Кто из ученых считается основоположником генетики. История развития генетики. Триплеты не перекрываются

Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.

Генетика -наука о закономерностях наследственности и изменчивости. Основной задачей генетики является изучение следующих проблем:

1. Хранение наследственной информации.

2. Механизм передачи генетической информации от поколения к поколению клеток или организмов.

3. Реализация генетической информации.

Изменение генетической информации (изучение типов, причин и механизмов изменчивости).

Разработка методов использования генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений, а в перспективе и внедрение этих методов в генетику растений, животных и даже человека. Методы, используемые в генетике, разнообразны, но основной из них - гибридологический анализ, то есть скрещивание с последующим генетическим анализом потомства. Он используется на молекулярном, клеточном (гибридизация соматических клеток) и организменном уровнях. Кроме того, в зависимости от уровня исследования (молекулярный, клеточный, организменный, популяционный), изучаемого объекта (бактерии, растения, животные, человек) и других факторов используются самые разнообразные методы современной биологии, химии, физики, математики. Однако каковы бы ни были методы, они всегда являются вспомогательными к основному методу - генетическому анализу. В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работаОпыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице , на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Билет №7

1. Основные компоненты клетки, их функции.

Клетка - элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Все клеточные формы жизни на Земле можно разделить на два царства на основании строения составляющих их клеток:

Прокариоты (доядерные) - более простые по строению и возникли в процессе эволюции раньше;

Эукариоты (ядерные) - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Основными элементами эукариотических клеток являются: Плазматическая мембрана , окружающая каждую клетку, определяет ее величину и обеспечивает сохранение существенных различий между клеточным содержимым и окружающей средой.

Мембрана служит высокоизбирательным фильтром, который поддерживает разницу концентраций ионов по обе стороны мембраны и позволяет питательным веществам проникать внутрь клетки, а продуктам выделения выходить наружу.Цитоплазма -содержимое клетки, не включающее ядро, включающее цитозоль и органеллы и ограниченное клеточной мембраной. Цитозоль - это часть цитоплазмы, занимающая пространство между мембранными органеллами. Обычно на него приходится около половины общего объема клетки. В состав цитозоля входит множество ферментов промежуточного обмена и рибосомы. Около половины всех белков, образующихся на рибосомах, остаются в цитозоле в качестве его постоянных компонентов. Ядро содержит основную часть генома и является главным местом синтеза ДНК и РНК.

Окружающая ядро цитоплазма состоит из цитозоля и расположенных в нем цитоплазматических органелл. Аппарат Гольджи состоит из правильных стопок уплощенных мембранных мешочков, называемыхцистернами Гольджи ; он получает из ЭР белки и липиды и отправляет эти молекулы в различные пункты внутри клетки, попутно подвергая их ковалентным модификациям. Митохондрии производят большую часть АТР, используемого в реакциях биосинтеза, требующих поступления свободной энергии. Лизосомы содержат пищеварительные ферменты, которые разрушают отработанные органеллы, а также частицы и молекулы, поглощенные клеткой извне путем эндоцитоза. На пути к лизосомам поглощенные молекулы и частицы должны пройти серию органелл, называемых эндосомами.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

Вспомните!

Что изучает генетика?

Почему основателем генетики считают Г. Менделя?

С какими объектами работал Г. Мендель?

Какой основной метод изучения наследственности он разработал?

Предмет и основные понятия генетики. На протяжении всей истории своего существования человечество всегда интересовал вопрос о причинах сходства детей и родителей. Почему подобное рождает подобное? «Как он похож на своего отца!» – восклицают родственники, придя на день рождения и глядя на выросшего юношу. «У него абсолютный музыкальный слух!» – с гордостью сообщает его мать, обладающая таким же качеством. В голубых глазах родителей светится гордость за подрастающее поколение, а виновник торжества, невинно моргая такими же голубыми глазами, незаметно съедает приготовленные для гостей конфеты.

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определённый порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка, тРНК или рРНК. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов приобретать в процессе индивидуального развития отличия от других особей своего и других видов.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом . Мы рождаемся с определённым цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесённые в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским учёным Грегором Менделем (1822–1884). Мендель не был первым учёным, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчётов.

Объясняя, почему именно Мендель смог обнаружить закономерности в передаче признаков от поколения к поколению, английский генетик Шарлотта Ауэрбах сказала: «Успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для учёного: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы».

