Какая величина называется теплоемкостью вещества. Применение на практике теплоемкости в строительной сфере. Что влияет на удельную теплоемкость

Материал из Юнциклопедии


Теплоемкостью тела называют количество теплоты, которое нужно сообщить данному телу, чтобы повысить его температуру на один градус. При остывании на один градус тело отдает такое же количество тепла. Теплоемкость пропорциональна массе тела. Теплоемкость единицы массы тела называется удельной, а произведение удельной теплоемкости на атомную или молекулярную массу - соответственно атомной или молярной.

Теплоемкости различных веществ сильно различаются между собой. Так, удельная теплоемкость воды при 20° С составляет 4200 Дж/кг К, соснового дерева - 1700, воздуха - 1010. У металлов она меньше: алюминия - 880 Дж/кг К, железа - 460, меди - 385, свинца - 130. Удельная теплоемкость слабо растет с температурой (при 90° С теплоемкость воды составляет 4220 Дж/кг К) и сильно меняется при фазовых превращениях: теплоемкость льда при 0° С в 2 раза меньше, чем воды; теплоемкость водяного пара при 100е С около 1500 Дж/кг К.

Теплоемкость зависит от условий, в которых происходит изменение температуры тела. Если размеры тела не меняются, то вся теплота идет на изменение внутренней энергии. Здесь говорится о теплоемкости при постоянном объеме (С V). При постоянном внешнем давлении благодаря тепловому расширению совершается механическая работа против внешних сил, и нагревание на ту или иную температуру требует большего тепла. Поэтому теплоемкость при постоянном давлении С P всегда больше, чем C V . Для идеальных газов С P - C V = R (см. рис.), где R - газовая постоянная, равная 8,32 Дж/моль К.

Обычно измеряется С P . Классический способ измерения теплоемкости следующий: тело, теплоемкость которого (С x) хотят измерить, нагревают до определенной температуры t x и помещают в калориметр с начальной температурой t 0 , наполненный водой или другой жидкостью с известной теплоемкостью (С к и С ж - теплоемкости калориметра и жидкости). Измеряя температуру в калориметре после установления теплового равновесия (t), можно вычислить теплоемкость тела по формуле:

С x = (t-t 0)(C ж m ж + C к m к) / (m x (t x -t)),

где m x , m ж и m к - массы тела, жидкости и калориметра.

Наиболее развита теория теплоемкости газов. При обычных температурах нагревание приводит в основном к изменению энергии поступательного и вращательного движения молекул газа. Для молярной теплоемкости одноатомных газов C V теория дает 3R/2, двухатомных и многоатомных - 5R/2 и 3R. При очень низких температурах теплоемкость несколько меньше из-за квантовых эффектов (см. Квантовая механика). При высоких температурах добавляется колебательная энергия, и теплоемкость многоатомных газов растет с ростом температуры.

Атомная теплоемкость кристаллов, по классической теории, равна 3Ry что согласуется с эмпирическим законом Дюлонга и Пти (установлен в 1819 г. французскими учеными П. Дюлонгом и А. Пти). Квантовая теория теплоемкости приводит к такому же выводу при высоких температурах, но предсказывает уменьшение теплоемкости при понижении температуры. Вблизи абсолютного нуля теплоемкость всех тел стремится к нулю (третий закон термодинамики).

Теплоёмкость тела (обычно обозначается латинской буквой C ) - физическая величина , определяемая отношением бесконечно малого количества теплоты δQ , полученного телом, к соответствующему приращению его температуры δT :

C = {\delta Q \over \delta T}.

Единица измерения теплоёмкости в Международной системе единиц (СИ) - Дж / .

Удельная теплоёмкость

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость (С ), также называемая просто удельной теплоёмкостью - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1).

А при постоянном давлении

c_p = c_v + R = \frac{i+2}{2} R.

Переход вещества из одного агрегатного состояния в другое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения - температура плавления (переход твёрдого тела в жидкость), температура кипения (переход жидкости в газ) и, соответственно, температуры обратных превращений: замерзания и конденсации.

