Идеальный газ модель газа в. Школьная энциклопедия. Объединенный газовый закон

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 12962

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

Строение газообразных, жидких и твердых тел

Молекулярно-кинетическая теория дает возможность поня ть, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис.1). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется (рис.2).

Рис.1 Рис.2

Молекулы с огромными скоростями — сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.3), поэтому молекула жидкости ведет себя иначе, чем молекула газа.

В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю.

Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время же одного колебания значительно меньше (10 -12 -10 -13 с). С повышением температуры время оседлой жизни молекул уменьшается.

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И.Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема, силы отталкивания становятся, очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.4). Вот почему жидкость течет и принимает форму сосуда.

Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой людей, где отдельные индивидуумы беспокойно толкутся на месте, а твердое тело подобно стройной когорте тех же индивидуумов, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные расстояния. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

На рисунках 5 и 6 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.

Рис.5 Рис.6

У газа расстояние l между молекулами много больше размеров молекул r 0:l>>r 0 .

У жидкостей и твердых тел l≈r 0 . Молекулы жидкости расположены в беспорядке и время от времени перескакивают из одного оседлого положения в другое.

У кристаллических твердых тел молекулы (или атомы) расположены строго упорядоченно.

Кристаллизация - процесс фазового перехода вещества из жидкого состояния в твёрдое состояние.

Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учиты­вают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d , а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.

Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеаль­ным, если расстояние r между его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как мы знаем, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколь­ко диаметров d молекулы пренебрежимо малы. Поэтому условие идеаль­ности газа в расширенном понимании можно записать в виде:

r>>d (1)

Расстояние r нетрудно выразить через такой важный параметр газа как концентрацию n=N/V , здесь N – число частиц в газе, а V – его объем. В самом деле, если газ находится в равновесии, при отсутствии внешних полей его молекулы будут равномерно распре­делены в объеме V м 3 , и тогда на ребре куба длиной 1 м расположиться 3 √n молекул. Следовательно, среднее расстояние между молекулами составит

r = 1/ 3 √n (2)

Из соотношений (1) и (2) следует, что критерий идеальности газа можно представить следующим образом

nd 3 << 1 , nd 3 – безразмерный параметр (3)

Учитывая, что число частиц в газе N=mN A /m , концентрацию можно выразить через плотность ρ газа:

n = N/ѵ = (m/ν)*(Na/m) = ρNa/m (4)

где ρ = m/V — плотность газа

Выражение (4) позволяет записать критерий идеальности газа (5) в эквивалентной форме

ρN A d 3 /m<<1 (5),

где: ρ – плотность газа; Na – постоянная Авагадро; m – масса газа; ν = N/Na – количество вещества.

Изопроцессы

Изопроцессы — это процессы, протекающие при неизменном значении одного из макроскопических параметров (р, V, Т).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим .

Изотермический процесс описывает закон Бойля- Мариотта, открытый в 1861 г. английским ученым Р. Бой-лем (1627-1691) и в 1876 г. французским ученым Э. Мари-оттом (1620-1684). При постоянной массе газа pV = const.

Для газа данной массы произведение давления на его объем постоянно, если температура не меняется.

Графики изотермического процесса в координатах р-V; р-Т; V-Т имеют следующий вид (рис. 7):

Процесс изменения состояния термодинамической системы при постоянном давлении называется изобарным. Из уравнения Менделеева-Клапейрона следует, что при

постоянной массе газа

Для данной массы газа отношение объема к температуре постоянно, если давление газа не меняется.

Этот закон был установлен экспериментально в 1802 г. французским ученым Ж. Гей-Люссаком (1778-1850).

Урок № 4.

Тема урока. Модель идеального газа. Давление газа.

Цель: обучающая - умение описывать основные черты модели «идеального газа», объяснять давление создаваемое газом, выяснить физическую природу давления газа, его причины.

развивающая : продолжить формировать у учащихся положительное отношение к самостоятельному поиску знания; продолжить развивать умения работать в парах; общеучебные знания и умения; моделировать сущность процессов, проводить мыслительный эксперимент; продолжить формирование представлений о единстве и взаимосвязи явлений природы.

воспитательная: воспитывать ответственное отношение к учебе, положительное отношение к предмету физики.

Тип урока: комбинированный на основе исследовательской деятельности.

Демонстрация : Воздушный шар; модель молекул газа и сосуд, в котором он находится (песок и пластинка из бумаги).

Методы обучения: лекция, беседа, демонстрация, работа с раздаточным материалом .