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищён от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– в качестве экспериментальных признаков Мендель выбрал простые качественные альтернативные признаки по типу «или-или» (цветки пурпурные или белые, семена жёлтые или зелёные); сейчас трудно сказать, что здесь сыграло основную роль – удача или гениальное предвидение, но оказалось, что каждая пара выбранных Менделем признаков контролировалась одним геном, что значительно упрощало трактовку результатов скрещивания;

– при обработке получаемых данных Мендель вёл строгий математический учёт фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Результаты своих экспериментов Г. Мендель представил в 1865 г. на заседании Общества естествоиспытателей г. Брюнна (современный город Брно) и изложил в статье «Опыты над растительными гибридами». Но современники Менделя работы не оценили, и за оставшиеся 35 лет XIX в. его статью процитировали всего пять раз.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трёх лабораториях открыли заново закономерности наследования, учёный мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в своё время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

1. Дайте определения понятий «наследственность» и «изменчивость».

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель? Докажите, что выбранные учёным растения были оптимальным объектом в данных экспериментах.

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

Подумайте! Выполните!

1. До Г. Менделя многие исследователи предпринимали попытки установить закономерности наследования признаков от родителей к детям. Однако все они заканчивались неудачно. Как вы можете это объяснить?

2. Опишите фенотипы известных всем современников (актёров театра и кино, эстрадных артистов, политических деятелей и др.). Предложите одноклассникам по описанию определить человека.

3. Название науки фенологии имеет тот же корень, что и термин «фенотип». Что изучает фенология? Почему эти термины схожи?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Причины изменчивости. Когда мы сравниваем особей одной и той же разновидности или под-разновидности наших издревле разводимых растений и животных, нас прежде всего поражает то обстоятельство, что они вообще больше различаются между собой, чем особи любого вида или

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Часть, чрезмерно или исключительным образом развитая у какого-нибудь вида по сравнению с этой же частью у близких видов, обнаруживает наклонность к сильной изменчивости. Несколько лот назад я был очень поражен одним замечанием в этом смысле, сделанным м-ром Уотерхаучом.

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Из книги Род человеческий автора Барнетт Энтони

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Самуэль Ганеман - основоположник гомеопатии В сознании каждого человека гомеопатический метод лечения неразрывно связан с именем его основателя - гениального немецкого врача Самуэля Ганемана, одного из величайших мыслителей в истории медицины. Его имя по праву стоит

Из книги Тропическая природа автора Уоллес Альфред Рассел

Взаимодействие наследственности и среды Иногда спрашивают: что важнее - наследственность или окружающая среда? На этот вопрос не так легко ответить. Если под этим подразумевать, чт? имеет наибольшую силу воздействия, то и тогда следует ограничиться частными случаями.

Из книги Путешествие в страну микробов автора Бетина Владимир

Менделевские законы наследственности Законы передачи наследственных факторов, установленные Менделем на растении, применимы и к человеку. Предположим, что рыжеволосая женщина вышла замуж за брюнета и все их дети будут брюнетами (при условии что мужчина не является

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

Колибри острова Хуан Фернандес как пример изменчивости и естественного отбора Три вида колибри островов Хуан Фернандес и Мас-а-Фуэра обладают некоторыми в высшей степени замечательными особенностями. Они образуют особый род Eustephanus, один вид которого встречается как в

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

12. Молекулы наследственности и микробы Каждая живая клетка представляет собой микрокосмос, в котором нуклеиновая кислота выступает в качестве диктатора, обычно к нам благоволящего; но в случае рака она становится деспотом-садистом, а в вирусных частицах -

Из книги автора

Что изучает наука генетика? Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими. В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. д., а в

Из книги автора

Благодаря какой случайности Грегор Мендель был заслуженно признан основоположником учения о наследственности? В середине XIX века австрийский монах и ботаник-любитель Грегор Мендель (1822–1884) проводил опыты по скрещиванию (посредством искусственного опыления) растений

Из книги автора

27. Хромосомная теория наследственности Вспомните!Что такое хромосомы?Какую функцию они выполняют в клетке и в организме в целом?Какие события происходят в профазе I мейотического деления?В середине XIX в., когда Г. Мендель проводил свои эксперименты и формулировал

Из книги автора

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

Генетика -наука о закономерностях наследственности и изменчивости. Основной задачей генетики является изучение следующих проблем:

1. Хранение наследственной информации.

2. Механизм передачи генетической информации от поколения к поколению клеток или организмов.

3. Реализация генетической информации.

Изменение генетической информации (изучение типов, причин и механизмов изменчивости).

