Сообщение на тему инфракрасное и ультрафиолетовое излучение. Изучение нового материала. Как УФ-излучение используется в медицинской практике

Обеззараживание с помощью УФ-ламп я помню с детства – в садике, санатории и даже в летнем лагере стояли несколько пугающие конструкции, которые светились красивым фиолетовым светом в темноте и от которых нас отгоняли воспитатели. Так что же такое на самом деле ультрафиолетовое излучение и зачем оно нужно человеку?

Пожалуй, первый вопрос, на который нужно ответить – что такое вообще ультрафиолетовые лучи и как они работают. Обычно так называют электромагнитное излучение, которое находится в диапазоне между видимым и рентгеновским излучением. Ультрафиолет характеризуется длиной волны от 10 до 400 нанометров.
Открыли его еще в 19 веке, и произошло это благодаря открытию инфракрасного излучения. Обнаружив ИК-спектр, в 1801 г. И.В. Риттер обратил внимание на противоположный конец светового диапазона в процессе опытов с хлоридом серебра. А затем сразу несколько ученых пришли к выводу о неоднородности ультрафиолета.

Сегодня его разделяют на три группы:

  • УФ-А излучение – ближний ультрафиолет;
  • УФ-Б – средний;
  • УФ-С – дальний.

Такое разделение во многом обусловлено именно воздействием лучей на человека. Естественным и основным источником ультрафиолета на Земле является Солнце. По сути, именно от этого излучения мы спасаемся солнцезащитными кремами. При этом дальний ультрафиолет полностью поглощается атмосферой Земли, а УФ-А как раз доходит до поверхности, вызывая приятный загар. А в среднем 10% УФ-Б провоцируют те самые солнечные ожоги, а также могут приводить к образованию мутаций и кожных заболеваний.

Искусственные источники ультрафиолета создаются и используются в медицине, сельском хозяйстве, косметологии и различных санитарных учреждениях. Генерирование ультрафиолетового излучения возможно несколькими способами: температурой (лампы накаливания), движением газов (газовые лампы) или металлических паров (ртутные лампы). При этом мощность таких источников варьируется от нескольких ватт, обычно это небольшие мобильные излучатели, до киловатта. Последние монтируются в объемные стационарные установки. Сферы применения УФ-лучей обусловлены их свойствами: способностью ускорять химические и биологические процессы, бактерицидным эффектом и люминесценцией некоторых веществ.

Ультрафиолет широко применяется для решения самых различных задач. В косметологии использование искусственного УФ-излучения используется прежде всего для загара. Солярии создают довольно мягкий ультрафиолет-А согласно введенным нормам, а доля УФ-В в лампах для загара составляет не более 5%. Современные психологи рекомендуют солярии для лечения «зимней депрессии», которая в основном вызвана дефицитом витамина D, так как он образуется под влиянием УФ-лучей. Также УФ-лампы используют в маникюре, так как именно в этом спектре высыхают особо стойкие гель-лаки, шеллак и подобные им.

Ультрафиолетовые лампы используют для создания фотоснимков в нестандартных ситуациях, например, для запечатления космических объектов, которые невидимы в обычный телескоп.

Широко применяется ультрафиолет в экспертной деятельности. С его помощью проверяют подлинность картин, так как более свежие краски и лаки в таких лучах выглядят темнее, а значит можно установить реальный возраст произведения. Криминалисты также используют УФ-лучи для обнаружения следов крови на предметах. Кроме того, ультрафиолет широко используется для проявления скрытых печатей, защитных элементов и нитей, подтверждающих подлинность документов, а также в световом оформлении шоу, вывесок заведений или декораций.

В медицинских учреждениях ультрафиолетовые лампы используются для стерилизации хирургических инструментов. Помимо этого, все еще широко распространено обеззараживание воздуха с помощью УФ-лучей. Существует несколько видов такого оборудования.

Так называют ртутные лампы высокого и низкого давления, а также ксеноновые импульсные лампы. Колба такой лампы изготавливается из кварцевого стекла. Основной плюс бактерицидных ламп – долгий срок службы и мгновенная способность к работе. Примерно 60% их лучей находятся в бактерицидном спектре. Ртутные лампы достаточно опасны в эксплуатации, при случайном повреждении корпуса необходима тщательная очистка и демеркуризация помещения. Ксеноновые лампы менее опасны при повреждении и отличаются более высокой бактерицидной активностью. Также бактерицидные лампы разделяют на озоновые и безозоновые. Первые характеризуются наличием в своем спектре волны длиной 185 нанометров, которая взаимодействует с находящимся в воздухе кислородом и превращает его в озон. Высокие концентрации озона опасны для человека, и использование таких ламп строго ограничено во времени и рекомендуется только в проветриваемом помещении. Все это привело к созданию безозоновых ламп, на колбу которых нанесено специальное покрытие, не пропускающее волну в 185 нм наружу.