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях - 4200 Дж/(кг·К); льда - 2100 Дж/(кг·К).

Теория теплоёмкости

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга - Пти и закон Джоуля - Коппа . Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна . Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая . Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Напишите отзыв о статье "Теплоёмкость"

Примечания

Литература

  • // Энциклопедический словарь юного физика / В. А. Чуянов (сост.). - М .: Педагогика, 1984. - С. 268–269. - 352 с.

См. также

Отрывок, характеризующий Теплоёмкость

Он не мог иметь цели, потому что он теперь имел веру, – не веру в какие нибудь правила, или слова, или мысли, но веру в живого, всегда ощущаемого бога. Прежде он искал его в целях, которые он ставил себе. Это искание цели было только искание бога; и вдруг он узнал в своем плену не словами, не рассуждениями, но непосредственным чувством то, что ему давно уж говорила нянюшка: что бог вот он, тут, везде. Он в плену узнал, что бог в Каратаеве более велик, бесконечен и непостижим, чем в признаваемом масонами Архитектоне вселенной. Он испытывал чувство человека, нашедшего искомое у себя под ногами, тогда как он напрягал зрение, глядя далеко от себя. Он всю жизнь свою смотрел туда куда то, поверх голов окружающих людей, а надо было не напрягать глаз, а только смотреть перед собой.
Он не умел видеть прежде великого, непостижимого и бесконечного ни в чем. Он только чувствовал, что оно должно быть где то, и искал его. Во всем близком, понятном он видел одно ограниченное, мелкое, житейское, бессмысленное. Он вооружался умственной зрительной трубой и смотрел в даль, туда, где это мелкое, житейское, скрываясь в тумане дали, казалось ему великим и бесконечным оттого только, что оно было неясно видимо. Таким ему представлялась европейская жизнь, политика, масонство, философия, филантропия. Но и тогда, в те минуты, которые он считал своей слабостью, ум его проникал и в эту даль, и там он видел то же мелкое, житейское, бессмысленное. Теперь же он выучился видеть великое, вечное и бесконечное во всем, и потому естественно, чтобы видеть его, чтобы наслаждаться его созерцанием, он бросил трубу, в которую смотрел до сих пор через головы людей, и радостно созерцал вокруг себя вечно изменяющуюся, вечно великую, непостижимую и бесконечную жизнь. И чем ближе он смотрел, тем больше он был спокоен и счастлив. Прежде разрушавший все его умственные постройки страшный вопрос: зачем? теперь для него не существовал. Теперь на этот вопрос – зачем? в душе его всегда готов был простой ответ: затем, что есть бог, тот бог, без воли которого не спадет волос с головы человека.