Разработка методов использования генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений, а в перспективе и внедрение этих методов в генетику растений, животных и даже человека. Методы, используемые в генетике, разнообразны, но основной из них - гибридологический анализ, то есть скрещивание с последующим генетическим анализом потомства. Он используется на молекулярном, клеточном (гибридизация соматических клеток) и организменном уровнях. Кроме того, в зависимости от уровня исследования (молекулярный, клеточный, организменный, популяционный), изучаемого объекта (бактерии, растения, животные, человек) и других факторов используются самые разнообразные методы современной биологии, химии, физики, математики. Однако каковы бы ни были методы, они всегда являются вспомогательными к основному методу - генетическому анализу. В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работаОпыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице , на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Гибридологический анализ – фундаментальный метод генетики, его основные положения.

Гибридологический метод – изучение наследования путем гибридизации (скрещивания), то есть объединения двух генетически разных организмов (гамет). Гетерозиготный организм, который получается при этом, называется гибридом, а потомство – гибридным.

Основные принципы гибридологического метода:

1) для скрещивания используются чистосортные (гомозиготные) родительские организмы, которые отличаются между собою за одной или несколькими парами альтернативных признаков;

2) проводится точный количественный учет потомства в отдельности за каждым исследуемым признаком в ряде поколений.

Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания, скрещивать homosapiens в эксперименте не представляется возможным.Поэтому для изучения генетики человека применяют косвенные методы.

Результаты были обобщены Менделем в следующих трех положениях:

  • правило единообразия первого гибридного поколения;
  • закон расщепления второго гибридного поколения;
  • гипотеза чистоты гамет.

Правило единообразия первого поколения:

при скрещивании гомазиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Правило расщепления. Второй закон .

При скрещивании однородных гибридов первого поколения между собой (самоопыление или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, т. е. наблюдается расщепление.

Согласно второму правилу Менделя можно сделать вывод, что:

1) аллельные гены, находясь в гетерозиготном состоянии, не изменяют друг друга;

2) при созревании гамет у гибридов образуется приблизительно равное число гамет с доминантными и рецессивными аллелями;

3) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.

Таким образом, второе правило Менделя формулируется так: при скрещивании двух гетерозиготных особей, т. е. гибридов, анализируемых по одной альтернативной паре признаков, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1:2:1.

Гипотеза «чистоты гамет».

Правило расщепления показывает, что хотя у гетерозигот проявляются лишь доминантные признаки, однако рецессивный ген не утрачен, более того, он не изменился. Следовательно, аллельные гены, находясь в гетерозиготном состоянии, не сливаются, не разбавляются, не изменяют друг друга. При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Рождение генетики на рубеже двух веков (1900) было подготовлено всем предшествующим развитием биологической науки. XIX в. вошел в историю биологии благодаря двум великим открытиям: клеточной теории, сформулированной М. Шлейденом и Т. Шванном (1838), и эволюционному учению Ч. Дарвина (1859). Оба открытия сыграли определяющую роль в становлении генетики. Клеточная теория, объявившая клетку основной структурной и функциональной единицей всех живых существ, вызвала повышенный интерес к изучению ее строения, что в дальнейшем привело к открытию хромосом и описанию процесса клеточного деления. В свою очередь, теория Ч. Дарвина касалась важнейших свойств живых организмов, которые стали впоследствии предметом изучения генетики — наследственности и изменчивости. Обе теории в конце XIX в. объединила идея о необходимости существования материальных носителей этих свойств, которые должны находиться в клетках.

До начала ХХ в. все гипотезы о механизмах наследственности носили чисто умозрительный характер. Так, согласно теории пангенезиса Ч. Дарвина (1868) от всех клеток организма отделяются мельчайшие частицы — геммулы, которые циркулируют по кровяному руслу и попадают в половые клетки. После слияния половых клеток, в ходе развития нового организма, из каждой геммулы образуется клетка того же типа, от которого она произошла, обладающая всеми свойствами, в том числе и приобретенными родителями в течение жизни. Корни воззрения Дарвина относительно механизма передачи признаков от родителей к потомству через кровь лежат еще в натурфилософии древнегреческих философов, в том числе в учении Гиппократа (V в. до н.э.).

Еще одна умозрительная гипотеза наследственности была выдвинута в 1884 г. К. Негели (нем.). Он предположил, что в передаче наследственных задатков потомству принимает участие особое вещество наследственности — идиоплазма, состоящая из молекул, собранных в клетках в крупные нитевидные структуры — мицеллы. Мицеллы соединяются в пучки и образуют сеть, которая пронизывает все клетки. Идиоплазмой обладают как половые, так и соматические клетки. Остальная часть цитоплазмы в передаче наследственных свойств участия не принимает. Не будучи подкреплена фактами, гипотеза К. Негели, тем не менее, предвосхитила данные о существовании и структурированности материальных носителей наследственности.