Вне зависимости от вида бактерицидные лампы имеют общие недостатки: они работают в сложной и дорогостоящей аппаратуре, средний ресурс работы излучателя – 1,5 года, а сами лампы после перегорания должны храниться упакованными в отдельном помещении и утилизироваться специальным образом согласно действующим нормативам.

Состоят из лампы, отражателей и других вспомогательных элементов. Такие устройства бывают двух видов – открытые и закрытые, в зависимости от того, проходят УФ-лучи наружу или нет. Открытые выпускают ультрафиолет, усиленный отражателями, в пространство вокруг, захватывая сразу практически всю комнату, если установлены на потолке или стене. Проводить обработку помещения таким облучателем в присутствии людей строго запрещено.
Закрытые облучатели работают по принципу рециркулятора, внутри которого установлена лампа, а вентилятор втягивает в прибор воздух и выпускает уже облученный наружу. Их размещают на стенах на высоте не менее 2 м от пола. Их возможно использовать в присутствии людей, однако длительное воздействие не рекомендуется производителем, так как часть УФ-лучей может проходить наружу.
Из недостатков таких приборов можно отметить невосприимчивость к спорам плесени, а также все сложности утилизации ламп и строгий регламент использования в зависимости от типа излучателя.

Бактерицидные установки

Группа облучателей, объединенная в один прибор, использующийся в одном помещении, называется бактерицидной установкой. Обычно они достаточно крупногабаритные и отличаются высоким энергопотреблением. Обработка воздуха бактерицидными установками производится строго в отсутствие людей в комнате и отслеживается по Акту ввода в эксплуатацию и Журналу регистрации и контроля. Используется только в медицинских и гигиенических учреждениях для обеззараживания как воздуха, так и воды.

Недостатки ультрафиолетового обеззараживания воздуха

Помимо уже перечисленного, использование УФ-излучателей имеет и другие минусы. Прежде всего, сам ультрафиолет опасен для человеческого организма, он может не только вызывать ожоги кожи, но и сказываться на работе сердечно-сосудистой системы, опасен для сетчатки глаза. Кроме того, он может вызывать появление озона, а с ним и присущие этому газу неприятные симптомы: раздражение дыхательных путей, стимуляция атеросклероза, обострение аллергии.

Эффективность работы УФ-ламп достаточно спорная: инактивация болезнетворных микроорганизмов в воздухе разрешенными дозами ультрафиолета происходит только при статичности этих вредителей. Если микроорганизмы двигаются, взаимодействуют с пылью и воздухом, то необходимая доза облучения возрастает в 4 раза, чего не может создать обычная УФ-лампа. Поэтому эффективность работы облучателя рассчитывается отдельно с учетом всех параметров, и крайне сложно подобрать подходящие для воздействия на все типы микроорганизмов сразу.

Проникновение УФ-лучей относительно неглубокое, и если даже неподвижные вирусы находятся под слоем пыли, верхние слои защищают нижние, отражая от себя ультрафиолет. А значит, после уборки обеззараживание нужно проводить еще раз.
УФ-облучатели не могут фильтровать воздух, они борются только с микроорганизмами, сохраняя все механические загрязнители и аллергены в первозданном виде.

Что такое свет?

Солнечный свет проникает в верхние слои атмосферы мощностью около одного киловатта на квадратный метр. Все жизненные процессы на нашей планете приводятся в движение благодаря этой энергии. Свет - это электромагнитное излучение, его природа основана на электромагнитных полях, которые называются фотонами. Фотоны света характеризуются различными уровнями энергии и длиной волн, выражаемой в нанометрах (нм). Самые известные длины волн - видимые. Каждая длина волны представлена определенным цветом. Например, Солнце желтого цвета, потому что наиболее мощные излучения в видимом диапазоне спектра именно желтые.

Однако существуют и другие волны за пределами видимого света. Все они называются электромагнитным спектром. Самая мощная часть спектра - это гамма-лучи, далее следуют рентгеновские лучи, ультрафиолетовый свет, и только потом видимый свет, занимающий малую долю электромагнитного спектра и располагающийся между ультрафиолетовым и инфракрасным светом. Всем известен инфракрасный свет, как тепловое излучение. Спектр включает в себя микроволны и заканчивается радиоволнами, более слабыми фотонами. Для животных наибольшее полезное значение несут ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет.

