Исследования генная инженерия. Генетическая инженерия

Генная инженерия – это направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств.

Формальной датой рождения генной инженерии считают 1972 год. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или ферменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

Генная инженерия бактерий

В 1972 году группа исследователей во главе с американским биохимиком Полом Бергом, работавшим в Стэнфордском университете, что неподалёку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной ДНК. Такую молекулу часто называют гибридной, так как она состоит из ДНК-фрагментов различных организмов.

Первая рекомбинантная молекула ДНК состоит из фрагмента ДНК бактериофага кишечной палочки (E. coli), группы генов самой этой бактерии, ответственные за сбраживание сахара галактозы, и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьян. Такая рекомбинантная структура теоретически могла обладать функциональной активностью в клетках, как кишечной палочки, так и обезьяны, ведь в неё входила часть ДНК фага, обеспечивающая её способность реплицироваться (самокопироваться) в E. coli, и вся ДНК SV40, реплицирующаяся в клетках обезьяны.

Фактически это была первая гибридная молекула ДНК, которая могла бы, как челнок, «ходить» между бактерией и животным. Но именно это экспериментально не проверил П.Берг и его коллеги.

Учёные разных стран, развивая идеи П.Берга, создали in vitro функционально активные гибридные ДНК. Первыми эту задачу решили американцы Стэнли Коен из Стэнфордского университета и его коллега Герберт Бойер из Калифорнийского университета в Сан-Франциско. В их работах появился новый и очень важный «инструмент» всех последующих генно-инженерных работ – вектор.

Основные методы генной инженерии бактерий были разработаны в начале 70-х годов прошлого века. Их суть заключается во введении в организм нового гена. Наиболее распространённый из них – конструирование и перенос рекомбинантных ДНК.

Генная инженерия растений

При введении новых генов в эукариотические клетки, например, растительные, возникает немало трудностей. Одна из них заключается в том, что генетическое строение растений намного сложнее и менее изучено, чем строение бактерий, остававшихся до недавнего времени основным объектом генных инженеров. К тому же изменить генотип всех клеток многоклеточного организма невозможно. Значительно затрудняется перенос векторных систем прочная целлюлозная оболочка, которая покрывает клетки растений.

Несмотря на сказанное генная инженерия растений применяется в сельском хозяйстве, особенно в растениеводстве. Это стало возможным, во-первых, потому, что изолированные от многоклеточного организма клетки растений могут расти и размножаться на искусственных питательных средах, то есть in vitro или вне организма. Во-вторых, установлено, что ядра зрелых растительных клеток содержат всю информацию, необходимую для кодирования целого организма. Так, если клетки какого-либо растения пометить в подходящий растительный раствор, то их можно вновь заставить делиться и образовывать новые растения. Это свойство растительных клеток, связанное со способностью к регенерации уже после достижения ими зрелости и специализации, названо тотипотентностью.

Использование почвенных агробактерий

Один их эффективных способов переноса генов в растения – использование в качестве вектора почвенных бактерий, прежде всего, Agro bacterium tumefaciens («полевая бактерия, вызывающая рак растений»). Эта бактерия была выделена в 1897г. из опухоли винограда. Она заражает многие двудольные растения и вызывает у них образование больших наростов – корончатых галлов.

Патогенные штаммы этой агробактерии в отличие от непатогенных содержат крупную плазмиду, специально предназначенную для переноса генов из бактериальной клетки в растительную. Плазмида получила название Ti, то есть вызывающая опухоль. Именно в неё обычно встраивается подготовленный для переноса ген.

Кроме A. tumefaciens для введения новых генов в растения используют также бактерию вида A. Rhizogenes. Они вызывают у двудольных растений очень мелкие опухоли, из которых вырастает множество корней. Болезнь, которую вызывают эти ризогенные агробактерии, называют «бородатый» или «волосатый» корень. В них обнаружены плазмиды, похожие на Ti. Они названы Ri или корнеиндуцирующими.

В последние годы Ri-плазмиды применяются в генной инженерии растений не менее широко, чем Ti-плазмиды. Это объясняется, прежде всего, тем, что клетки корончатых галлов плохо растут на искусственно питательных средах и из них не удаётся вырастить целые растения. Напротив, клетки «бородатого» корня хорошо культивируются и регенерируются.

Использование вирусов

Вирусы также достаточно часто используются для конструирования векторов, обеспечивающих перенос новых генов в растения. Чаще других для этой цели выделяют вирус мозаики цветной капусты. В природе он заражает только крестоцветные, однако известно, что в экспериментальных условиях способен поражать и другие виды растений.

Геном вируса мозаики представляет собой небольшую двунитевую кольцевую ДНК. Некоторые из его генов могут быть заменены на другие, интересующие исследователя. Проникая в растительную клетку, вирус вносит в неё не только свою собственную ДНК, но и встроенный в неё чужеродный ген.

Векторной системой, способной переносить новые гены в растения, могут быть и вирусы, у которых генетический материал представлен РНК. Вирусы этой группы способны с высокой частотой проникать в растительные клетки, активно в них размножаться и тем самым обеспечивать высокий уровень экспрессии введённых генов вследствие увеличения их количества.

Конструирование рекомбинантной ДНК

Техника встраивания генов в векторы предназначенных для растений аналогична той, что используется для бактериальных клеток. Плазмидная ДНК и ДНК вирусов разрезается рестриктазами с образованием «липких» концов. Если применяется фермент, образующий тупые концы, пользуются короткими фрагментами ДНК. Встраивая новый ген в подготовленный плазмидный или вирусный вектор с помощью ДНК-лигазы, получают рекомбинантную ДНК.

Направления генной инженерии растений

Основные направления генной инженерии растений связаны с созданием культур, устойчивых к насекомым-вредителям, гербицидам и вирусам, способных к азотфиксации, а также с повышением качества и количества продуктов.

Растения устойчивые к насекомым-вредителям

Насекомые-вредители могут приводить к значительному снижению урожая различных сельскохозяйственных культур. Для борьбы с ними используются химические вещества,

называемые инсектицидами. Первым инсектицидом, завоевавшим всемирное признание, оказалась бордосская жидкость.

Помимо препаратов, синтезированных химически, известны инсектициды, полученные на основе естественных врагов насекомых – бактерий и грибов. Многие годы в мире применяют инсектициды бактериального происхождения – препараты спор, которые образует почвенная бактерия Bacillus thuringiensis («тюрингская бацилла», или сокращённо Bt). Инсектицидная активность этих спор связана с находящимися в них ядовитыми кристаллами белка эндотоксина. Проглотив такую спору, гусеница вскоре погибает от паралича кишечника.

Преимущество инсектицидов этого типа в том, что они не токсичны для человека и животного, их легко отмыть и инактивировать. Недостаток таких инсектицидов – сравнительно короткий период активности в полевых условиях. Эффективность их действия при распылении на растения колеблется, и её трудно прогнозировать. Всё это обуславливает необходимость повторных обработок.