Впервые на хромосомы как материальные носители наследственности указал А. Вейсман. В своей теории он исходил из выводов немецкого цитолога Вильгельма Ру (1883) о линейном расположении в хромосомах наследственных факторов (хроматиновых зерен) и продольном расщеплении хромосом во время деления как возможном способе распределения наследственного материала. Теория “зародышевой плазмы” А. Вейсмана получила окончательное оформление в 1892 г. Он считал, что в организмах существует особое вещество наследственности — “зародышевая плазма”. Материальным субстратом зародышевой плазмы являются хроматиновые структуры ядер половых клеток. Зародышевая плазма бессмертна, через половые клетки она передается потомкам, тогда как тело организма — сома — является смертным. Зародышевая плазма состоит из дискретных частиц — биофор, каждая из которых определяет отдельное свойство клеток. Биофоры группируются в детерминанты — частицы, определяющие специализацию клеток. Они, в свою очередь, объединяются в структуры более высокого порядка (иды), из которых формируются хромосомы (по терминологии А. Вейсмана —).

А. Вейсман отрицал возможность наследования приобретенных свойств. Источником наследственных изменений, согласно его учению, служат события, которые происходят в ходе процесса оплодотворения: потеря части информации (редукция) во время созревания половых клеток и смешение детерминантов отца и матери, приводящее к появлению новых свойств. Теория А. Вейсмана оказала огромное влияние на развитие генетики, определив дальнейшее направление генетических исследований.

К началу ХХ в. были созданы реальные предпосылки для развития генетической науки. Решающую роль сыграло переоткрытие в 1900 г. законов Г. Менделя. Чешский исследователь-любитель, монах Брюннского монастыря Грегор Мендель еще в 1865 г. сформулировал основные законы наследственности. Это стало возможным благодаря разработке им первого научного генетического метода, который получил название “гибридологического”. В его основу была положена система скрещиваний, позволяющая вскрывать закономерности наследования признаков. Менделем были сформулированы три закона и правило “чистоты гамет”, которые будут подробно рассмотрены в следующей лекции. Не менее (а, может быть, более) важным было то, что Мендель ввел понятие о наследственных задатках (прообразах генов), которые служат материальной основой развития признаков, и высказал гениальную догадку об их парности как результате слияния “чистых” гамет.

Исследования Менделя и его взгляды на механизм наследования опередили развитие науки на несколько десятилетий. Даже умозрительные гипотезы о природе наследственности, о которых говорилось выше, были сформулированы позже. Еще не были открыты хромосомы и не был описан процесс клеточного деления, который лежит в основе передачи наследственной информации от родителей к потомкам. В связи с этим современники, даже те, кто подобно Ч. Дарвину был знаком с работами Г. Менделя, не сумели по достоинству оценить его открытие. На протяжении 35 лет оно не было востребовано биологической наукой.

Справедливость восторжествовала в 1900 г., когда последовало вторичное переоткрытие законов Менделя одновременно и независимо тремя учеными: Г. де Фризом (голл.), К. Корренсом (нем.) и Э. Чермаком (австр.). Повторив эксперименты Менделя, они подтвердили универсальный характер открытых им закономерностей. Менделя стали считать основателем генетики, и с 1900 г. начался отсчет развития этой науки.

В истории генетики обычно выделяют два периода: первый — период классической, или формальной, генетики (1900-1944) и второй — период молекулярной генетики, который продолжается до настоящего времени. Основная особенность первого периода заключается в том, что природа материальных носителей наследственности оставалась неизвестной. Введенное датским генетиком В. Иогансеном понятие “ген” — аналог менделевского наследственного фактора — было абстрактным. Вот цитата из его работы 1909 г.: “Свойства организма обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами. В настоящее время нельзя составить никакого определенного представления о природе генов, мы можем лишь довольствоваться тем, что подобные элементы действительно существуют. Но являются ли они химическими образованиями? Об этом мы пока не знаем решительно ничего”. Несмотря на отсутствие знаний о физико-химической природе гена, именно в этот период были вскрыты основные законы генетики и разработаны генетические теории, составившие фундамент этой науки.