Помимо обеспечения привычного для нас освещения, свет несет еще и немаловажную функцию регуляция продолжительности светового дня. Видимый спектр света находится в диапазоне от 390 до 700 нм. Именно он фиксируется глазом, а цвет зависит от длины волны. Индекс цветопередачи (CRI) показывает способность какого-либо источника света освещать объект, по сравнению с естественным солнечным светом принятым за 100 CRI. Искусственные источники света со значением CRI более 95 считаются светом полного спектра, способные освещать объекты так же, как и естественное освещение. Также важная характеристика для определения цвета излучаемого света - это цветовая температура, измеряемая в Кельвинах (К).

Чем выше показатель цветовой температуры, тем насыщеннее голубой оттенок (7000К и выше). При низких значениях цветовой температуры свет имеет желтоватый оттенок, как например у бытовых ламп накаливания (2400К).

Среднее значение температуры дневного света составляет около 5600К, оно может варьировать от минимального показателя 2000К на закате до 18000К при пасмурной погоде. Для максимального приближения условий содержания животных к естественным, необходимо размещать в вольерах лампы с максимальным индексом цветопередачи CRI и цветовой температурой около 6000К. Тропические растения необходимо обеспечивать световыми волнами в диапазоне, используемом для фотосинтеза. Во время этого процесса растения используют энергию света для производства сахаров, “натурального топлива” для всех живых организмов. Освещение в диапазоне 400-450 нм способствует росту и размножению растений.

Ультрафиолетовое излучение

Ультрафиолетовый свет или УФ-излучение занимает большую долю в электромагнитном излучении и находится на границе с видимым светом.

Ультрафиолетовое излучение разделяют на 3 группы в зависимости от длины волн:

  • . UVA- длинноволновой ультрафиолет А, диапазон от 290 до 320 нм, имеет важное значение для рептилий.
  • . UVB - средневолновой ультрафиолет B, диапазон от 290 до 320 нм, имеет наиболее существенное значение для рептилий.
  • . UVC - коротковолновой ультрафиолет C, диапазон от 180 до 290 нм, является опасным для всех живых организмов (ультрафиолетовая стерилизация).

Было доказано, что ультрафиолет А (UVA) влияет на аппетит, окрас, поведение и репродуктивную функцию животных. Рептилии и амфибии видят в диапазоне UVA (320- 400 нм), поэтому именно он влияет на то, как они воспринимают окружающий мир. Под воздействием этого излучения цвет еды или другого животного будут выглядеть иначе, чем воспринимает глаз человека. Подача сигналов при помощи частей тела (например, Anolis sp.) или изменение цвета покровов (например, Chameleon sp) распространено повсеместно среди рептилий и земноводных, и если UVA-излучение отсутствует, то эти сигналы могут восприниматься животными не корректно. Наличие ультрафиолета А играет важную роль при содержании и разведении животных.

Ультрафиолет B находится в диапазоне волн 290-320 нм. В естественных условиях рептилии синтезируют витамин D3 под воздействием солнечных лучей UVB-спектра. В свою очередь, витамин D3 необходим для усвоения животными кальция. На кожных покровах UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом. Под влиянием температуры и специальных механизмов кожи, провитамин D3 превращается в витамин D3. Печень и почки преобразуют витамин D3 в его активную форму, гормон (1,25-дигидрокиси витамин D), которые регулирует кальциевый обмен.

Хищные и всеядные пресмыкающиеся получают большое количество необходимого витамина D3 из пищи. Растительная пища не содержит D3 (холекальцеферол), а содержит D2 (эргокальцеферол), который менее эффективен в метаболизме кальция. Именно по этой причине растительноядные пресмыкающиеся сильнее зависят от качества освещения, чем плотоядные.

Нехватка витамина D3 достаточно быстро приводит к нарушению обмена веществ в костных тканях животных. При подобных нарушениях метаболизма патологические изменения могут отразиться не только на костных тканях, но и на других системах органов. Внешними проявлениями нарушений могут быть отеки, вялость, отказ от пищи, неправильно развитие костей и панциря у черепах. При обнаружении подобных симптомов, необходимо обеспечить животное не только источником UVB-излучения, но и добавить в рацион корма или добавки с кальцием. Но не только молодые животные подвержены подобным нарушениям при неправильном содержании, взрослые особи и яйцекладущие самки также подвергаются серьезному риску при отсутствии UVB-излучения.

Инфракрасный свет

Природная эктотермия рептилий и земноводных (холоднокровность) подчеркивает важность инфракрасного излучения (тепла) для терморегуляции. Диапазон инфракрасного спектра находится в сегменте не видимым человеческим глазом, но отчетливо ощущаемом теплом на коже. Солнце излучает большую часть своей энергии в инфракрасной части спектра. Для рептилий, активных преимущественно в светлое время суток, лучшим источников терморегуляции являются специальные греющие лампы, излучающие большое количество инфракрасного света (+700 нм).