План урока

1. Орг.момент .

2. Проверка домашнего задания.

3. Мотивация учебной деятельности.

4. Изучение нового материала.

5. Закрепление.

6. Домашнее задание.

Ход урока

    Орг.момент.

    Проверка домашнего задания.

    1. Тестовое задание .

1). Какими общими свойствами обладают твердые тела?

А. Собственной формой и легко изменяемым объемом.

Б. Собственной формой и объемом.

В. Собственным объемом и изменчивостью формы.

2). Чем отличается, с молекулярной точки зрения, цинк в твердом и жидком состояниях?

А. Составом молекул.

Б. Ничем.

В.Расположением, взаимодействием и движением молекул.

3). Почему газы не имеют собственной формы?

Б. Потому, что молекулы газа, практически не взаимодействуя, двигаясь свободно и хаотично, достигают всех стенок сосуда, и газ принимает его
форму.

В. Из-за диффузии.

4). Какими общими свойствами обладают жидкости?

А. Отсутствие собственной формы и объема.

Б. Обладание собственной формой и объемом.

В. Наличие у них собственного объема и текучести, следовательно, изменчивостью формы.

5). В каком состоянии вещества его молекулы сближены на расстояния, меньшие размеров самих молекул, сильно взаимодействуют и остаются на одних и тех же местах, лишь совершая около них колебания?

А. Жидком.

Б. Газообразном.

В. Твердом.

6).Почему газы занимают все предоставленное им пространство?

А. Потому, что молекулы газа быстро движутся.

Б. Потому, что молекулы газа, практически не взаимодействуя, двигаясь свободно и хаотично, достигают всех стенок сосуда, и газ принимает его форму.

В. Вследствие диффузии.

2. Физический диктант.

1. Относительной молекулярной массой называется…

2. Моль – это…

3. Количество вещества равно отношению…

4. Постоянная Авогадро равна…

5. Молекулярной массой вещества называют…

7. Броуновское движение – это…

8. Между атомами или молекулами существуют силы…

3. Заполнить таблицу: «Основные положения МКТ и свойства жидких, твердых и газообразных тел»

Первое положение МКТ: строение вещества

Второе положение МКТ: характер движения частиц

Третье положение МКТ: взаимодействие между частицами

Свойства

Форма

Объем

Газ

Жидкость

Твердое

тело

    Мотивация учебной деятельности .

Вопрос к классу:

    Почему важно изучать газы, уметь описывать процессы, которые с ними происходят? Ответ обосновать, используя ранее полученные знания физики, собственный опыт.

Учитель побуждает учащихся дать полный ответ, используя опорные слова по методу «пресс».

    Изучение нового материала.

Изучение любой области физики всегда начинается с введения некой модели, в рамках которой идет изучение в дальнейшем. Например, когда мы изучали кинематику, моделью тела была материальная точка, когда изучали планетарные движения, планеты принимались за сферы и т. д. Как вы уже догадались, модель никогда не будет соответствовать реально происходящим процессам, но часто она очень сильно приближается к этому соответствию.

Молекулярная физика, и в частности МКТ, не является исключением. Над проблемой описания модели работали многие учёные, начиная с восемнадцатого века: М. Ломоносов, Д. Джоуль, Р. Клаузиус (рис. 1). Последний, собственно, и ввёл в 1857 году модель идеального газа.

Идеальный газ – модель газа, в рамках которого молекулы и атомы газа представлены в виде очень маленьких (исчезающих размеров) упругих шариков, которые не взаимодействуют друг с другом (без непосредственного контакта), а только сталкиваются (рис. 2).

Следует отметить, что разреженный водород (под очень маленьким давлением) практически полностью удовлетворяет модели идеального газа.

Именно макропараметры измеряются измерительными приборами.

Идеальный газ – математическая модель газа, в которой предполагается, а) что, потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

б) суммарный объём молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Упоминая об идеальном газе, мы предполагаем следующее:

Молекулы газа очень малы и представляют собой упругие шарики.

Молекулы этого газа двигаются беспорядочно.

Взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими.

Конечно, такого газа в природе не существует. Однако данная модель очень хорошо подходит для исследования тех свойств газов, которые мы будем рассматривать в дальнейшем. Надо сказать, что разряжённый водород практически полностью соответствует модели идеального газа. Впрочем, при привычных нам температурах, таких, как комнатная температура, например, модель идеального газа достаточно хорошо описывает реальные газы, такие, как воздух.