Переоткрытие законов Менделя в 1900 г. привело к быстрому распространению его учения и многочисленным, чаще всего успешным, попыткам исследователей в разных странах на разных объектах (куры, бабочки, грызуны и др.) подтвердить универсальный характер его законов. В ходе этих экспериментов были вскрыты новые закономерности наследования. В 1906 г. английские ученые У. Бэтсон и Р. Пеннет описали первый случай отклонения от законов Менделя, названный позже сцеплением генов. В этом же году английский генетик Л. Донкастер в опытах с бабочкой обнаружил явление сцепления признака с полом. Одновременно в начале ХХ в. начинается изучение стойких наследственных изменений мутаций (Г. де Фриз, С. Коржинский), а также появляются первые работы по генетике популяций. В 1908 г. Г. Харди и В. Вайнберг сформулировали основной закон генетики популяций о постоянстве частот генов.

Но наиболее важными исследованиями периода классической генетики были работы выдающегося американского генетика Т. Моргана и его учеников. Т. Морган является основателем и руководителем крупнейшей в мире генетической школы, из которой вышла целая плеяда талантливых генетиков. В своих исследованиях Морган впервые использовал плодовую мушку дрозофилу, которая стала излюбленным генетическим объектом и продолжает им оставаться и сейчас. Изучение явления сцепления генов, открытого У. Бетсоном и Р. Пеннетом, позволило Моргану сформулировать основные положения хромосомной теории наследственности, с которыми мы подробно познакомимся ниже. Главный тезис этой базовой генетической теории заключался в том, что гены в линейном порядке располагаются в хромосоме, подобно бусинкам на ниточке. Однако даже в 1937 г. Морган писал о том, что среди генетиков нет согласия в точке зрения на природу гена — являются ли они реальными или абстракцией. Но отмечал, что в любом случае ген ассоциирован со специфической хромосомой и может быть локализован там путем чистого генетического анализа.

Морганом и его коллегами (Т. Пайнтер, К. Бриджес, А. Стертевант и др.) выполнен ряд других выдающихся исследований: разработан принцип генетического картирования, создана хромосомная теория определения пола, изучена структура политенных хромосом.

Важным событием периода классической генетики было развитие работ по искусственному мутагенезу, первые данные о котором были получены в 1925 г. в СССР Г.А. Надсоном и Т.С. Филипповым в опытах по облучению дрожжевых клеток радием. Решающее значение для развертывания работ в этом направлении имели эксперименты американского генетика Г. Меллера по воздействию рентгеновских лучей на дрозофилу и разработка им методов количественного учета мутаций. Работа Г. Меллера вызвала огромное число экспериментальных исследований с использованием рентгеновских лучей на разных объектах. В результате был установлен их универсальный мутагенный эффект. Позже было обнаружено, что мутагенным действием обладают и другие типы излучения, например УФ, а также высокая температура и некоторые химические вещества. Первые химические мутагены были открыты в 30-х гг. в СССР в экспериментах В.В. Сахарова, М.Е. Лобашева и С.М. Гершензона и их сотрудников. Через несколько лет это направление приобрело широкий размах, особенно благодаря исследованиям А.И. Рапопорта в СССР и Ш. Ауэрбаха в Англии.

Исследования в области экспериментального мутагенеза привели к быстрому прогрессу в познании мутационного процесса и к выяснению ряда вопросов, касающихся тонкой структуры гена.

Еще одно важное направление генетических исследований в период классической генетики касалось изучения роли генетических процессов в эволюции. Основополагающие работы в этой области принадлежат С. Райту, Р. Фишеру, Дж. Холдейну и С.С. Четверикову. Своими трудами они подтвердили правильность основных положений дарвинизма и способствовали созданию новой современной синтетической теории эволюции, которая представляет собой результат синтеза теории Дарвина и генетики популяций.

С 1940 г. начался второй период в развитии мировой генетики, который получил название молекулярного, в соответствии с лидирующим положением этого направления генетической науки. Основную роль в бурном подъеме молекулярной генетики сыграл тесный альянс биологов с учеными других областей естествознания (физики, математики, кибернетики, химии), на волне которого был сделан ряд важнейших открытий. В течение этого периода ученые установили химическую природу гена, определили механизмы его действия и контроля и сделали еще много важнейших открытий, которые превратили генетику в одну из основных биологических дисциплин, определяющих прогресс современного естествознания. Открытия молекулярной генетики не опровергли, а лишь вскрыли глубинные механизмы тех генетических закономерностей, которые были вскрыты формальными генетиками.

