решетку, перераспределяется между главными максимумами, образующимися в направлениях где 3, называется «порядком» максимума.

Очевидно, чем больше число щелей тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Если свет, падающий на дифракционную решетку, состоит из двух монохроматических излучений с длинами волн и их главные максимумы расположатся в различных местах экрана. Для очень близких друг к другу длин волн (одноцветные излучения) максимумы на экране могут получиться настолько близко друг к другу, что сольются в одну общую светлую полосу (рис. IV.27, б). Если же вершина одного максимума совпадает или находится дальше (а) ближайшего минимума второй волны, то по распределению освещенности на экране можно уверенно установить наличие двух волн (или, как говорят, «разрешить» эти волны).

Выведем условие разрешимости двух волн: максимум (т. е. максимум порядка) волны получится, согласно формуле (1.21), под углом удовлетворяющим условию Предельное условие разрешимости требует, чтобы под этим же углом получился

минимум волны ближайшей к его максимуму (рис. IV.27, в). Согласно сказанному выше, для получения ближайшего минимума к разности хода следует прибавить дополнительно Таким образом, условие совпадения углов под которыми получаются максимум и минимум приводит к соотношению

Если больше, чем произведение числа щелей на порядок спектра то максимумы не будут разрешаться. Очевидно, если два максимума не разрешаются в спектре порядка, то они могут быть разрешены в спектре более высоких порядков. Согласно выражению (1.22), чем больше число интерферирующих между собой пучков и чем больше разность хода А между ними тем более близкие волны могут быть разрешены.

У дифракционной решетки т. е. число щелей, велико, но порядок спектра который можно использовать для измерительных целей, мал; у интерферометра Майкельсона, наоборот, число интерферирующих пучков равно двум, но разность хода между ними, зависящая от расстояний до зеркал (см. рис. IV. 14), велика, поэтому порядок наблюдаемого спектра измеряется очень большими числами.

Угловое расстояние между двумя соседними максимумами двух близких волн зависит от порядка спектра и периода решетки

Период решетки можно заменить на число щелей приходящихся на единицу длины решетки:

Выше предполагалось, что лучи, падающие на дифракционную решетку, перпендикулярны ее плоскости. При наклонном падении лучей (см. рис. IV.22, б) нулевой максимум будет смещен и получится в направлении Допустим, что максимум порядка получается в направлении т. е. разность хода лучей и равна Тогда Так как при малых углы

Близки друг к другу по величине, то следовательно,

где есть угловое отклонение максимума от нулевого. Сравним эту формулу с выражением (1.21), которую запишем в виде так как то угловое отклонение при наклонном падении оказывается больше, чем при перпендикулярном падении лучей. Это соответствует уменьшению периода решетки в а раз. Следовательно, при больших углах падения а можно получить дифракционные спектры от коротковолнового (например, рентгеновского) излучения и измерить их длины волн.

Если плоская световая волна проходит не через щели, а через круглые отверстия малого диаметра (рис. IV.28), то дифракционный спектр (на плоском экране, расположенном в фокальной плоскости линзы) представляет собой систему чередующихся темных и светлых колец. Первое темное кольцо получается под углом удовлетворяющим условию

У второго темного кольца На долю центрального светлого круга, называемого пятном Эйри, приходится около 85% всей мощности излучения, прошедшей через отверстие и линзу; остальные 15% распределяются между светлыми кольцами, окружающими это пятно. Размеры пятна Эйри зависят от и фокусного расстояния линзы.

Дифракционные решетки, которые рассматривались выше, состояли из чередующихся «щелей», полностью пропускающих световую волну, и «непрозрачных полосок», которые полностью поглощают или отражают падающее на них излучение. Можно сказать, что в таких решетках коэффициент пропускания световой волны имеет только два значения: на протяжении щели он равен единице, а на протяжении непрозрачной полоски - нулю. Поэтому на границе межд щелью и полоской коэффициент пропускания скачкообразно изменяется от единицы до нуля.