Демонстрация: воздушный шар. Вопросы:

Что вам мешает при сжатии?

Что действует на оболочку шарика?

Рассмотрим давление газа на стенки закрытого сосуда. Как вы знаете, давление газа возникает в результате соударений молекул газа со стенками сосуда. Прибор, измеряющий давление, называется манометр .

Рис. 3. Манометр

Конечно, манометр не может улавливать силу удара отдельных молекул. Манометр регистрирует среднюю по времени силу, которая действует на единицу площади поверхности. Если мы построим график зависимости давления от времени, то убедимся, что давление постоянно меняется (рис. 4).

Рис.4.

Однако наблюдаются не хаотичные скачки давления, а сравнительно небольшие колебания вокруг какого-то среднего значения. Поэтому, давление оказывается вполне определенной величиной. В одном из предыдущих уроков мы убедились, что газы легко сжимаются, но при этом повышается давление. Теперь мы можем в этом ещё раз убедиться: очевидно, что если газ поместить в меньший объём, то количество соударений в единицу времени увеличится. Это увеличит среднюю силу, а, значит, давление тоже увеличится.

Рис.5.

Но, чтобы вычислить среднее давление, необходимо знать среднюю скорость молекул. Точнее, как мы убедимся чуть позже, нам нужно знать значение не самой средней скорости, а квадрата средней скорости. Конечно же, проследить за всеми молекулами газа просто невозможно. Их очень много, все они движутся по хаотичной траектории, преодолевая несколько сотен метров в секунду. Но нас не интересует скорость отдельной молекулы. Нас интересует, к какому результату приводит движение всех молекул газа.

Можно привести простой пример. Когда повар готовит ужин для большого количества людей, он не знает, кто сколько съест. Но повар знает какое-то

Рис.6

среднее количество еды, которое может съесть за ужином среднестатистический человек, и, исходя из этого, рассчитывает количество еды, которое необходимо приготовить.

Точно также, нам не надо знать скорости отдельных молекул. Нам необходимо знать какое-то среднее значение скорости, и, исходя из него, производить те или иные расчеты.

Кинетической энергией (в отличие от потенциальной) молекул газа не пренебрегают. Кинетическая энергия – это энергия движения, то есть она зависит от скорости, поэтому рассмотрим скорости теплового движения молекул.

Несмотря на то, что молекулы одного и того же газа являются одинаковыми, скорости у них разные. Этот факт экспериментально доказал французский физик Жан-Батист Перрен.

На рисунке 7 изображено распределение молекул по скоростям, так называемое распределение Максвелла. На нём видно, что существуют очень быстрые молекулы и очень медленные, но большинство молекул двигаются со средним значением скорости (выделено жёлтым).

Рис. 7. Распределение молекул воздуха по скоростям

Средняя квадратичная скорость – это скорость, равная корню квадратному из средней арифметической величины квадратов скоростей отдельных молекул; она несколько отличается от средней арифметической скорости молекул.

,

где , , – скорости отдельных молекул, N – количество молекул.

К чему приводит наличие скорости у молекул газа, можно увидеть из эксперимента, для которого понадобится песок (моделирует молекулы газа) и пластинка из бумаги (моделирует сосуд, в котором находится газ). При высыпании песка пластинка под давлением песчинок отклоняется (рис. 7). Точно так же и молекулы газа оказывают давление на стенки сосуда, в котором они находятся.

Рис. 7. Отклонение пластинки под действием давления песка

Рассмотрим график зависимости давления газа на стенки сосуда от времени (Рис. 8). На нём видно, что если молекул было бы мало, то наблюдались бы отклонения, так как в какой-то момент в стенку могло бы ударить разное количество молекул, и это ощутимо поменяло бы давление. Но так как в реальности молекул огромное количество, то давление всё время остаётся постоянным.

Рис. 8. График зависимости давления газа на стенки сосуда от времени

Можно сделать вывод, что скорость – это величина, которая характеризует отдельную молекулу, а давление имеет смысл только для большого числа молекул (понятие «давление одной молекулы» совершенно бессмысленно).

Модель идеального газа оказалась настолько универсальной, что физики применяют её не только для газов, подобных воздуху, но и для электронного газа в металле, для излучения электромагнитных волн и даже для звуковых колебаний в кристаллах. Теория идеального газа позволяет оценить давление и температуру внутри звёзд, результаты таких оценок близки к результатам, полученным строгими расчётами.

4. Закрепление.

    Задание классу:

    1. Назовите слова или словосочетания, которые являются «ключевыми» в данном уроке по методу «ключевые слова».