Работами Дж. Бидла и Э. Тетума (США) было установлено, что мутации у хлебной плесени Neurospora crassa блокируют различные этапы клеточного метаболизма. Авторы высказали предположение, что гены контролируют биосинтез ферментов. Появился тезис: “один ген — один фермент”. В 1944 г. исследование по генетической трансформации у бактерий, выполненное американскими учеными (О. Эйвери, К. Маклеод и М. Маккарти), показало, что носителем генетической информации является ДНК. Этот вывод позже был подтвержден при изучении явления трансдукции (Дж. Ледерберг и М. Зиндер, 1952) — переноса информации от одной бактериальной клетки к другой с помощью фаговой ДНК.

Перечисленные исследования определили повышенный интерес к изучению структуры ДНК, следствием которого явилось создание в 1953 г. модели молекулы ДНК Дж. Уотсоном (амер. биолог) и Ф. Криком (англ. химик). Она была названа двойной спиралью, так как согласно модели построена из двух закрученных в спираль полинуклеотидных цепей. ДНК — полимер, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из пятиуглеродного сахара дезоксирибозы, остатка фосфорной кислоты, и одного из четырех азотистых оснований (аденин, гуанин, цитозин и тимин). Эта работа сыграла основную роль в дальнейшем развитии генетики и молекулярной биологии.

На основании этой модели был вначале постулирован (Ф. Крик), а затем и доказан экспериментально (М. Месельсон и Ф. Сталь, 1957 г.) полуконсервативный механизм синтеза ДНК, при котором молекула ДНК разделяется на две одиночные цепи, каждая из которых служит матрицей для синтеза дочерней цепи. В основе синтеза лежит принцип комплементарности, определенный ранее Э. Чаргаффом (1945), согласно которому азотистые основания двух цепей ДНК располагаются друг против друга парами, причем аденин соединяется только с тимином (А-Т), а гуанин с цитозином (G-C). Одним из следствий создания модели стала расшифровка генетического кода — принципа записи генетической информации. Над этой проблемой трудились многие научные коллективы в разных странах. Успех пришел к амер. генетику М. Ниренбергу (нобелевский лауреат), в лаборатории которого было расшифровано первое кодовое слово — кодон. Этим словом стал триплет YYY, последовательность из трех нуклеотидов с одним и тем же азотистым основанием — урацилом. В присутствии молекулы иРНК, состоящей из цепочки таких нуклеотидов, синтезировался монотонный белок, содержащий последовательно соединенные остатки одной и той же аминокислоты — фенилаланина. Дальнейшая расшифровка кода была делом техники: используя матрицы с разными сочетаниями оснований в кодонах, ученые составили кодовую таблицу. Были определены все особенности генетического кода: универсальность, триплетность, вырожденность и неперекрываемость. Расшифровку генетического кода по значению для развития науки и практики сравнивают с открытием ядерной энергии в физике.

После расшифровки генетического кода и определения принципа записи генетической информации ученые задумались над тем, каким образом осуществляется перенос информации с ДНК на белок. Исследования этой проблемы закончились полным описанием механизма реализации генетической информации, включающего два этапа: транскрипцию и трансляцию.

После определения химической природы гена и принципа его действия встал вопрос о том, как регулируется работа генов. Впервые он прозвучал в исследованиях французских биохимиков Ф. Жакоба и Ж. Моно (1960), которые разработали схему регуляции группы генов, контролирующих процесс сбраживания лактозы в клетке кишечной палочки. Они ввели понятие бактериального оперона как комплекса, который объединяет все гены (как структурные, так и гены-регуляторы), обслуживающие какое-либо звено метаболизма. Позже правильность их схемы была доказана экспериментально при изучении разнообразных мутаций, затрагивающих различные структурные единицы оперона.

Постепенно вырабатывалась схема механизма регуляции генов эукариот. Этому способствовало установление прерывистой структуры некоторых генов и описание механизма сплайсинга.

Под влиянием прогресса в изучении структуры и функции генов в начале 70-х гг. ХХ в. у генетиков возникла идея манипуляции ими, в первую очередь, путем переноса их из клетки в клетку. Так появилось новое направление генетических исследований — генная инженерия.