Новое направление в борьбе с насекомыми-вредителями – создание на основе генно-инженерной технологии устойчивых к ним трансгенных растений. Успешными оказались исследования Марка ван Монтегю и его коллег из Гентского университета, результаты которых они опубликовали в работе «Трансгенные растения, защищённые от нападения насекомых» (1987).

Они выделили ген, кодирующий синтез белка эндотоксина, из ДНК тюрингской бациллы и вставили его в векторную Ti-плазмиду бактерии A. tumefaciens. Этой агробактерией заражали диски, вырезанные из кусочков листьев табака. Трансформированную растительную ткань выращивали на питательной среде определённого химического состава, которая обеспечивала рост и развитие трасгенных растений с листьями, содержащими белок эндотоксин. При попадании в кишечник некоторых видов насекомых эндотоксин связывается с их внутренней поверхностью и повреждает эпителий, в результате переваренная пища не всасывается и насекомое погибает от голода.

В последние годы ген бактериального токсина удалось ввести в клетки многих растений. В частности, специалисты компании «Monsanto» создали картофель «New Leaf» («Новый лист»), устойчивый к колорадскому жуку, Bt-кукурузу и Bt-хлопок, сою «Roundup Ready» и др. Однако использование Bt-культур вызывает сомнения из-за здоровья человека и безопасность окружающей среды. Так, многие задаются вопросом: если колорадский жук не ест ботву, полезен ли такой картофель? Нет уверенности в том, что растительная продукция с «генными добавками» не повлияет отрицательно на будущее поколение.

При этом перенос пыльцы генетически модифицированных культур на растения соседних полей приведёт к их генетическому загрязнению, последствия которого трудно предсказуемы. На биологическое разнообразие может повлиять гибель полезных насекомых, для которых Bt-культуры оказались опасными. Кроме того, возможно, появятся супервредители, так как исходные виды насекомых достаточно быстро могут приобрести устойчивость к бактериальному эндотоксину.

Растения, устойчивые к вирусам

Создание вирусоустойчивых сортов – ещё одно направление генной инженерии растений.

Для создания таких сельскохозяйственных растений используется так называемая перекрёстная защита. Сущность этого является в том, что растения, инфицированные одним видом вируса, становятся устойчивыми к другому, родственному вирусу, так как происходит своего вида вакцинация. В растения вводят ген ослабленного штамма вируса, что предотвращает его поражение более вирулентным (вызывающим заболевание) штаммом того же или близкородственного вируса.

Таким геном-защитником может служить ген, кодирующий у вируса синтез белка оболочки, окружающий нуклеиновую кислоту. Этот ген используется для создания in vitro с помощью обратной транскриптазы к ДНК - ДНК-копии. К ней присоединяют необходимые регуляторные элементы и с помощью специальным образом подготовленной Ti-плазмидой агробактерии переносят в растения. Трансформированные растительные клетки синтезируют белок оболочки вируса, а выращенные из них трансгенные растения либо совсем не заражаются его более вирулентными штаммами, либо дают слабую и запоздалую реакцию на вирусную инфекцию.

Это один из механизмов защитного действия вирусного гена, который до сих пор не вполне ясен и может сопровождаться нежелательными последствиями.

Генетическое модифицирование – новая версия сельского хозяйства

Генетическое модифицирование сельского хозяйства основано на использовании высокопродуктивных сортов растений или пород животных, полученных на основе генной селекции. Именно этим благородным делом занимаются десятилетиями генетики-селекционеры. Но их возможности ограничены рамками скрещиваний – скрещиваться и давать плодовитое потомство могут только особи, принадлежащие как правило, к одному и тому же виду. Картофель и кукуруза не обладают способностью поражать колорадского жука и кукурузного стеблевого мотылька, а безвредная для человека и животных бактерия Bacillus thuringinesis может их убивать. Генетики скрестить бациллу с картофелем не могут, а генные инженеры - могут. Генетическая селекция улучшает количественные характеристики сорта или породы (урожайность, устойчивость к заболеваниям, надои и др.); генная инженерия способна создать новое качество – перенести ген, его кодирующий, из одного биологического вида в другой, в частности, ген инсулина от человека в дрожжи. И генетически модифицированные дрожжи станут фабрикой инсулина.

Считается, что единственное принципиальное препятствие, стоящее перед генными инженерами,- это или их ограниченная фантазия, или ограниченное финансирование. Непреодолимых природных ограничений в генной инженерии, похоже, нет.

Генная инженерия: от анализа к синтезу

Как мы уже знаем именно в 1972г. Пол Берг впервые объединил в пробирке в единое целое два гена, выделенных из разных организмов. И получил «молекулярный» гибрид, или рекомбинантную ДНК, которая в природных условиях никак образоваться не могла. Затем такую рекомбинантную ДНК внесли в бактериальные клетки, создав, таким образом, первые трансгенные организмы, несущие гены бактерии и обезьяны, точнее онкогенного вируса обезьяны.

Затем были сконструированы микробы, несущие гены мушки дрозофилы, кролика, человека. Это вызвало тревогу.

Несколько ведущих американских учённых, в том числе сам Пол Берг, опубликовали в журнале «Сайенс» письмо, в котором призывали приостановить работы по генной инженерии до тех пор, пока не будут выработаны правила техники безопасности по обращению с трансгенными организмами. Предполагалось, что организмы, которые несут чужеродные гены, могут иметь свойства, опасные для человека и среды его обитания. Чисто умозрительно высказывалось мнение, что трансгенные организмы, созданные без учёта их вероятных экологических характеристик и не прошедшие совместной эволюции с природными организмами, «вырвавшись из пробирки на свободу», смогут бесконтрольно и неограниченно размножиться. Это приведёт к вытеснению природных организмов из мест их естественного обитания; последующей цепной реакции нарушений экологического равновесия; сокращению биоразнообразия; активации дремлющих, ранее не известных патогенных микроорганизмов; возникновению эпидемий ранее не известных болезней человека, животных и растений; «побегу» чужеродных генов из трансгенных организмов; хаотическому переносу генов в биосфере; появлению монстров, всё уничтожающих.

Две версии будущего: трансгенный рай или трансгенный апокалипсис

Кроме опасений биологического и экологического характера стали высказываться опасения нравственные, этические, философские, религиозные.

В 1973-1974гг. в дискуссию включились американские политики. В итоге на генно-инженерные работы был наложен временный мораторий – «запрет до выяснения обстоятельств». В течение запрета на основании всех имеющихся знаний следовало оценить все потенциальные опасности генной инженерии и сформулировать правила техники безопасности. В 1976г. Правила были созданы, запрет снят. По мере всё ускоряющегося развития строгость правил безопасности всё время снижалась. Первоначальные страхи оказались сильно преувеличенными.