Интенсивность освещения

Климат Земли определяется количеством солнечной энергии, попадающей на ее поверхность. На интенсивность освещения влияют множество факторов, такие как озоновый слой, географическое положение, облака, влажность воздуха, высота расположения относительно уровня моря. Количество света, падающего на поверхность, называется освещенностью и измеряется в люменах на квадратный метр или люксах (lux). Освещенность под прямыми солнечными лучами составляет около 100 000 lux. Обычно дневная освещенность, проходя через облака, колеблется от 5 000 до 10 000 lux, ночью от Луны она составляет всего лишь 0,23 lux. Густая растительность в тропических лесах также влияет на эти значения.

Ультрафиолетовое излучение измеряется в микроваттах на квадратный сантиметр (µW/sm2). Его количество сильно отличается на разных полюсах, увеличиваясь при приближении к экватору. Количество UVB-излучения в полдень на экваторе составляет примерно 270 µW/sm2.Это значение уменьшается с заходом Солнца, и также увеличивается с рассветом. Животные в естественной среде обитания принимают солнечные ванны преимущественно с утра и на закате, остальную часть времени они проводят в своих убежищах, норах или в корне деревьев. В тропических лесах лишь малая часть прямых солнечных лучей может проникнуть сквозь густую растительность в нижние слои, достигнув поверхности земли.

Уровень ультрафиолетового излучения и света, в среде обитания рептилий и амфибий, может изменяться в зависимости от целого ряда факторов:

Среда обитания:

В зонах тропических лесов тени значительно больше, чем в пустыне. В густых лесах значение УФ-излучения имеет широкий диапазон, на верхние ярусы леса попадает значительно больше прямых солнечных лучей, чем на лесную почву. В пустынных и степных зонах практически нет естественных укрытий от прямых солнечных лучей, также эффект излучения может быть усилен за счет отражения от поверхности. В горной местности есть долины, куда солнечный свет может проникать лишь на несколько часов в сутки.

Проявляя большую активность в течение светового дня, дневные животные получают больше УФ-облучения, чем ночные виды. Но даже они не проводят весь день под прямыми солнечными лучами Солнца. Многие виды прячутся в укрытиях в самое жаркое время дня. Прием солнечных ванн ограничивается ранним утром и вечером. В различных климатических поясах дневные циклы активности у рептилий могут отличаться. Некоторые виды ночных животных выходят погреться на солнце днем с целью терморегуляции.

Широта:

Наибольшей интенсивность ультрафиолетовое излучение обладает на экваторе, где Солнце располагается на наименьшем расстоянии от поверхности Земли, и его лучи проходят минимальное расстояние сквозь атмосферу. Толщина озонового слоя в тропиках по естественным причинам тоньше, чем в средних широтах, поэтому озоном поглощается меньше УФ-излучения. Полярные широты более удалены от Солнца, и немногочисленные ультрафиолетовые лучи вынуждены проходить через богатые озоном слои с большими потерями.

Высота над уровнем моря:

Интенсивность УФ-излучения увеличивается с высотой, поскольку уменьшается толщина атмосферы, поглощающей солнечные лучи.

Погодные условия:

Облака играют серьезную роль фильтра для лучей ультрафиолета, направляющихся к поверхности Земли. В зависимости от толщины и формы они способны поглощать до 35 - 85 % энергии солнечных излучений. Но, даже покрывая полностью небо, облака не перекроют доступ лучей к поверхности Земли.

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) способны отражать ультрафиолетовое излучение, которое на них попадает. В таких местах интенсивность УФ-излучения может быть значительно выше ожидаемых результатов даже в тени.

Озон:

Озоновый слой поглощает часть ультрафиолетового излучения Солнца, которое направлялось к поверхности Земли. Толщина озонового слоя изменяется в течение года, а сам он постоянно перемещается.

С открытием инфракрасного излучения у известного в свое время германского физика Иоганна Вильгельма Риттера возникло желание изучить противоположную сторону данного явления.

Спустя некоторое время ему удалось выяснить, что на другой конец обладает немалой химической активностью.

Такой спектр стали называть ультрафиолетовыми лучами. Что оно собой представляет и какое влияние оказывает на живые земные организмы, попробуем разобраться далее.

Оба излучения – это в любом случае электромагнитные волны. Как инфракрасное, так и ультрафиолетовое, они с обеих сторон ограничивают спектр света, воспринимаемого человеческим глазом.

Главное отличие этих двух явлений – длина волны. Ультрафиолет обладает достаточно широким диапазоном длины волны – от 10 до 380 мкм и располагается он между видимым светом и рентген-излучением.


Отличия инфракрасного излучения от ультрафиолетового

ИК-излучение имеет основное свойство – излучать тепло, в то время, как ультрафиолетовое обладает химической активностью, что оказывает ощутимое воздействие на человеческий организм.