      Достигнута ли цель урока? Выскажите свое мнение.

2. Ответить на вопросы:

2.1. Идеальным газом называется…

2.2. Объясните своими словами содержания понятия «идеальный газ».

2.3. Какие макропараметры, характеризующие газ, Вы знаете?

2.4. Что такое средняя квадратичная скорость?

2.5. Каким ещё способом можно продемонстрировать наличие скорости у молекул газа?

2.6. Почему с увеличением массы молекул увеличивается давление?

2.7. Почему модель идеального газа не соответствует действительности?

2.8. *Почему, говоря о микропараметрах идеального газа, мы указываем только кинетическую энергию молекулы и не указываем потенциальную?

3. Заполнить таблицу

5. Домашнее задание .

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. Физика, 10 класс, М., «Просвещение», 2016. Читать §57 (с.188-190).

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном .

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма - частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газ это газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V , давление p и температура T .

Объем газа обозначается V . Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давление физическая величина, равная отношению силы F , действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента .

p = F / S Единица давления в СИ паскаль [Па]

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда .

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ x скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ y скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый - для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ : давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

p = 1/3· m n·v 2

m 0 - масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 - средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m 0 *v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m 0 · v 2)/2 = 2/3·E·n

p = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m 0 ·n = m 0 ·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V , давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V , давлением p , температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона .

Уравнение Клайперона можно записать в другой форме.

p = nkT,

учитывая, что

Здесь N – число молекул в сосуде, ν – количество вещества, N А – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро N А на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R .

Ее численное значение в СИ R = 8,31 Дж/моль·К

Соотношение

называется уравнением состояния идеального газа .

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной . Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV =RT для нагретого газа: p (V + ΔV) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A .

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

ОПРЕДЕЛЕНИЕ

Идеальный газ - это простейшая физическая модель настоящего газа. Идеальный газ состоит из огромного числа частиц, которые уподобляют шарикам (материальным точкам), имеющим конечную массу, и у которых отсутствует объем.

Моделью в физике называют упрощенную копию изучаемой настоящей системы. Она отражает самые значимые основные характеристики и свойства системы.

В модели идеального газа учитываются только основные свойства молекул, которые требуются для того, чтобы объяснить основы поведения газа. Идеальный газ напоминает реальный газ в довольно узком интервале давлений (p) и температур (T).

Главным упрощением идеального газа является предположение о том, что молекулы идеального газа не взаимодействуют на расстоянии. Кинетическая энергия движения молекул такого газа много больше, потенциальной энергии их взаимодействия. Данное упрощение ведет к уравнению состояния идеального газа:

где m - масса газа; - молярная масса; - универсальная газовая постоянная.

Реальные газы можно уподобить идеальному газу с достаточно высокой точностью при низких делениях, когда расстояния (в среднем) между молекулами существенно больше, чем их размеры и (или) низких температурах. В таком случае силы притяжения между молекулами можно считать ничтожно малыми, а силы отталкивания возникают на очень маленькие промежутки времени при столкновениях молекул.

Столкновения частиц идеального газа описывают при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы. В промежутках между столкновениями молекулы идеального газа движется по прямым линиям. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. В МКТ движение каждой молекулы идеального газа описывают при помощи законов динамики. Однако из-за того, что число молекул в газе огромно, то практически не представляется возможным написать такое число уранений.

С помощью модели идеального газа получают, например, основное уравнение молекулярно-кинетической теории (МКТ) (2). Которое показывает, что давление газа является результатом многочисленных ударов его молекул о стенки сосуда, в котором газ находится.

где - средняя кинетическая энергия поступательного движения молекул газа; - концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда); - масса молекулы газа; - среднеквадратичная скорость молекулы.

Модель идеального газа можно использовать для объяснения свойств газов. Так, горят, что газ занимает весь объем, который ему предоставляется, потому что силы взаимодействия его молекул малы, и они не способны удержать молекулы друг около друга.

Примеры решения задач

ПРИМЕР 1

Задание Идеальный газ находится в сосуде объем, которого составляет л. Давление этого газа равно Па. Средняя кинетическая энергия, которую имеют молекулы газа Дж. Какое число молекул газа находится в сосуде?
Решение В качестве основы для решения задачи используем основное уравнение МКТ:

Концентрация молекул (n) это:

где N — искомое число молекул газа. Подставим правую часть выражения (1.2) в (1.1), имеем:

Проведем вычисления:

Ответ молекул.