В итоге 30-летнего мирового опыта генной инженерии стало ясно, что в процессе «мирной» генной инженерии что-либо мирного возникнуть не может. Первоначальная техника безопасности работ с трансгенными организмами исходила из того, что созданные химеры могут быть опасны, как чума, чёрная оспа, холера или сибирская язва. Поэтому с трансгенными микробами работали, словно они патогенны, в специальных инженерных сооружениях. Но постепенно становилось всё более очевидным: риск сильно преувеличен.

В общем, за все 30 лет интенсивного и всё расширяющегося применения генной инженерии ни одного случая возникновения опасности, связанной с трансгенными организмами, зарегистрировано не было.

Возникла новая отрасль промышленности – трансгенная биотехнология, основанная на конструировании и применении трансгенных организмов. Сейчас в США около 2500 генно-инженерных фирм. В каждой из них работают высококвалифицированные специалисты, которые конструируют организмы на основе вирусов, бактерий, грибов, животных, в том числе насекомых.

Когда речь идёт об опасности или безопасности трансгенных организмов и продуктов из них полученных, то самые распространённые точки зрения основываются преимущественно на «общих соображениях и здравом смысле». Вот, что обычно говорят те, кто против:

  • природа устроена разумно, любое вмешательство в неё всё только ухудшит;
  • поскольку сами учёные не могут со 100%-ной гарантией предсказать всё, особенно
  • отдалённые последствия применения трансгенных организмов, не надо этого делать вообще.

А вот аргументы тех, кто выступает за:

  • в течение миллиардов лет эволюции природа успешно «перепробовала» все
  • возможные варианты создания живых организмов, почему же деятельность человека по
  • конструированию изменённых организмов должна вызывать опасения?
  • в природе постоянно происходит перенос генов между разными организмами (в
  • особенности между микробами и вирусами), так что ничего принципиально нового
  • трансгенные организмы в природу не добавят.

Дискуссия о выгодах и опасностях применения трансгенных организмов обычно концентрируется вокруг главных вопросов о том, опасны ли продукты, полученные из трансгенных организмов и опасны ли сами трансгенные организмы для окружающей среды?

Защита здоровья и окружающей среды, или бесчестная борьба за экономические интересы?

Нужна ли международная организация, которая на основе предварительной экспертизы регулировала бы применение трансгенных организмов? Чтобы она разрешала или запрещала выпуск на рынок продуктов, полученных из таких организмов? Ведь семена, тем более пыльца границ не признают.

А если международное регулирование биотехнологии не нужно, не приведёт ли чересполосица национальных правил, регулирующих обращение с трансгенными организмами, к тому, что из стран, где такие правила «либеральны», трансгенные растения «убегут» в страны, где правила «консервативны»?

Даже если большинство стран и договорятся о согласовании правил оценки риска трансгенных организмов, как быть относительно профессиональных и моральных качеств чиновников и экспертов? Будут ли они одинаковыми, например, в США, Германии, Китае, России и в Папуа Новой Гвинее?

Если развивающиеся страны и подпишут, например Всемирную конвенцию о правилах интродукции трансгенных организмов, кто им заплатит за создание и поддержание соответствующих национальных ведомств, за консультации, экспертизу, мониторинг?

Примерно половина всех программ, разработанных ООН, UNIDO, UNEP, направлены на решение проблем, связанных с трансгенными организмами. Есть два главных документа: «Кодекс добровольно принимаемых правил, которые надлежит придерживаться при интродукции (выпуске) организмов в окружающую среду», подготовленный Секретариатом UNIDO и «Протокол по биобезопасности в рамках Конвенции по биологическому разнообразию» (UNEP).

Европейская точка зрения: отсутствие международно-согласованных правил применения трансгенных организмов приведёт к широкомасштабным экспериментам в открытой среде, вредные последствия которых могут быть необратимыми.

Итак, где же истина? Можно ли сделать рациональный выбор между определённой пользой и неопределённым риском? Правильный ответ таков: опасны или безопасны трансгенные растения и продукты на их основе, опасность или безопасность которых пока убедительно не показаны исходя из современного уровня знаний, разумнее избегать их употребления.

Продукты питания, модифицированные методами генной инженерии

Первое опытное растение было получено в 1983 году в институте растениеводства в Кёльне. Через 9 лет в Китае начали выращивать трансгенный табак, который не портили насекомые-вредители. Первыми коммерческими трансгенами были помидоры сорта «Flavr Savr», созданные компанией «Calgene» и появившиеся в супермаркетах США в 1994г. Однако некоторые проблемы, связанные с их производством и транспортировкой, привели к тому, что компания была вынуждена уже через три года снять сорт с производства. В дальнейшем были получены многие сорта различных сельскохозяйственных культур с искусственно изменённым генетическим кодом. Среди них наиболее распространена соя (коммерческое выращивание начато с 1995г.), она составляет свыше половины от общего урожая; на втором месте – кукуруза, а за ними – хлопок, масленичный рапс, табак и картофель.

Мировые лидеры в выращивании трансгенных растений – США, Аргентина, Канада и Китай. В России уже существует несколько экспериментальных «закрытых» полей с генетически модифированными (ГМ) культурами. По сообщению директора Центра «Биоинженерии» РАН академика К.Скрябина, некоторые из них заняты картофелем, устойчивым к колорадскому жуку и полученным на основе трёх наиболее распространенных российских сортов – «Луговского», «Невского» и «Елизаветы».

Генетически модифицированные растения используются для производства, как продуктов питания, так и пищевых добавок. Например, из сои получается соевое молоко, которое заменяет натуральное для многих грудных детей. ГМ сырьё обеспечивает большую часть потребности в растительном масле и пищевом белке. Соевый лецитин (Е322) используется как эмульгатор и стабилизатор в кондитерской промышленности, а шкурки соевых бобов – при производстве отрубей, хлопьев и закусок. Помимо этого, ГМ-соя широко применяется в пищевой промышленности и в качестве дешёвого наполнителя. Она в значительном количестве входит в состав таких продуктов, как хлеб, колбаса, шоколад и др.

Модифицированные картофель и кукурузу используют для приготовления чипсов, а также перерабатывают на крахмал, который применяют в качестве загустителей, студнеобразователей и желирующих веществ в кондитерской и хлебопекарной промышленности, а также при производстве многих соусов, кетчупов, майонезов. Кукурузное и рапсовое масло используют в виде добавок в маргарин, выпечку, бисквиты и т.д.

Несмотря на то, что на мировом рынке всё больше появляется продуктов, полученных с использованием генетически модифицированных источников, потребители всё-таки настороженно относятся к ним, и не торопятся переходить на «пищу Франкенштейна».

Проблема продуктов питания, модифицированных на основе генной инженерии, вызвала бурную полемику в обществе. Главный аргумент сторонников генетической пищи – характеристики самих сельскохозяйственных культур, которым биоинженеры прибавили немало полезных для потребителя свойств. Они менее прихотливы и более устойчивы к болезням, насекомым-вредителям, а главное – к пестицидам, которыми обрабатываются поля и чей вред на человеческий организм давно доказан. Продукты из них лучшего качества и товарного вида, обладают повышенной пищевой ценностью и дольше хранятся.