Однако можно изготовить дифракционные решетки и с другим распределением коэффициента пропускания. Например, если на прозрачную пластинку (или пленку) нанести поглощающий слой с периодически изменяющейся толщиной, то вместо чередования совершенно

прозрачных щелей и совершенно непрозрачных полосок можно получить дифракционную решетку с плавным изменением коэффициента пропускания (в направлении, перпендикулярном щелям или полоскам). Особый интерес представляют решетки, у которых коэффициент пропускания изменяется по синусоидальному закону. Дифракционный спектр таких решеток состоит не из множества максимумов (как это показано для обычных решеток на рис. IV.26), а только из центрального максимума и двух симметрично расположенных максимумов первого порядка

Для сферической волны можно изготовить дифракционные решетки, состоящие из множества концентрических кольцевых щелей, разделенных непрозрачными кольцами. Можно, например, на стеклянную пластинку (или на прозрачную пленку) нанести тушью концентрические кольца; при этом центральный круг, охватывающий центр этих колец, может быть либо прозрачным, либо затушеванным. Такие дифракционные решетки называются «зонными пластинками» или решетками. У дифракционных решеток, состоящих из прямолинейных щелей и полосок, для получения отчетливой интерференционной картины было необходимо постоянство ширины щели и периода решетки; у зонных пластинок для этой цели должны быть рассчитаны необходимые радиусы и толщины колец. Зонные решетки также могут быть изготовлены с плавным, например синусоидальным, изменением коэффициента пропускания вдоль радиуса.

Дифракция света – явление отклонения света от прямолинейного распространения при встрече с препятствием, когда свет, огибая препятствие, заходит в область его геометрической тени.

Опыт Юнга: В непрозрачном экране на небольшом расстоянии друг от друга имеются два маленьких отверстия S 1 и S 2 . Эти отверстия освещаются узким световым пучком, прошедшим в свою очередь через малое отверстие S в другом экране. Если бы не было явления дифракции, то мы должны были бы увидеть только светлое пятно от отверстия S на втором экране. На самом деле наблюдается устойчивая интерференционная картина на третьем экране (чередующиеся светлые и темные полосы).

Явление дифракции можно объяснить на основе принципа Гюйгенса-Френеля .

Согласно Гюйгенсу , все точки поверхности, которой достигла в данный момент волна, являются центрами вторичных сферических волн. При этом в однородной среде вторичные волны излучаются только вперед.

Согласно Френелю , волновая поверхность в любой момент времени представляет собой результат интерференции когерентных вторичных волн.

Объяснение опыта Юнга

Возникшая в соответствии с принципом Гюйгенса-Френеля сферическая волна от отверстия S возбуждает в отверстиях S 1 и S 2 когерентные колебания. Вследствие дифракции из отверстий S 1 и S 2 выходят два световых конуса, которые частично перекрываются и интерферируют. В результате интерференции световых волн на экране появляются чередующиеся светлые и темные полосы. При закрывании одного из отверстий интерференционные полосы исчезают.

Дифракция обнаруживается в непосредственной близости от препятствия только в том случае, когда размеры препятствия соизмеримы с длиной волны (для видимого света λ ~ 100 нм).

Дифракция света на одномерной дифракционной решетке.

Дифракционная решетка – оптическое устройство, представляющее собой совокупность большого числа параллельных, равноотстоящих друг от друга щелей одинаковой ширины. Число штрихов может доходить до 2000-3000 тысяч на 1 мм. Прозрачные дифракционные решетки изготавливают из прозрачного твердого вещества, например, плоскопараллельных стеклянных или кварцевых пластинок. Алмазным резцом наносят штрихи. Там, где прошелся резец, образуется непрозрачная поверхность, рассеивающая свет. Промежутки между штрихами играют роль щелей. Отражательные дифракционные решетки представляют собой зеркальную (металлическую) поверхность, на которую нанесены параллельные штрихи. Световая волна рассеивается штрихами на отдельные когерентные пучки, которые, претерпев дифракцию, на штрихах, интерферируют. Результирующая интерференционная картина образуется в отраженном свете.