Базу для развития этого направления составили эксперименты, в ходе которых были разработаны методы получения отдельных генов. В 1969 г. в лаборатории Дж. Бэквита из хромосомы кишечной палочки с использованием явления трансдукции был выделен лактозный оперон. В 1970 г. коллективом под руководством Г. Корано был впервые осуществлен химический синтез гена. В 1973 г. разработан метод получения фрагментов ДНК — доноров генов — с использованием ферментов рестриктаз, разрезающих молекулу ДНК. И, наконец, был разработан метод получения генов на основе явления обратной транскрипции, открытый в 1975 г. Д. Балтимором и Г. Теминым. Для введения чужеродных генов в клетки на основе плазмид, вирусов, бактериофагов и транспозонов (мобильных генетических элементов) конструировались различные векторы — молекулы-переносчики, которые осуществляли процесс переноса. Комплекс вектора с геном был назван рекомбинантной молекулой. Первая рекомбинантная молекула на основе ДНК фага была сконструирована в 1974 г. (Р. Маррей и Д. Маррей). В 1975 г. были разработаны методы клонирования клеток и фагов со встроенными генами.

Уже в начале 70-х гг. были получены первые результаты экспериментов в области генной инженерии. Так, в клетку кишечной палочки была введена рекомбинантная молекула, содержащая два разных гена устойчивости к антибиотикам (тетрациклину и стрептомицину), после чего клетка приобрела резистентность к обоим препаратам.

Постепенно расширялся набор векторов и вводимых генов и совершенствовалась технология переноса. Это позволило широко использовать методы генной инженерии в промышленных целях (биотехнология), в первую очередь в интересах медицины и сельского хозяйства. Были сконструированы бактерии — продуценты биологически активных веществ. Это позволило наладить в нужных масштабах синтез таких необходимых человеку препаратов, как инсулин, соматостатин, интерферон, триптофан и др. Создано большое количество трансгенных растений, которые стали обладателями ценных свойств (устойчивость к вредителям, засухе, высокое содержание белка и пр.) в результате введения в их геном чужеродных генов.

В 70-х гг. были начаты работы по секвенированию геномов разных объектов, начиная с бактериофагов и кончая человеком.

Особого внимания заслуживает международная генетическая программа “Геном человека”, целью которой являются полная расшифровка генетического кода человека и картирование его хромосом. В перспективе намечается интенсивное развитие новой области медицинской генетики — генотерапии, которое должно способствовать снижению риска проявления вредных генов и тем самым максимальному ограничению генетического груза.

История развития генетики в России

Становление генетики в России произошло во втором десятилетии ХХ в. Создателем первой отечественной школы генетиков был Юрий Александрович Филипченко. В 1916 г. он начал читать в Санкт-Петербургском университете курс лекций “Учение о наследственности и эволюции”, в котором центральное место отвел законам Менделя и исследованиям Т. Моргана. Им был сделан авторизированный перевод книги Моргана “Теория гена”. Научные интересы Ю.А. Филипченко лежали в области наследственности и изменчивости качественных и количественных признаков. Особое внимание он уделял статистическим закономерностям изменчивости. Ю.А. Филипченко написал ряд превосходных книг, среди них учебник “Генетика”, по которому в нашей стране училось несколько поколений биологов.

В этот же период сформировались еще две научные генетические школы: одна в Институте экспериментальной биологии (г. Москва) под руководством Николая Константиновича Кольцова, другая под руководством Николая Ивановича Вавилова начала создаваться в Саратове, где он был избран профессором университета, а окончательно сформировалась в Ленинграде на базе Всесоюзного Института растениеводства (ВИР).

Н.К. Кольцов возглавлял крупный Научно-исследовательский институт экспериментальной биологии в Москве. Он первым высказал идею о макромолекулярной организации носителей наследственности (хромосом) и их самоудвоении как механизме передачи генетической информации. Идеи Н.К. Кольцова оказали сильное влияние на известных ученых того периода, не только биологов, но и физиков, чьи исследования структуры гена привели к развитию молекулярной генетики. Из научной школы Н.К. Кольцова вышли такие крупные генетики, как А.С. Серебровский, Б.Л. Астауров, Н.П. Дубинин, Н.В. Тимофеев-Ресовский, В.В. Сахаров и другие.

Выдающийся генетик и селекционер Н.И. Вавилов завоевал широкое признание своими трудами в области изучения мирового земледелия и растительных ресурсов. Он является автором учения о центрах происхождения и разнообразия культурных растений и учения об иммунитете, а также закона гомологических рядов в наследственной изменчивости. Кроме того, им создана мировая коллекция сельскохозяйственных и технических растений, в том числе знаменитая коллекция сортов пшеницы. Н.И. Вавилов пользовался большим авторитетом не только среди отечественных, но и среди зарубежных ученых. В созданный им в Ленинграде Всесоюзный институт растениеводства (ВИР) съезжались работать ученые со всех стран мира. Признанием заслуг Н.И. Вавилова стало избрание его президентом Международного генетического конгресса, который состоялся в 1937 г. в Эдинбурге. Однако обстоятельства не позволили Н.И. Вавилову присутствовать на этом съезде.