Так, из «улучшенных» генными инженерами кукурузы, соевых бобов и рапса получается растительное масло, в котором снижено количество насыщенных жиров. В «новых» картофеле и кукурузе больше крахмала и меньше воды. Такой картофель при жарке требует немного масла, из него получаются воздушные чипсы и картофель фри, который сравнительно с немодифицированными продуктами легче усваивается. «Золотой» рис, полученный в 1999г., обогащён каротином для профилактики слепоты у детей развивающихся стран, Гед рис – основной продукт питания.

Ещё недавно прогнозы генных инженеров о «съедобных вакцинах» выглядели как полная фантастика. Однако уже выращен табак, в генетический код, которого «вмонтирован» человеческий ген, отвечающий за выработку антител к вирусу кори. В ближайшем будущем, по утверждению учёных, будут созданы другие подобные растения с противовирусной начинкой. В перспективе это может стать одним из главных путей будущей иммунопрофилактики.

Основной вопрос: безопасны ли для человека продукты питания, полученные на основе генетически модифицированных источников, пока остается без однозначного ответа, хотя в последние годы стали известны результаты некоторых исследований, которые свидетельствуют о том, что генетически модифицированные продукты отрицательно влияют на живые организмы.

Так, британский профессор Арпад Пуштай (Arpad Pusztai), работавший в Государственном Институте Роветт (Rowett) города Абердин, в апреле 1998г. заявил в телевизионном интервью, что проведённые им эксперименты выявили необратимые изменения в организме крыс, питавшихся генетически модифицированным картофелем. Они страдали угнетением иммунной системы и различными нарушениями деятельности внутренних органов. Заявление учёного стало поводом для его увольнения с работы за «распространение заведомо ложной псевдонаучной информации».

Однако в феврале 1999г. независимая группа из 20 известных учёных после тщательного изучения опубликовала заключение о работе Арпада Пуштая, в котором полностью подтверждалась достоверность полученных им результатов. В связи с этим министр сельского хозяйства Великобритании был вынужден признать эксперименты заслуживающими внимания и рассмотреть вопрос о запрещении продаж генетически модифицированных продуктов без всестороннего исследования и предварительного лицензирования.

Помимо этого, выявлено, что один из сортов генетически модифицированной сои опасен для людей, он давал аллергию на орехи. Этот генно-модифицированный продукт получен одной из крупнейших компаний по производству семян «Pioneer Hybrid International» после введения в соевую ДНК гена бразильского ореха, запасной белок, которого богат такими аминокислотами, как цистеин и метионин. Компания была вынуждена выплатить компенсацию пострадавшим, а проект свернуть.

Компоненты, содержащиеся в генетически модифицированных продуктах, могут быть не только аллергенами, но и высокотоксичными, то есть наносящими вред живому организму химическими веществами. Так, через несколько лет применения появились сообщения о серьёзных побочных эффектах от использования пищевой добавки, известной как аспартам (Е 951).

По химическому строению аспартам – метилированный дипептид, состоящий из остатков двух аминокислот – аспарагиновой кислоты и фенилаланина. Добавленный в пищу в ничтожных количествах, он полностью заменяет сахар (слаще сахара почти в 200 раз). В связи с этим аспартам относят к классу подсластителей, то есть низкокалорийных веществ несахарной природы, придающих пищевым продуктам и готовой пищи сладкий вкус. Часто подсластители путают с сахарозаменителями, которые по химической природе представляют собой углеводы и обладают повышенной калорийностью.

Аспартам выпускается под различными торговыми марками: «NutraSweet», «Sucrelle», «Equal», «Spoonful», «Canderel», «Holy Line» и др. На российском рынке его можно встретить также в составе многокомпонентных смесей подсластителей, таких, как «аспасвит», «аспартин», «сламикс», «евросвит», «сладекс» и др.

Долгие годы, считаясь совершенно безвредным веществом, аспартам был допущен к применению в пищевом и фармацевтическом производстве более чем в 100 странах мира. Его рекомендовали больным сахарным диабетом, а также тем, кто страдал ожирением или опасался кариеса. Он применяется при производстве более 5 тыс. наименований продуктов: безалкогольных напитков, йогуртов, молочных десертов, мороженого, кремов, жевательной резинки и других.

Особенно удобен аспартам для подслащивания пищевых продуктов, которые не требуют тепловой обработки. Кроме того, его можно использовать при моментальной пастеризации и быстром охлаждении. Однако в продуктах, которые подвергаются нагреванию, его применение нецелесообразно. Это связано с тем, что при всех замечательных свойствах у данного подсластителя есть два недостатка: он плохо растворяется в воде и не выдерживает высокой температуры. Сказанное усложняет процесс приготовления пищевых продуктов и ограничивает использование аспартама в таких областях, как хлебопекарная и другие виды пищевой промышленности, где технологически требуется повышение температуры.

При продолжительном воздействии температуры выше 30 С компоненты аспартама разделяются, причём сладость теряется, кроме того, метанол превращается в формальдегид. Последнее вещество с резким запахом вызывает свёртываемость белковых веществ и относится к категории ядовитых. В дальнейшем из формальдегида образуется муравьиная кислота, вызывающая нарушение кислотно-щелочного равновесия. Метаноловая токсичность по симптомам похожа на рассеянный склероз, поэтому больным нередко ошибочно ставили этот диагноз. Однако если рассеянный склероз не является смертельным диагнозом, то метаноловая токсичность смертельна.

Образовавшийся фенилаланин способен оказать чрезвычайно токсичное действие, особенно на нервную систему. Существует наследственное заболевание, обусловленное его избыточностью и известно как фенилкетонурия. Дети, родившиеся с названным наследственным недугом, подвержены судорогам и страдают умственной отсталостью. Причина этой болезни во врождённом дефекте фермента фенилаланингидроксилазы.

Последние достижения медицинской генетики установили, что эффективно усваивать фенилаланин могут даже не все здоровые люди. Поэтому дополнительное введение в организм данной аминокислоты не просто значительно повышает её уровень в крови, а представляет серьёзную опасность для работы мозга.

В связи со сказанным, аспартам противопоказан больным гомозиготной фенилкетонурией, и о его присутствии должно быть указано на этикетке пищевого продукта. Однако обычно запись «содержит фенилаланин, противопоказан для больных фенилкетонурией» делается таким мелким шрифтом, что её редко кто читает. Но, тем не менее, аспартам – пока единственный генетически созданный химический препарат на американском рынке, имеющий чёткую маркировку. Это оказалось возможным только после того, как стало известно относительно большое число явных подтверждений опасной токсичности аспартама, а наиболее популярные газеты и журналы США не назвали его «сладкой отравой».

Устойчивость к антибиотикам – ещё одна широко обсуждаемая проблема, связанная с генетически модифицированной пищей. В биоинженерной технологии гены устойчивости к этим лекарственным препаратам много лет используются в качестве маркеров при подготовке векторных систем, трансформирующих растительную клетку. Так, при выведении томатов сорта «Flavr Savr» использовался ген устойчивости к каналицину, а генетически модифицированной кукурузы – к ампициллину.