Если ширина прозрачных щелей (или отражательных полос) равна а , а ширина непрозрачных промежутков (или рассеивающих свет полос) b , то величина называется периодом или постоянной дифракционной решетки .

Рассмотрим дифракцию на прозрачной дифракционной решетке. Пусть на решетку падает плоская монохроматическая волна длиной l. Для наблюдения дифракции на близком расстоянии за решеткой помещают собирающую линзу и за ней экран на фокусном расстоянии от линзы. В каждой точке фокальной плоскости линзы происходит интерференция N волн, приходящих в эту точку от N щелей решетки. Это так называемая многоволновая или многолучевая интерференция. Выберем некоторое направление вторичных волн под углом φ относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода. Такая же разность хода будет для вторичных волн, идущих от других пар точек соседних щелей, отстоящих на расстояние d друг от друга. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы :

основная формула дифракционной решетки ,

где k = 0, 1, 2… - порядок главных максимумов. На экране наблюдаются узкие одноцветные линии (в зависимости от цвета падающей волны). Линия под углом φ = 0 называется спектральной линией первого порядка (k = 0) по обе стороны от нее симметрично расположены спектральные линии первого порядка (k = 1, k = -1), второго порядка (k = 2, k = -2) и т.д. Интенсивность этих линий в N 2 раз больше интенсивности, создаваемой в направлении φ одной щелью. С ростом k спектральные линии становятся менее яркими и перестают наблюдаться вовсе. Максимально наблюдаемое число линий ограничивается по следующим причинам. Во-первых, с ростом угла φ уменьшается интенсивность света, испускаемого отдельной щелью. Во-вторых, даже очень узкие щели с шириной близкой к λ , не могут отклонять свет под углом большим, чем. Поэтому, . Увеличение числа щелей не меняет положения главных максимумов, но делает их более интенсивными. При наклонном падении света под углом , условие главных максимумов имеет вид: .

Между главными максимумами появляются добавочные минимумы , число которых равно N – 1, где N общее число щелей решетки. (На рис. слева для N = 8 и N = 16 нарисованы не все добавочные минимумы). Они появляются за счет взаимной компенсации волн от всех N щелей. Чтобы N волн погасили друг друга, разность фаз должна отличаться на. А оптическая разность хода, соответственно, должна быть равна. Направления добавочных минимумов определяются условием, где k принимает целочисленные значения кроме 0, N , 2N , 3N ,…, то есть тех, при которых данное условие переходит в основную формулу дифракционной решетки.

Между добавочными минимумами находится N – 2 добавочных максимумов , интенсивность которых очень слаба.

При нормальном освещении решетки белым светом на экране наблюдается белый центральный максимум нулевого порядка, а по обе стороны от него – дифракционные спектры 1-го, 2-го и т.д. порядков. Спектры имеют вид радужных полосок, в которых наблюдается непрерывный переход от фиолетового цвета у внутреннего края спектра к красному цвету у внешнего края.

Со спектров 2-го и 3-го порядков начинается их частичное перекрывание (т.к. выполняется условие).

Спектроскопическими характеристиками решетки являются: разрешающая способность и угловая дисперсия.

Разрешающая способность дифракционной решетки – безразмерная величина, где  - минимальная разность волн двух спектральных линий, при которой эти линии воспринимаются раздельно, λ – среднее значение длин волн этих линий. Можно доказать, что, где L – ширина дифракционной решетки.

Угловая дисперсия характеризует степень пространственного (углового) разделения световых лучей с разной длиной волны: , где φ – угловое расстояние между спектральными линиями, отличающимися по длине волны на . Несложно доказать, что.

Таким образом, решетка является спектральным устройством, который можно использовать в различных оптических приборах, например, в дифракционных спектрофотометрах, в качестве монохроматоров, т.е. устройств, позволяющих освещать объект светом в узком диапазоне длин волн.