Как ультрафиолетовое излучение влияет на человека?

Благодаря тому, что УФ делятся по разности длины волны, биологически они влияют на человеческий организм по-разному, поэтому ученые выделяют три участка ультрафиолетового диапазона: УФ-А, УФ-Б, УФ-С: ближний, средний и дальний ультрафиолет.

Атмосфера, которая окутывает нашу планету, выступает в роли защитного щита, что защищает ее от Солнечного потока ультрафиолета. Дальнее излучение удерживается и поглощается практически полностью посредством кислорода, водяного пара, углекислого газа. Таким образом, на поверхность попадает незначительная радиация в виде ближнего и среднего излучения.

Самое опасное – излучение с небольшой длиной волны. Если коротковолновое излучение опадает на живые ткани, это провоцирует моментальное разрушительное действие. Но благодаря тому, что у нашей планеты есть озоновый щит, мы находимся в безопасности от воздействия подобных лучей.

ВАЖНО! Несмотря на природную защиту, мы пользуемся в быту некоторыми изобретениями, являющимися источниками именно данного диапазона лучей. Это сварочные аппараты и ультрафиолетовые лампы, от которых, к сожалению, отказаться нельзя.

Биологически ультрафиолет воздействует на человеческую кожу как небольшое покраснение, загар, что является достаточно мягкой реакцией. Но стоит учитывать индивидуальную особенность кожи, которая может специфически отреагировать на УФ излучение.

Воздействие УФ лучей также неблагоприятно влияет на глаза. Многие осведомлены в том, что ультрафиолет так или иначе влияет на человеческий организм, но подробности известны не все, поэтому далее попробуем более детально разобраться в этой теме.

УФ мутагенез или как УФ воздействует на человеческую кожу

Полностью отказываться от попадания солнечных лучей на кожный покров нельзя, это привод к крайне неприятным последствиям.

Но также впадать в крайность и стараться приобрести привлекательный оттенок тела, изнуряя себя под беспощадными лучами солнца – противопоказано. Что может произойти в случае бесконтрольного пребывания под палящим солнцем?

Если обнаружилось покраснение кожи, это не является признаком того, что спустя некоторое время, оно пройдет и останется милый, шоколадный загар. Кожа темнее вследствие того, что организмом вырабатывается красящий пигмент, меланин, который борется с неблагоприятным воздействием УФ на наш организм.

Притом, покраснение на коже остается недолго, а вот эластичность она может утратить навсегда. Также могут начать разрастаться клетки эпителия, визуально отражающиеся в виде веснушек и пигментных пятен, что также останется надолго, а то и навсегда.

Проникая глубока в ткани, ультрафиолет может привести к ультрафиолетовому мутагенезу, что представляет собой повреждение клеток на генном уровне. Наиболее опасным может стать меланома, в случае метастазировании которой может наступить смерть.

Как защититься от ультрафиолетового излучения?

Можно ли защитить кожу от негативного воздействия ультрафиолета? Да, если, будучи на пляже, придерживаться всего нескольких правил:

  1. Находиться под палящим солнцем необходимо недолго и в строго определенные часы, когда приобретенный легкий загар выступит как фотозащита кожи.
  2. Обязательно использовать солнцезащитные крема. Прежде чем купить такого рода средство, обязательно проверьте, способно ли оно защитить вас от УФ-А и УФ-В.
  3. Стоит включить в рацион питания продукты, содержащие максимальное количество витаминов С и Е, а также богатые на антиоксиданты.

Если вы находитесь не на пляже, но вынуждены находится од открытым небом, стоит выбирать специальную одежду, способную защитить кожу от УФ.

Электроофтальмия – негативное влияние УФ-излучения на глаза

Электроофтальмия – явление, возникающие вследствие негативного воздействия ультрафиолета на структуру глаза. УФ волны со средним диапазонов в данном случае являются очень разрушающими для человеческого зрения.


Электроофтальмия

Данные явления чаще всего возникают, когда:

  • Человек наблюдает за солнцем, его местонахождением, не обезопасив глаза специальными приспособлениями;
  • Яркое солнце на открытом пространстве (пляж);
  • Человек находится в заснеженном районе, в горах;
  • В помещении, где находится человек, рассоложены кварцевые лампы.

Электроофтальмия может привести к ожогу роговицы, главными симптомами которого можно назвать:

  • Слезоточивость глаз;
  • Существенные рези;
  • Боязнь яркого света;
  • Покраснение белка;
  • Отёк эпителия роговицы и век.

О статистике глубокие слои роговицы не успевают подвергнуться поражению, поэтому, когда эпителий заживляется, зрение полностью восстанавливается.

Как оказать первую помощь при электроофтальмии?