Пьер почти не изменился в своих внешних приемах. На вид он был точно таким же, каким он был прежде. Так же, как и прежде, он был рассеян и казался занятым не тем, что было перед глазами, а чем то своим, особенным. Разница между прежним и теперешним его состоянием состояла в том, что прежде, когда он забывал то, что было перед ним, то, что ему говорили, он, страдальчески сморщивши лоб, как будто пытался и не мог разглядеть чего то, далеко отстоящего от него. Теперь он так же забывал то, что ему говорили, и то, что было перед ним; но теперь с чуть заметной, как будто насмешливой, улыбкой он всматривался в то самое, что было перед ним, вслушивался в то, что ему говорили, хотя очевидно видел и слышал что то совсем другое. Прежде он казался хотя и добрым человеком, но несчастным; и потому невольно люди отдалялись от него. Теперь улыбка радости жизни постоянно играла около его рта, и в глазах его светилось участие к людям – вопрос: довольны ли они так же, как и он? И людям приятно было в его присутствии.
Прежде он много говорил, горячился, когда говорил, и мало слушал; теперь он редко увлекался разговором и умел слушать так, что люди охотно высказывали ему свои самые задушевные тайны.
Княжна, никогда не любившая Пьера и питавшая к нему особенно враждебное чувство с тех пор, как после смерти старого графа она чувствовала себя обязанной Пьеру, к досаде и удивлению своему, после короткого пребывания в Орле, куда она приехала с намерением доказать Пьеру, что, несмотря на его неблагодарность, она считает своим долгом ходить за ним, княжна скоро почувствовала, что она его любит. Пьер ничем не заискивал расположения княжны. Он только с любопытством рассматривал ее. Прежде княжна чувствовала, что в его взгляде на нее были равнодушие и насмешка, и она, как и перед другими людьми, сжималась перед ним и выставляла только свою боевую сторону жизни; теперь, напротив, она чувствовала, что он как будто докапывался до самых задушевных сторон ее жизни; и она сначала с недоверием, а потом с благодарностью выказывала ему затаенные добрые стороны своего характера.
Самый хитрый человек не мог бы искуснее вкрасться в доверие княжны, вызывая ее воспоминания лучшего времени молодости и выказывая к ним сочувствие. А между тем вся хитрость Пьера состояла только в том, что он искал своего удовольствия, вызывая в озлобленной, cyхой и по своему гордой княжне человеческие чувства.
– Да, он очень, очень добрый человек, когда находится под влиянием не дурных людей, а таких людей, как я, – говорила себе княжна.
Перемена, происшедшая в Пьере, была замечена по своему и его слугами – Терентием и Васькой. Они находили, что он много попростел. Терентий часто, раздев барина, с сапогами и платьем в руке, пожелав покойной ночи, медлил уходить, ожидая, не вступит ли барин в разговор. И большею частью Пьер останавливал Терентия, замечая, что ему хочется поговорить.

ТЕПЛОЁМКОСТЬ - кол-во теплоты; поглощаемой телом при нагревании на 1 градус (1 °С или 1 К); точнее - отношение кол-ва теплоты, поглощаемой телом при бесконечно малом изменении его темп-ры, к этому изменению. Т. единицы массы вещества наз. удельной Т., 1 моля вещества-молярной (мольной) Т. Единицами Т. служат Дж/(кг · К), ДжДмоль · К), Дж/(м 3 · К) и внесистемная единица кал/(моль·К).

Кол-во теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их темп-ры), но и от способа, к-рым был осуществлён процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при пост. объёме (C V )и Т. при пост. давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. При нагревании при пост. давлении часть теплоты идёт на производство работы расширения тела, а часть - на увеличение его внутренней энергии , тогда как при нагревании при пост. объёме вся теплота расходуется на увеличение внутр. энергии; в связи с этим С Р всегда больше, чем C V . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. С P - C V = R , где R - универсальная газовая постоянная ,равная 8,314 Дж/(Дмоль·К) или 1,986 калДмоль·К). У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала. Т. С Р нек-рых веществ и материалов приведены в табл. 1 и 2.

В твёрдых (кристаллич.) телах тепловое движение атомов представляет собой малые колебания вблизи определ. положений равновесия (узлов кристаллич. решётки). Каждый атом обладает, т. о., тремя колебат. степенями свободы, и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллич. решётки) должна быть равной ЗnR , где n -число атомов в молекуле. В действительности, однако, это значение - лишь предел, к к-рому стремится Т. твёрдого тела при высоких темп-pax. Он достигается уже при обычных темп-pax у мн. элементов, в т. ч. у металлов (п=1 , т.н. Дюлонга и Пти закон )и у нек-рых простых соединений ; у сложных соединений этот предел фактически не достигается, т. к. раньше наступает плавление вещества или его разложение.