Дифракционная решетка может быть использована для определения длины волны света (по основной формуле дифракционной решетки). С другой стороны, основная формула дифракционной решетки может быть использована для решения обратной задачи – нахождения постоянной дифракционной решетки по длине волны. Этот способ лег в основу рентгеноструктурного анализа – измерения параметров кристаллической решетки посредством дифракции рентгеновских лучей. В настоящее время широко используют рентгеноструктурный анализ биологических молекул и систем. Именно этим методом Дж. Уотсон и Ф. Крик установили структуру молекулы ДНК (двойная спираль) и были удостоены в 1962 г. Нобелевской премии.

Дифракционная решётка

Дифракцией называется любое отклонение распространения света от прямолинейного, не связанное с отражением и преломлением. Качественный метод расчета дифракционной картины предложил Френель. Основной идеей метода является принцип Гюйгенса - Френеля :

Каждая точка, до которой доходит волна, служит источником когерентных вторичных волн, а дальнейшее распространение волны определяется интерференцией вторичных волн.

Геометрическое место точек, для которых колебания имеют одинаковые фазы, называют волновой поверхностью . Волновой фронт также является волновой поверхностью.

Дифракционная решетка представляет собой совокупность большого числа параллельных щелей или зеркал одинаковой ширины и отстоящих друг от друга на одинаковом расстоянии.Периодом решетки ( d) называется расстояние между серединами соседних щелей, или что то же самое сумма ширины щели (а) и непрозрачного промежутка (b)между ними (d = a + b).

Рассмотрим принцип действия дифракционной решетки. Пусть на решетку нормально к её поверхности падает параллельный пучок лучей белого света (рис. 1). На щелях решетки, ширина которых соизмерима с длиной волны света, происходит дифракция.

В результате за дифракционной решеткой согласно принципу Гюйгенса-Френеля от каждой точки щели световые лучи будут распространяться во всех возможных направлениях, которым можно сопоставить углы отклонения φ световых лучей (углы дифракции ) от первоначального направления. Параллельные между собой лучи (дифрагирующие под одинаковым углом φ ) можно сфокусировать, установив за решеткой собирающую линзу. Каждый пучок параллельных лучей соберется в задней фокальной плоскости линзы в определённой точке А. Параллельные лучи, соответствующие другим углам дифракции, соберутся в других точках фокальной плоскости линзы. В этих точках будет наблюдаться интерференция световых волн, исходящих от разных щелей решетки. Если оптическая разность хода между соответствующими лучами монохроматического света будет равна целому числу длин волн , κ = 0, ±1, ±2, …, то в точке наложения лучей будет наблюдаться максимум интенсивности света для данной длины волны, Из рисунка 1 видно, что оптическая разность хода Δ между двумя параллельными лучами, выходящими из соответствующих точек соседних щелей, равна

где φ – угол отклонения луча решеткой.

Следовательно, условие возникновения главных интерференционных максимумов решетки или уравнение дифракционной решетки

, (2)

где λ – длина световой волны.

В фокальной плоскости линзы для лучей, не испытавших дифракции, наблюдается центральный белый максимум нулевого порядка (φ = 0, κ = 0), справа и слева от которого располагаются цветные максимумы (спектральные линии) первого, второго и последующих порядков (рис. 1). Интенсивность максимумов уменьшается с ростом их порядка, т.е. с увеличением угла дифракции.

Одной из основных характеристик дифракционной решетки является её угловая дисперсия. Угловая дисперсия решетки определяет угловое расстояние между направлениями для двух спектральных линий, отличающихся по длине волны на 1 нм ( = 1 нм), и характеризует степень растянутости спектра вблизи данной длины волны:

Формула для расчета угловой дисперсии решетки может быть получена при дифференцировании уравнения (2) . Тогда

. (5)

Из формулы (5) следует, что угловая дисперсия решетки тем больше, чем больше порядок спектра.

Для решеток с разными периодами ширина спектра больше у решетки, характеризующейся меньшим периодом. Обычно в пределах одного порядка меняется незначительно (особенно для решеток с небольшим числом штрихов на миллиметр), поэтому дисперсия в пределах одного порядка почти не меняется. Спектр, полученный при постоянной дисперсии, растянут равномерно во всей области длин волн, что выгодно отличает спектр решетки от спектра, даваемого призмой.