Серьезный вклад в развитие теоретической генетики внесли исследования профессора Московского университета Александра Сергеевича Серебровского и его молодых коллег Н.П. Дубинина, Б.Н. Сидорова, И.И. Агола и других. В 1929 г. ими было сделано открытие явления ступенчатого аллелизма у дрозофилы, которое стало первым шагом к отказу от утвердившегося среди генетиков представления о неделимости гена. Была сформулирована центровая теория строения гена, согласно которой ген состоит из более мелких субъединиц — центров, которые могут мутировать независимо друг от друга. Эти исследования послужили стимулом для развертывания работ по изучению структуры и функции гена, результатом которых стала выработка современной концепции сложной внутренней организации гена. Позже (в 1966 г.) за цикл работ в области теории мутаций Н.П. Дубинин был удостоен Ленинской премии.

К началу 40-х гг. ХХ в. в СССР генетика находилась в состоянии расцвета. Помимо указанных выше, следует отметить работы Б.Л. Астаурова по регулированию пола у тутового шелкопряда генетическими методами; цитогенетические исследования Г.А. Левитского, работы А.А. Сапегина, К.К. Мейстера, А.Р. Жебрака, Н.В. Цицина по генетике и селекции растений; М.Ф. Иванова по генетике и селекции животных; В.В. Сахарова, М.Е. Лобашева, С.М. Гершензона, И.А. Рапопорта по химическому мутагенезу; С.Г. Левита и С.Н. Давиденкова по генетике человека и работы многих других талантливых ученых.

Однако сложившаяся в СССР к началу Второй мировой войны политическая ситуация противостояния капиталистическому миру привела к гонениям на ученых, работавших в области генетики, которая была объявлена идеалистической буржуазной наукой, а ее приверженцы — агентами мирового империализма. Репрессии обрушились на головы многих известных ученых, в том числе Н.И. Вавилова, М.Е. Лобашева, Г.Д. Карпеченко, С.М. Гершензона и многих, многих других. Генетика была отброшена на несколько десятилетий назад. Немалую роль в развале генетической науки сыграл Т.Д. Лысенко. Будучи простым агрономом, он не смог подняться до уровня классической генетики с ее абстрактными представлениями о гене и поэтому просто отрицал законы Менделя, хромосомную теорию наследственности Моргана, учение о мутациях. Свою научную несостоятельность Лысенко прикрывал щедрыми обещаниями быстрого подъема сельского хозяйства с помощью пропагандируемых им методов переделки растений под влиянием условий выращивания, чем заслужил поддержку лично И.В. Сталина. В качестве щита Лысенко использовал работы выдающегося селекционера И.В. Мичурина. В отличие от мировой науки, наша генетика стала называться мичуринской. Такая “честь” привела к тому, что за Мичуриным закрепилась слава приверженца идей Лысенко, которая не покидала ученого даже после краха деятельности последнего. На самом же деле И.В. Мичурин был выдающимся селекционером-практиком, плодоводом, никогда не имевшим отношения к разработке теоретических основ генетической науки.

Отечественная наука окончательно очистилась от “лысенковщины” только к середине 60-х гг. Вышли из “подполья” многие из пострадавших от репрессий ученых, те, кому удалось выжить, в том числе Н.В. Тимофеев-Ресовский, М.Е. Лобашов, В.В. Сахаров и другие. Сохраненные ими традиции и большой потенциал, заложенный в их учениках, способствовали быстрому движению вперед, хотя отставание от мирового уровня, конечно, давало о себе знать. Тем не менее, поднималось новое поколение отечественных генетиков, которым предстояло вывести эту науку на прежний уровень. И снова ряды ученых с мировой известностью пополнились российскими именами: А.Н. Белозерского, В.А. Энгельгардта, С.И. Алиханяна, Р.Б. Хесина, А.С. Спирина, С.В. Шестакова, С.Г. Инге-Вечтомова, Ю.П. Алтухова и многих других.

Однако новые социальные потрясения, вызванные перестройкой, повлекшей отток научных кадров за границу, снова помешали нашей науке обрести соответствующий статус. Остается надеяться, что молодое поколение, опираясь на заложенный предшествующими корифеями фундамент, сможет выполнить эту благородную миссию.