К сожалению, до сих пор не найден способ удаления этих маркерных генов после трансформации. Их наличие в генетически модифицированных продуктах и вызывает беспокойство медиков. Причина в том, что маркерные гены устойчивости к антибиотикам по каким-либо причинам могут быть не переварены со всей оставшейся ДНК и попадут в геном бактерий, обитающих в кишечнике человека. После выведения бактерий из организма с фекалиями, такие гены распространятся в окружающей среде и передадутся другим болезнетворным бактериям, которые станут невосприимчивыми к действию антибиотиков этой группы. Появление подобных супермикробов может привести к возникновению болезней, которые невозможно будет вылечить имеющимися лекарственными средствами.

Генетическая инженерия

Современная биология коренным образом отличается от традиционной биологии не только большей глубиной разработки познавательных идей, но и более тесной связью с жизнью общества, с прак- тикой. Можно сказать, что в наше время биология стала средством преобразования живого мира с целью удовлетворения материальных потребностей общества. Это заключение иллюстрируется прежде всего тесной связью биологии с биотехнологией, которая стала важнейшей областью материального производства, равноправным партнером механической и химической технологий, созданных чело- веком, а также с медициной.

С момента своего возникновения биология и биотехнология всегда развивались совместно, причем с самого начала биология была научной основой биотехнологии. Однако длительное время недостаток собственных данных не позволял биологии оказывать очень большое влияние на биотехнологию. Положение резко изменилось с созданием во второй половине XX в. методологии генетической инженерии, под которой понимают генетическое манипулирование с целью конструкции новых и реконструкции существующих генотипов. Являясь по своей природе методическим достижением, генетическая инженерия не привела к ломке сложившихся представлений о биологических явлениях, не затронула основных положений биологии подобно тому, как радиоастрономия не поколебала основных положений астрофизики, установление «механического эквивалента тепла» не привело к изменению законов теплопроводности, а доказательство атомистической теории вещества не изме- нило соотношений термодинамики, гидродинамики и теории упругости (А.А. Баев).

Тем не менее генетическая инженерия открыла новую эру в биологии по той причине, что появились новые возможности для про- никновения в глубь биологических явлений с целью дальнейшей характеристики форм существования живой материи, более эффективного изучения структуры и функции генов на молекулярном уровне, понимания тонких механизмов работы генетического аппарата. Успехи генетической инженерии означают переворот в современном

естествознании. Они определяют критерии ценности современных представлений о структурно-функциональных особенностях молекулярного и клеточного уровней живой материи. Современные данные о живом имеют гигантское познавательное значение, ибо обеспечивают понимание одной из важнейших сторон органического мира и тем самым вносят неоценимый вклад в создание научной картины мира. Таким образом, резко расширив свою познавательную базу, биология через генетическую инженерию оказала также ведущее влияние на подъем биотехнологии.

Генетическая инженерия создает заделы на пути познания способов и путей «конструирования» новых или улучшения существующих организмов, придавая им большую хозяйственную ценность и способность резкого увеличения продуктивности биотехнологических процессов. Однако генетическая инженерия создала новые горизонты и для медицины по линии диагностики и лечения многих болезней, как ненаследственных, так и наследственных. Она открыла новые пути в поисках новых лекарств и материалов, используемых в медицине. Генетическая инженерия и биотехнология стимулировали разработку методов бионанотехнологии.

В рамках генетической инженерии различают генную и клеточную инженерию. Под генной инженерией понимают манипуляции с целью создания рекомбинантных молекул ДНК. Часто эту методологию называют молекулярным клонированием, клонированием генов, технологией рекомбинантных ДНК или просто генетическими манипуляциями. Важно подчеркнуть, что объектом генной инженерии являются молекулы ДНК, отдельные гены. Напротив, под клеточной инженерией понимают генетические манипуляции с изолированными отдельными клетками или группами клеток растений и животных.

ГЕННАЯ ИНЖЕНЕРИЯ И ЕЕ ИНСТРУМЕНТЫ

Генную инженерию составляет совокупность различных экспериментальных приемов (методик), обеспечивающих конструкцию (реконструкцию), клонирование молекул ДНК и генов с заданными целями.

Методы генной инженерии используют в определенной последовательности (рис. 127), причем различают несколько стадий в выпол-

нении типичного генно-инженерного эксперимента, направленного на клонирование какого-либо гена, а именно:

1. Выделение плазмидий ДНК из клеток интересующего организма (исходного) и выделение ДНК-вектора.

2. Разрезание (рестрикция) ДНК исходного организма на фрагменты, содержащие интересующие гены, с помощью одного из ферментов-рестриктаз и выделение этих генов из рестрикционной смеси. Одновременно разрезают (рестрицируют) векторную ДНК, превращая ее из кольцевой структуры в линейную.

3. Смыкание интересующего сегмента ДНК (гена) с ДНК вектора с целью получения гибридных молекул ДНК.

4. Введение рекомбинантных молекул ДНК путем трансформации в какой-либо другой организм, например в Е. coli или соматические клетки.

5. Высев бактерий, в которые вводили гибридные молекулы ДНК, на питательные среды, позволяющие рост только клеток, содержащих гибридные молекулы ДНК.

6. Идентификация колоний, состоящих из бактерий, содержащих гибридные молекулы ДНК.

7. Выделение клонированной ДНК (клонированных генов) и ее характеристика, включая секвентирование азотистых оснований в клонированном фрагменте ДНК.

Рис. 127. Последовательные стадии генно-инженерного эксперимента

В ходе эволюции бактерии развили способность синтезировать так называемые рестрицирующие ферменты (эндонуклеазы), которые стали частью клеточной (бактериальной) системы рестрикциимодификации. У бактерий системы рестрикции-модификации являются внутриклеточной иммунной системой защиты от чужеродной ДНК. В отличие от высших организмов, у которых распознание и разрушение вирусов, бактерий и других патогенов происходит внеклеточно, у бактерий защита от чужеродной ДНК (ДНК растений и животных, в организме которых они обитают) происходит внутриклеточно, т.е. тогда, когда чужеродная ДНК проникает в цитоплазму бактерий. С целью защиты бактерии в ходе эволюции развили также способность «метить» собственную ДНК метилирующими основаниями на определенных последовательностях. По этой же причине чужеродная ДНК из-за отсутствия в ней метильных групп на тех же последовательностях плавится (разрезается) на фрагменты разными бактериальными рестриктазами, а затем деградируется бактериальными экзонуклеазами до нулеотидов. Можно сказать, что таким образом бактерии защи- щают себя от ДНК растений и животных, в организме которых они обитают временно (как патогены) или постоянно (как сапрофиты).