Если человек столкнулся с вышеперечисленными симптомами, это не только эстетически неприятно, но и может доставить немыслимые страдания.

Оказание первой помощи довольно простое:

  • Сперва промыть глаза чистой водой;
  • Затем применить увлажняющие капли;
  • Надеть очки;

Чтобы избавиться от рези в глазах, достаточно сделать компресс из влажных пакетиков от черного чая, или же натереть сырой картофель. В случае, если эти способы не помогли, стоит сразу же обратиться за помощью к специалисту.

Чтобы избежать подобных ситуаций, достаточно приобрести социальные солнцезащитные очки. Маркировка UV-400 говорит о том, что данный аксессуар способен защитить глаза от всех УФ-излучений.

Как УФ-излучение используется в медицинской практике?

В медицине есть понятие «ультрафиолетового голодания», что может возникнуть в случае длительного избегания солнечного света. При этом могут возникнут неприятные патологии, избежать которые легко, используя искусственные источники ультрафиолета.

Их небольшое воздействие способно компенсировать дефицит зимней нехватки витамина D.

Помимо этого, подобная терапия применима в случае проблем с суставами, заболевания кожи и аллергических реакций.

При помощи УФ-излучения можно:

  • Повысить гемоглобин, но снизить уровень сахара;
  • Нормализовать работу щитовидки;
  • Улучшить и устранить проблемы дыхательной и эндокринной системы;
  • При помощи установок с ультрафиолетовым излучением дизенфицируют помещения и хирургические инструменты;
  • УФ-лучи обладают бактерицидными свойствами, что особенно полезно для больных с гнойными ранами.

ВАЖНО! Всегда, применяя подобные излучения на практике, стоит ознакомиться не только с положительными, но и с негативными сторонами их воздействия. Применять искусственное, как и природное УФ-излучение в качестве лечения категорически запрещается при онкологии, кровотечениях, гипертонии 1 и 2 стадии, туберкулёзе активной формы.

Солнце – мощный источник тепла и света. Без него не может быть жизни на планете. От солнца исходят лучи, которые не видны невооруженным глазом. Узнаем, какие свойства имеет ультрафиолетовое излучение, его влиянии на организм и возможном вреде.

Солнечный спектр имеет инфракрасную, видимую и ультрафиолетовую части. УФ оказывает и положительное, и отрицательное действие на человека. Его используют в разных сферах жизнедеятельности. Широкое применение отмечается в медицине, ультрафиолетовое излучение имеет свойство изменять биологическую структуру клеток, оказывая воздействие на организм.

Источники облучения

Главный источник ультрафиолетовых лучей – солнце. Также их получают при помощи специальных лампочек:

  1. Ртутно-кварцевые высокого давления.
  2. Витальные люминесцентные.
  3. Озонные и кварцевые бактерицидные.

В настоящее время человечеству известны лишь некоторые виды бактерий, способные существовать без ультрафиолета. Для остальных живых клеток его отсутствие приведет к смерти.

Какого же влияние ультрафиолетового излучения на организм человека?

Положительное действие

На сегодняшний день УФ широко используется в медицине. Он обладает успокаивающим, болеутоляющим, антирахитическим и антиспастическим воздействием. Положительное влияние ультрафиолетовых лучей на организм человека:

  • поступление витамина D, он нужен для усвоения кальция;
  • улучшение обмена веществ, так как активизируются ферменты;
  • снижение нервного перенапряжения;
  • повышение выработки эндорфинов;
  • расширение сосудов и нормализация циркуляции крови;
  • ускорение регенерации.

Ультрафиолет для человека полезен также тем, что он воздействует на иммунобиологическую активность, способствует активизации защитных функций организма против различных инфекций. В определенной концентрации излучение вызывает выработку антител, влияющих на возбудителей заболеваний.

Отрицательное влияние

Вред ультрафиолетовой лампы на организм человека часто превышает его полезные свойства. Если ее использование в лечебных целях выполнено неправильно, не были соблюдены меры безопасности, возможна передозировка, характеризующаяся следующими симптомами:

  1. Слабость.
  2. Апатия.
  3. Снижение аппетита.
  4. Проблемы с памятью.
  5. Учащенное сердцебиение.

Продолжительное пребывание на солнце вредно для кожи, глаз и иммунитета. Последствия чрезмерного загара, такие как ожоги, дерматические и аллергические высыпания исчезают через несколько суток. Ультрафиолетовая радиация медленно скапливается в организме и становится причиной опасных заболеваний.

Воздействие УФ на кожу может стать причиной эритемы. Сосуды расширяются, что характеризуется гиперемией и отеком. Накапливающиеся на теле гистамин и витамин D попадают в кровь, это способствует изменениям в организме.