Угловая дисперсия связана с линейной дисперсией . Линей­ную дисперсию можно также вычислить по формуле

, (6) где – линейное расстояние на экране или фотопластинке между спектральными линиями, f фокусное расстояние линзы.

Дифракционная решетка также характеризуется разрешающей способностью . Этавеличина, характеризующая способность дифракционной решетки давать раздельное изображение двух близких спектральных линий

R = , (7)

где l – средняя длина волны разрешаемых спектральных линий; dl – разность длин волн двух соседних спектральных линий.

Зависимость разрешающей способности от числа щелей дифракционной решетки N определяется формулой

R = = kN , (8)

где k – порядок спектра.

Из уравнения для дифракционной решетки (1) можно сделать следующие выводы:

1. Дифракционная решетка будет давать заметную дифракцию (значительные углы дифракции) только в том случае, когда период решетки соизмерим с длиной световой волны, то есть d »l» 10 –4 см. Решетки с периодом меньше длины волны не дают дифракционных максимумов.

2. Положение главных максимумов дифракционной картины зависит от длины волны. Спектральные составляющие излучения немонохроматического пучка отклоняются решеткой на разные углы (дифракционный спектр ). Это позволяет использовать дифракционную решетку в качестве спектрального прибора.

3. Максимальный порядок спектра, при нормальном падении света на дифракционную решетку, определяется соотношением:

k max £ d ¤l.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем и частотой штрихов, что позволяет перекрыть область спектра от ультрафиолетовой его части (l » 100 нм) до инфракрасной (l » 1 мкм). Широко используются в спектральных приборах гравированные решетки (реплики), которые представляют собой отпечатки решеток на специальных пластмассах с последующим нанесением металлического отражательного слоя.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор. Она содержит систему щелей, которые разделяют непрозрачные промежутки.

Дифракционные решетки подразделяют на одномерные и многомерные. Одномерная дифракционная решетка состоит из параллельных прозрачных для света участков одинаковой ширины, которые располагаются в одной плоскости. Прозрачные участки разделяют непрозрачные промежутки. При помощи данных решеток наблюдения проводят в проходящем свете.

Существуют отражающие дифракционные решетки. Такая решетка представляет собой, например, полированную (зеркальную) металлическую пластинку, на которую нанесены штрихи при помощи резца. В результате получают участки, которые отражают свет и участки, которые свет рассеивают. Наблюдение при помощи такой решетки проводят в отраженном свете.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Период дифракционной решетки

Если ширину щели на решетки обозначим a, ширину непрозрачного участка - b, тогда сумма данных двух параметров - это период решетки (d):

Период дифракционной решетки иногда называют еще постоянной дифракционной решетки. Период дифракционной решетки можно определить как расстояние, через которое происходит повтор штрихов на решетке.

Постоянную дифракционной решетки можно найти, если известно количество штрихов (N), которые имеет решетка на 1 мм своей длины:

Период дифракционной решетки входит в формулы, которые описывают картину дифракции на ней. Так, если монохроматическая волна падает на одномерную дифракционную решетку перпендикулярно к ее плоскости, то главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

где - угол между нормалью к решетке и направлением распространения дифрагированных лучей.

Кроме главных минимумов, в результате взаимной интерференции световых лучей, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, в результате появляются дополнительные минимумы интенсивности. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; принимает любые целые значения кроме 0, Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Величина синуса не может превышать единицу, следовательно, число главных максимумов (m):

Примеры решения задач

ПРИМЕР 1

Задание Сквозь дифракционную решетку проходит пучок света, имеющий длину волны . На расстоянии L от решетки размещается экран, на который при помощи линзы формируют картину дифракции. Получают, что первый максимум дифракции расположен на расстоянии x от центрального (рис.1). Каков период дифракционной решетки (d)?
Решение Сделаем рисунок.

В основу решения задачи положим условие для главных максимумов картины дифракции:

По условию задачи речь идет о первом главном максимуме, то . Из рис.1 получим, что:

Из выражений (1.2) и (1.1) имеем:

Выразим искомый период решетки, получаем:

Ответ