Рестриктазы впервые были выделены из Е. coli в 1968 г. Оказалось, что они способны разрезать (плавить) молекулы ДНК на разных сайтах (местах) рестрикции. Эти ферменты получили название эндонуклеаз класса I. Затем у бактерий были обнаружены эндонуклеазы класса II, которые распознают в чужеродной ДНК сайты рестрикции специфически и на этих сайтах тоже осуществляют рестрикцию. Именно ферменты этого класса стали использовать в генной инже- нерии. Тогда же были открыты ферменты класса III, которые плавят ДНК рядом с сайтами распознания, но эти ферменты не имеют значения в генной инженерии.

Действие системы рестрикции-модификации «рационализуется» так называемыми палиндромными (распознающими) последователь- ностями азотистых оснований, которые являются сайтами рестрикции ДНК. Палиндромные последовательности - это последовательности оснований, которые одинаково читаются вперед и назад, как, например, последовательность букв радар. Поскольку цепи ДНК обладают антипараллельным направлением, то считают, что последовательность является палиндромной, если она идентична, когда читается в направлении от 5" - к 3"-концу на верхней и на нижней цепи от 3" - к 5"-концу, а именно:

Палиндромы могут быть любых размеров, но большинство тех палиндромов, которые используют в качестве сайтов узнавания рестриктазами, состоят из 4, 5, 6 и реже 8 оснований.

Рестриктазы - это абсолютно необходимый инструмент в генной инженерии для вырезания интересующих фрагментов (генов) из больших молекул ДНК. Поскольку известно более 100 ферментов рестрикции, то это позволяет выбор рестриктаз и селективное вырезание фрагментов из исходной ДНК.

Замечательной особенностью рестриктаз является то, что они продуцируют разрезы молекул на несколько фрагментов (рестриктов) ДНК уступами, в результате чего в образующихся концах одна цепь длиннее другой, образуя своеобразный хвост. Такие концы (хвосты) получили название «липких» концов, так как они способны к самокомплементарности.

Рассмотрим результаты рестрикции на примере одной из наиболее известных рестриктаз Eco RI из системы рестрикция-модификация Е. соИ. Вместо того чтобы плавить ДНК в центре палиндромной последовательности узнавания, этот фермент плавит ДНК за преде- лами центра и продуцирует 4 самокомплементарных («липких») конца, состоящих из разного количества нуклеотидов, а именно:

Эти «липкие» концы в генно-инженерных опытах полезны по той причине, что они могут быть воссоединены комплементарно при низких температурах, что позволяет эффективное смыкание ДНК-фрагментов.

Сайты распознавания и сайты плавления в случае других рестриктаз имеют другое содержание, а именно:

Вслед за рестрикцией ДНК из рестрикционной смеси выделяют рестрикционные ДНК-фрагменты (ДНК-рестрикты), которые необ- ходимы затем для объединения с вектором. Для выделения ДНКрестриктов прибегают к электрофорезу, поскольку с помощью этого метода рестрикцированную ДНК очень легко фракционировать благодаря размерам фрагментов-рестриктов и константным отношениям электрический заряд-масса. Фрагменты в электрическом поле мигрируют в ходе электрофореза при частоте, зависимой от их размеров (массы). Чем больше (длиннее) фрагмент, тем медленнее он мигрирует в электрическом поле. Материалом, в котором проводят электрофорез, являются незаряжающиеся агароза или полиакриламид. Для опознания фрагментов используют этидий бромид, который красит фрагменты, что ведет к их более легкому обнаружению.

Результативность электрофореза очень высока, поскольку с его помощью могут быть разделены фрагменты, размеры которых состав- ляют от 2 до 50 000 оснований.

После электрофореза фрагменты из агарозы выделяют с помощью разных методов. На основании результатов сравнения размеров

рестриктов одной и той же ДНК, полученных с помощью разных рестриктаз, строят рестрикционные карты, на которых показывают сайты рестрикции каждой из использованных рестриктаз. В практическом плане рестрикционные карты позволяют определять не только размеры рестриктов, но и выяснять расположение в молекулах ДНК локусов тех или иных генов.

Поскольку у высших организмов в ходе транскрипции синтезируется гетерогенная ДНК, корректируемая процессингом, то в генной инженерии обычно используют комплементарную ДНК (кДНК), которую получают при использовании в качестве матрицы мРНК, на которой обратная транскриптаза синтезирует одноцепочечную ДНК (кДНК), являющуюся копией мРНК. В последующем эти одноцепочечные ДНК превращают в двухцепочечные ДНК. Считают, что кДНК содержит непрерывные нуклеотидные последовательности (транскрибируемые и транслируемые). Именно кДНК используют для рестрикции.

Выделенные после электрофореза из агарозных гелей фрагменты ДНК (рестрикты) можно предварительно подвергнуть сек-вентированию, т.е. определить в них нуклеотидную последовательность. Для этого служат химический и ферментативный методы секвентирования. Химический метод основан на получении меченных радиоактивным фосфором (32 Р) фрагментов и удалении из этих фрагментов одного из оснований с последующим учетом результатов радиоавтографии гелей, содержащих эти фрагменты. Ферментативный метод основан на том, что в конец анализируемого фрагмента вводят нуклеотид, используемый затем в синтезе разных фрагментов in vitro, анализируемых на нуклеотидную последовательность электрофоретически. Для изучения специфических последовательностей нуклеотидов в молекуле ДНК используют

также гибридизацию ДНК-ДНК, РНК-РНК, ДНК-РНК, Нозерн-

и Саузерен-блоттинги.

Генетические векторы. Сегмент ДНК (ген), который предназначен для молекулярного клонирования, должен обладать способностью к репликации при переносе его в бактериальную клетку, т.е. быть репликоном. Однако он такой способностью не обладает. Поэтому, чтобы обеспечить перенос и обнаружение клонируемых генов в клетках, их объединяют с так называемыми генетическими векторами. Последние должны обладать как минимум двумя свойствами. Во-первых, векторы должны быть способны к репликации

в клетках, причем в нескольких концах. Во-вторых, они должны обеспечивать возможность селекции клеток, содержащих вектор, т.е. обладать маркером, на который можно вести контрселекцию клеток, содержащих вектор вместе с клонируемым геном (рекомбинантные молекулы ДНК). Таким требованиям отвечают плазмиды и фаги. Плазмиды являются хорошими векторами по той причине, что они являются репликонами и могут содержать гены резистентности к какому-либо антибиотику, что позволяет вести селекцию бактерий на устойчивость к этому антибиотику и, следовательно, легкое обнаружение рекомбинантных молекул ДНК

(рис. 128).