Стадия развития эритемы зависит от:

  • диапазона УФ-лучей;
  • дозы излучения;
  • индивидуальной чувствительности.

Чрезмерное облучение вызывает на коже ожог с образованием пузыря и последующим схождением эпителия.

Но вред ультрафиолета не ограничивается ожогами, его нерациональное применение может спровоцировать патологические изменения в организме.

Действие УФ на кожу

К красивому загорелому телу стремится большинство девушек. Однако кожа приобретает темный цвет под действием меланина, так организм защищается от дальнейшего излучения. Но он не убережет от более серьезного воздействия облучения:

  1. Фотосенсибилизация – высокая чувствительность к ультрафиолету. Минимальное его действие может спровоцировать жжение, зуд или ожог. Это в основном связано с применением лекарственных препаратов, косметических средств либо определенных продуктов питания.
  2. Старение – УФ-лучи проходят в глубокие слои кожи, разрушают коллагеновые волокна, теряется эластичность и появляются морщины.
  3. Меланома – это рак кожи, который образуется в результате частого и продолжительного пребывания на солнце. Чрезмерная доза ультрафиолета вызывает развитие злокачественных новообразований на теле.
  4. Базальноклеточная и чешуйчатая карцинома – это раковое образование на теле, при котором необходимо устранение пораженных участков хирургическим путем. Часто данный недуг встречается у людей, работа которых предполагает долгое пребывание на солнце.

Любой кожный дерматит, вызванный УФ-лучами может стать причиной образования онкологических заболеваний кожи.

Влияние УФ на глаза

Ультрафиолет также может отрицательно воздействовать на глаза. В результате его влияния возможно развитие следующих заболеваний:

  • Фотоофтальмия и электроофтальмия. Характеризуется краснотой и припухлостью глаз, слезотечением, светобоязнью. Появляется у тех, кто часто находятся на ярком солнце в снежную погоду без солнцезащитных очков или у сварщиков, не соблюдающих правила безопасности.
  • Катаракта – помутнение хрусталика. Это заболевание в основном появляется к старости. Оно развивается в результате действия солнечных лучей на глаза, которое накапливается на протяжении жизни.
  • Птеригиум – разрастание конъюнктивы глаза.

Также возможны некоторые виды раковых образований на глазах и веках.

Как действует УФ на иммунную систему?

Как влияет облучение на иммунитет? В определенной дозе УФ-лучи повышают защитные функции организма, но их чрезмерное действие ослабляет иммунную систему.

Радиация излучения изменяет защитные клетки, и они теряют свою способность бороться с различными вирусами, раковыми клетками.

Защита кожи

Чтобы защититься от солнечных лучей, необходимо следовать определенным правилам:

  1. Находиться на открытом солнце нужно умеренно, небольшой загар оказывает фотозащитный эффект.
  2. Необходимо обогатить рацион питания антиоксидантами и витаминами C и E.
  3. Следует всегда пользоваться солнцезащитным кремом. При этом нужно выбирать средство с высоким уровнем защиты.
  4. Использовать ультрафиолет в лечебных целях разрешается исключительно под контролем специалиста.
  5. Тем, кто работает с источниками УФ, рекомендуется защищать себя маской. Это нужно при применении бактерицидной лампы, которая опасна для глаз.
  6. Любителям ровного загара, не следует слишком часто посещать солярий.

Чтобы защитить себя от излучения также можно использовать специальную одежду.

Противопоказания

Противопоказано подвергаться ультрафиолету следующим людям:

  • тем, кто имеет слишком светлую и чувствительную кожу;
  • при активной форме туберкулеза;
  • детям;
  • при острых воспалительных или онкологических заболеваниях;
  • альбиносам;
  • во время II и III стадии гипертонической болезни;
  • при большом количестве родинок;
  • тем, кто страдает системными или гинекологическими недугами;
  • при продолжительном приеме определенных лекарственных препаратов;
  • при наследственной предрасположенности к онкологическим заболеваниям кожи.

Инфракрасное излучение

Еще одна часть солнечного спектра – инфракрасное излучение, оказывающее тепловое действие. Оно используется в современной сауне.

– это маленькое деревянное помещение со встроенными инфракрасными излучателями. Под действием их волн прогревается человеческое тело.

Воздух в инфракрасной сауне не повышается свыше 60 градусов. Однако лучи прогревают тело до 4 см, когда в традиционной бане тепло проникает всего на 5 мм.

Это происходит, так как длина инфракрасных волн имеет ту же длину, что и тепловые волны, идущие от человека. Организм принимает их как свои и не сопротивляется проникновению. Температура человеческого тела поднимается до 38,5 градусов. Благодаря этому погибают вирусы и опасные микроорганизмы. Инфракрасная сауна оказывает лечебное, омолаживающее, и профилактическое действие. Она показана для любого возраста.