При низких темп-pax решёточная составляющая Т, твёрдого тела оказывается пропорц. T 3 (Дебая закон теплоёмкости) . Критерием, позволяющим различать высокие и низкие темп-ры, является сравнение их с характерным для каждого данного вещества параметром - т. н. характеристической или Дебая температурой q D , Эта величина определяется спектром колебания атомов в теле и тем самым существенно зависит от его кристаллич. структуры (см. Колебания кристаллической решётки) . Обычно q D -величина порядка неск. сотен К, но может достигать (напр., у алмаза) и тысяч К,

У металлов определ. вклад в Т. дают также и электроны проводимости (см. Электронная теплоёмкость) . Эта часть Т. может быть вычислена с помощью Ферми - Дирака, статистики, к-рой подчиняются электроны. Электронная Т. металла пропорц. Т . Она представляет собой, однако, сравнительно малую величину, её вклад в Т. металла становится существенным лишь при темп-pax, близких к абс, нулю (порядка неск. К), когда решёточная Т. ( 3 )становится пренебрежимо малой. У кристаллич. тел с упорядоченным расположением спиновых магн. моментов атомов (ферро- и антиферромагнетиков) существует дополнит. магн, составляющая Т. При темп-ре фазового перехода в парамагн. состояние (в Кюри точке или соответственно Нееля точке )эта составляющая Т. испытывает резкий подъём - наблюдается "пик" Т., что является характерной особенностью фазовых переходов 2-го рода. .

Лит..: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976; Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976. E. М. Лифшиц .

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Теплоемкостью тела называют количество теплоты, которое нужно сообщить данному телу, чтобы повысить его температуру на один градус. При остывании на один градус тело отдает такое же количество тепла. Теплоемкость пропорциональна массе тела. Теплоемкость единицы массы тела называется удельной, а произведение удельной теплоемкости на атомную или молекулярную массу - соответственно атомной или молярной.

Теплоемкости различных веществ сильно различаются между собой. Так, удельная теплоемкость воды при 20° С составляет 4200 Дж/кг К, соснового дерева - 1700, воздуха - 1010. У металлов она меньше: алюминия - 880 Дж/кг К, железа - 460, меди - 385, свинца - 130. Удельная теплоемкость слабо растет с температурой (при 90° С теплоемкость воды составляет 4220 Дж/кг К) и сильно меняется при фазовых превращениях: теплоемкость льда при 0° С в 2 раза меньше, чем воды; теплоемкость водяного пара при 100° С около 1500 Дж/кг К.

Теплоемкость зависит от условий, в которых происходит изменение температуры тела. Если размеры тела не меняются, то вся теплота идет на изменение внутренней энергии. Здесь говорится о теплоемкости при постоянном объеме . При постоянном внешнем давлении благодаря тепловому расширению совершается механическая работа против внешних сил, и нагревание на ту или иную температуру требует большего тепла. Поэтому теплоемкость при постоянном давлении всегда больше, чем . Для идеальных газов (см. рис.), где R - газовая постоянная, равная 8,32 Дж/моль К.

Обычно измеряется . Классический способ измерения теплоемкости следующий: тело, теплоемкость которого хотят измерить, нагревают до определенной температуры и помещают в калориметр с начальной температурой , наполненный водой или другой жидкостью с известной теплоемкостью и - теплоемкости калориметра и жидкости).

Измеряя температуру в калориметре после установления теплового равновесия , можно вычислить теплоемкость тела по формуле:

где и - массы тела, жидкости и калориметра.

Наиболее развита теория теплоемкости газов. При обычных температурах нагревание приводит в основном к изменению энергии поступательного и вращательного движения молекул газа. Для молярной теплоемкости одноатомных газов теория дает , двухатомных и многоатомных - и . При очень низких температурах теплоемкость несколько меньше из-за квантовых эффектов (см. Квантовая механика). При высоких температурах добавляется колебательная энергия, и теплоемкость многоатомных газов растет с ростом температуры.

Атомная теплоемкость кристаллов, по классической теории, равна , что согласуется с эмпирическим законом Дюлонга и Пти (установлен в 1819 г. французскими учеными П. Дюлонгом и А. Пти). Квантовая теория теплоемкости приводит к такому же выводу при высоких температурах, но предсказывает уменьшение теплоемкости при понижении температуры. Вблизи абсолютного нуля теплоемкость всех тел стремится к нулю (третий закон термодинамики).