Рис. 128. Вектор pBRl

Поскольку не существует природных плазмидных векторов, то все известные к настоящему времени плазмидные векторы были сконструированы искусственно. Исходным материалом для создания ряда генетических векторов послужили R-плазмиды, в которых с помощью рестриктаз удаляли излишние последовательности ДНК, в том числе те, на которых располагались множественные сайты рестрикции. Это удаление определялось тем, что плазмидный вектор должен обладать только одним сайтом узнавания для одной рестриктазы, причем этот сайт должен лежать в функционально несущественном районе плазмидного генома. Например, плазмидый вектор pBR 322, который имеет гены резистентности к ампициллину и тетрациклину, что делает его очень удобным

для селекции бактерий, содержащих клонируемый сегмент ДНК, обладает одиночными сайтами рестрикции для более 20 ферментов- рестриктаз, включая такие известные рестриктазы, как Eco RI, Hind III, Pst I, Pva II и Sal I.

Фаговые векторы тоже обладают рядом преимуществ. Они могут включать в себя более крупные (более длинные) клонируемые фрагменты ДНК по сравнению с плазменными векторами. Далее, перенос фагами клонируемого фрагмента в клетки в результате инфицирования ими последних является более эффективным, чем трансформация ДНК. Наконец, фаговые векторы позволяют более эффективный скрининг (распознание) на поверхности агара колоний, содержащих клетки, несущие клонируемый ген. Многие фаговые векторы сконструированы на базе фага лямбда.

Кроме фаговых используют и другие вирусные векторы, сконструированные на базе вируса герпеса, а также векторы, сконструированные на базе дрожжевой ДНК.

Если клонирование генов проводят, используя клетки млекопитающих или растений, то требования к векторам те же, что и в случае клонирования в бактериальных клетках.

Конструирование рекомбинантных молекул ДНК. Непосредственное конструирование рекомбинантных молекул ДНК следует после того, как получены рестрикты исследуемой ДНК и векторной ДНК. Оно заключается в смыкании сегментов-рестриктов исследуемой ДНК с рестриктом векторной ДНК, которая в результате рестрикции превращается из кольцевой в линейную ДНК.

Чтобы сомкнуть фрагменты исследуемой ДНК с ДНК вектора, используют ДНК-лигазу (рис. 129). Лигирование будет успешным, если смыкаемые структуры обладают З"-гидроксильной и 5"-фос- фатной группами и если эти группы расположены соответствующим образом относительно одна другой. Фрагменты объединяются через их «липкие» концы в результате самокомплементарности. При высоких концентрациях фрагментов последние время от времени становятся в правильное положение (напротив друг друга). Многие рестриктазы, такие как Eco RI, продуцируют «липкие» концы, состоящие из четырех оснований. Процесс лигирования «липких» концов, состоящих из четырех оснований, происходит при пониженной температуре (до 12 ?С).

Рис. 129. ДНК-лигирование

Если при рестрикции образуются фрагменты без «липких» концов, то их «насильственно» конвертируют в молекулы с «липкими» концами, используя фермент трансферазу. Этот фермент добавляет нуклеотиды к 3"-концу ДНК. На одном фрагменте может быть добавлен поли-А-хвост, на другом - поли-Т-хвост. Для генерации любых желаемых концов ДНК используют также полимеразную цепную реакцию (ПЦР). Принцип ПЦР основан на денатурации выделенной из клеток ДНК и «отжиге» ее с добавлением к ренатурирующимся цепям ДНК-олигонуклеотидов, состоящих из 15-20 нуклеотидов каждый. Эти олигонуклеотиды должны быть комплементарны последовательностям в цепях, разделенных расстояниями в 50-2000 нуклеотидов. Будучи «затравкой» для синтеза ДНК in vitro, они позволяют ДНК-полимеразе копировать те участки, которые находятся между «затравками». Это копирование дает большое количество копий изучаемого фрагмента ДНК.

Введение рекомбинантных молекул ДНК в клетки. После смыкания интересующего фрагмента ДНК (гена) с генетическим вектором с помощью ДНК-лигазы образованные рекомбинантные молекулы вводят в клетки с целью добиться их репликации (за счет генетического вектора) и увеличения количества копий. Наиболее популярным способом введения в клетки рекомбинантных молекул ДНК, в которых вектором служит плазмида, является трансформация Е. coli. С этой целью бактериальные клетки предварительно обрабатывают кальцием или рубидием (ионами), для того

чтобы они стали «компетентными» в восприятии рекомбинатной ДНК. Чтобы повысить частоту проникновения ДНК в клетки, используют метод электропорации, заключающийся в кратком экспонировании клеток в интенсивном электрическом поле. Эта обработка создает полости в мембранах клеток, что способствует лучшему восприятию клетками ДНК. После введения рекомбинатных молекул ДНК в бактерии последние высевают на МПА (мясо-пептонный агар), обогащенный антибиотиками для селекции желаемых клеток, т.е. клеток, содержащих рекомбинантные молекулы ДНК. Частота трансформации является невысокой. Обычно один трансформант возникает на 10 5 высеянных клеток. Если же вектор является фаговым, то прибегают к трансфекции клеток (бактерий или дрожжей) фагом. Что касается соматических клеток животных, то их трансфекцию осуществляют ДНК в присутствии химических веществ, облегчающих прохождение ДНК через плазматические мембраны. Возможны также прямые микроинъекции ДНК в овоциты, в культивируемые соматические клетки и в эмбрионы млекопитающих.

Важнейшим моментом, связанным с молекулярным клонированием, является поиск способа, позволяющего установить, действитель- но ли клонируемый фрагмент включился в вектор и вместе с вектором, образовав рекомбинатную молекулу ДНК, вошел в клетки. Если речь идет о бактериальных клетках, то один из способов основан на учете инсерционной инактивации плазмидного (векторного) гена резистентности. Например, в плазмидном векторе pBR 322, детерминирующем резистентность к ампициллину и тетрациклину, един- ственный сайт для рестриктазы Pst I находится в локусе, занимаемом геном резистентности к ампициллину. Pst I-плавление на этом сайте генерирует «липкие» концы, позволяющие лигирование клонируемого фрагмента с векторной ДНК. Однако при этом плазмидный (векторный) ген ампициллинрезистентности инактивируется, тогда как ген тетрациклинрезистентности на векторе остается интактным. Именно ген тетрациклинрезистентности и используется для селекции клеток, трансформируемых рекомбинантными молекулами ДНК. Это позволяет убедиться, что клетки выросших колоний на среде с тетрациклином действительно содержат рекомбинантные молекулы ДНК, их проверяют с помощью так называемого «спот-теста» на паре чашек с плотной средой, одна из которых содержит ампициллин, тогда как другая лишена этого антибиотика. Клонируемые ДНК находятся

лишь в трансформантах, резистентных к тетрациклину. Что касается трансформантов, резистентных одновременно к ампициллину и тетрациклину (АрТс), то они содержат плазмидные (векторные) молекулы, которые спонтанно приобрели кольцевую форму без включения в них чужеродной (клонируемой) ДНК.

Другой способ обнаружения инсерции чужеродных (клонируемых) фрагментов в плазмидный вектор основан на использовании вектора, содержащего ген β-галактозидазы. Инсерция чужеродной ДНК в этот ген неизбежно инактивирует синтез β-галактозидазы, что может быть обнаружено посевом трансформированных клеток на среду, которая содержит субстраты β-галактозидазы. Эта среда позволяет селекцию окрашенных колоний клеток. Существуют и другие методы.