Перед посещением такой сауны необходимо проконсультироваться со специалистом, а также следовать технике безопасности нахождения в помещении с инфракрасными излучателями.

Видео: ультрафиолет.

УФ в медицине

В медицине существует термин «ультрафиолетовое голодание». Это происходит, когда организму не хватает солнечного света. Чтобы от этого не возникало никаких патологий, применяют искусственные источники ультрафиолета. Они помогают бороться с зимней нехваткой витамина D и поднять иммунитет.

Также такое излучение используется при лечении суставов, аллергических и дерматологических болезней.

К тому же УФ обладает следующими лечебными свойствами:

  1. Нормализует работу щитовидной железы.
  2. Улучшает функцию дыхательной и эндокринной систем.
  3. Повышает гемоглобин.
  4. Дезинфицирует помещение и медицинские инструменты.
  5. Снижает уровень сахара.
  6. Помогает при лечении гнойных ран.

Необходимо учитывать, что ультрафиолетовая лампа – это не всегда польза, возможен и большой вред.

Чтобы УФ-излучение оказывало полезный эффект на организм, следует использовать его правильно, соблюдать технику безопасности и не превышать время пребывания на солнце. Чрезмерное превышение дозы облучения опасно для здоровья и жизни человека.

Значительную часть неионизирующих электромагнитных излучений составляют радиоволны и колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучение). В зависимости от места и условий воздействия электромагнитных излучений радиочастот различают четыре вида облучения: профессиональное, непрофессиональное, бытовое и в лечебных целях, а по характеру облучения – общее и местное.

Инфракрасное излучение – часть электромагнитного с длиной волны от 780 до 1000 мкм, энергия которого при поглощении веществом вызывает тепловой эффект. Наиболее активно коротковолновое излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. У человека наиболее поражаемые инфракрасным излучением органы – кожный покров и органы зрения.

Видимое излучение при высоких уровнях энергии также может представлять опасность для кожи и глаз.

Ультрафиолетовое излучение, как и инфракрасное, является частью электромагнитного с длиной волны от 200 до 400 нм. Естественные солнечные ультрафиолетовые излучения являются жизненно необходимыми, оказывают благотворное стимулирующее действие на организм.

Излучение искусственных источников может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимым органом являются глаза. Острые поражения глаз называются электроофтальмией. Попадая на кожу, ультрафиолетовые излучения могут вызывать острые воспаления, отек кожи. Может подняться температура, появиться озноб, головная боль.

Лазерное излучение представляет собой особый вид электромагнитных излучений, генерируемых в диапазоне волн 0,1-1000 мкм. Отличается от других видов излучений монохроматичностью (строго одной длины волны), когерентностью (все источники излучения испускают электромагнитные волны в одной фазе) и острой направленностью луча. Действует на различные органы избирательно. Локальное повреждение связано с облучением глаз, повреждением кожи. Общее воздействие может приводить к различным функциональным нарушениям организма человека (нервной и сердечно-сосудистой систем, артериального давления и др.)

2.Коллективные средства защиты (виды, способы применения)

Защита населения и производительных сил страны от оружия массового поражения, а также при стихийных бедствиях, производственных авариях – важнейшая задача Управления по делам гражданской обороны и чрезвычайным ситуациям.

Средства коллективной защиты - средства защиты, конструктивно и функционально связанные с производственным процессом, производственным оборудованием, помещением, зданием, сооружением, производственной площадкой.

Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.

Оградительные устройства предназначены для предотвращения случайного попадания человека в опасную зону. Эти устройства применяются для изоляции движущихся частей машин, зон обработки станков, прессов, ударных элементов машин от рабочей зоны. Устройства подразделяются на стационарные, подвижные и переносные. Они могут быть выполнены в виде защитных кожухов, козырьков, барьеров, экранов; как сплошными, так и сетчатыми. Изготавливают их из металла, пластмасс, дерева.

Стационарные ограждения должны быть достаточно прочными и выдерживать любые нагрузки, возникающие от разрушающих действий предметов и срыва обрабатываемых деталей и т.д. Переносные ограждения в большинстве случаев используют как временные.

Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными. Блокирующие устройства по принципу действия бывают: электромеханические, фотоэлектрические, электромагнитные, радиационные, механические. Ограничительные устройства являются составными частями машин и механизмов, которые разрушаются или выходят из строя при перегрузках.

Широко используются тормозные устройства, которые можно подразделить на колодочные, дисковые, конические и клиновые. В большинстве видов производственного оборудования используют колодочные и дисковые тормоза. Тормозные системы могут быть ручные, ножные, полуавтоматические и автоматические.

Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.

Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.