Как уже отмечено, рестрикционные линейные фрагменты векторной ДНК способны к восстановлению кольцевой структуры без включения в них клонируемых сегментов. Чтобы уменьшить частоту спонтанного образования таких кольцевых молекул векторной ДНК, рестрикты векторной ДНК обрабатывают фосфатазой. В результате этого образование кольцевых молекул ДНК становится невозможным, поскольку будут отсутствовать концы 5"-РО 4 , необходимые для действия лигазы.

Совокупность колоний-трансформантов, выросших на селективной среде, представляет собой совокупность клеток, содержащих клоны разных фрагментов (генов) клонируемой геномной или кДНК. Коллекции этих клонов формируют так называемые библиотеки ДНК, широко используемые в генно-инженерных работах.

Заключительной стадией клонирования генов является выделение и исследование клонированной ДНК, включая секвенирование. Перспективные штаммы бактерий или соматических клеток, содержащих рекомбинантные молекулы ДНК, которые контролируют синтез интересующих белков, имеющих коммерческую ценность, передают в промышленность.

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

Как отмечено в начале главы, клеточной инженерией называют генетические манипуляции с изолированными клетками животных и растений. Эти манипуляции часто осуществляют in vitro, а главной целью они имеют получение генотипов этих организмов с заданными свойствами, в первую очередь хозяйственно полезными. Что касает-

ся человека, то клеточная инженерия оказалась применимой к его половым клеткам.

Предпосылкой к развитию клеточной инженерии у человека и животных явилась разработка методов культивирования их сома- тических клеток на искусственных питательных средах, а также получение гибридов соматических клеток, включая межвидовые гибриды. В свою очередь успехи в культивировании соматических клеток оказали влияние на изучение половых клеток и оплодотворения у человека и животных. Начиная с 60-х гг. ХХ в. в нескольких лабораториях мира были выполнены многочисленные эксперименты по пересадке ядер соматических клеток в яйцеклетки, искусственно лишенные ядер. Результаты этих экспериментов часто были противоречивы, но в целом они привели к открытию способности клеточных ядер обеспечивать нормальное развитие яйцеклетки (см. гл. IV).

На основе результатов изучения развития оплодотворенных яйцеклеток в 60-е гг. XX в. были начаты также исследования по выяснению возможности оплодотворения яйцеклеток вне организма матери. Очень быстро эти исследования привели к открытию возможности оплодотворения яйцеклеток сперматозоидами в пробирке и дальнейшего развития образованных таким путем зародышей при имплантации в матку женщины. Дальнейшее совершенствование разработанных в этой области методов привело к тому, что рождение «пробирочных» детей стало реальностью. Уже к 1981 г. в мире было рождено 12 детей, жизнь которым была дана в лаборатории, в пробирке. В настоящее время этот раздел клеточной инженерии получил большое распространение, а количество «пробирочных» детей составляет уже десятки тысяч (рис. 130). В России работы по получению «пробирочных» детей были начаты только в 1986 г.

В 1993 г. была разработана методика получения монозиготных близнецов человека in vitro путем разделения эмбрионов на бласто- меры и доращивания последних до 32 клеток, после чего они могли быть имплантированы в матку женщины.

Под влиянием результатов, связанных с получением «пробирочных» детей, у животных тоже была разработана технология, получившая название трансплантации эмбрионов. Она связана с разработкой способа индукции полиовуляции, способов искусственного оплодот- ворения яйцеклеток и имплантации зародышей в организм животных - приемных матерей. Суть этой технологии сводится к следую-

щему. Высокопродуктивной корове вводят гормоны, в результате чего наступает полиовуляция, заключающаяся в созревании сразу 10-20 клеток. Затем яйцеклетки искусственно оплодотворяются мужскими половыми клетками в яйцеводе. На 7-8-й день зародыши вымывают из матки и трансплантируют в матки другим коровам (приемным матерям), которые затем дают жизнь телятам-близнецам. Телята наследуют генетический статус своих подлинных родителей.

Рис. 130. «Пробирочные» дети

Другой областью клеточной инженерии у животных является создание трансгенных животных. Наиболее простой способ получения таких животных заключается во введении в яйцеклетки исходных животных линейных молекул ДНК. Животные, развившиеся из оплодотворенных таким образом яйцеклеток, будут содержать в одной из своих хромосом копию введенного гена и, кроме того, они будут передавать этот ген по наследству. Более сложный способ получения трансгенных животных разработан на мышах, различающихся по окраске шерстного покрова, и сводится к следующему. Вначале из организма беременной серой мыши извлекают четырехдневных зародышей и измельчают их на отдельные клетки. Затем из эмбриональных клеток извлекают ядра, переносят их в яйцеклетки черных мышей, предварительно лишенных ядер. Яйцеклетки черных мышей, содержащие чужие ядра, помещают в пробирки

с питательным раствором для дальнейшего развития. Развившиеся из яйцеклетки черных мышей зародыши имплантируют в матки белых мышей. Таким образом, в этих экспериментах удалось получить клон мышей с серой окраской шерстного покрова, т.е. клонировать эмбриональные клетки с заданными свойствами. В главе IV мы рассмотрели результаты оплодотворения искусственно лишенных ядер яйцеклеток овец ядерным материалом соматических клеток животных этого же вида. В частности, из яйцеклеток овец удаляли ядра, а затем в такие яйцеклетки вводили ядра соматических клеток (эмбриональных, плодовых или клеток взрослых животных), после чего оплодотворенные таким образом яйцеклетки вводили в матки взрослых овец. Рождающиеся ягнята оказались идентичными овцедонору. Пример - овца Долли. Получены также клоновые телята, мыши, кролики, кошки, мулы и другие животные. Такое конструирование трансгенных животных представляет собой прямой путь клонирования животных с хозяйственно полезными признаками, включая особей определенного пола.

Трансгенные животные получены также при использовании исходного материала, принадлежащего разным видам. В частности, известен способ передачи гена, контролирующего гормон роста, от крыс в яйцеклетки мышей, а также способ комбинирования бластомеров овцы с бластомерами козы, что привело к возникновению гибридных животных (ковец). Эти эксперименты указывают на воз- можность преодоления видовой несовместимости на самых ранних этапах развития. Особенно заманчивые перспективы открываются (если видовая несовместимость будет преодолена полностью) на пути оплодотворения яйцеклеток одного вида ядрами соматических клеток другого вида. Речь идет о реальной перспективе создания хозяйственно ценных гибридов животных, которых невозможно получить путем скрещиваний.

Следует отметить, что ядерно-трансплантационные работы еще не очень эффективны. Эксперименты, выполненные на земноводных и млекопитающих, в целом показали, что их результативность является небольшой, причем она зависит от несовместимости между донорскими ядрами и реципиентными овоцитами. Кроме того, препятствием на пути к успехам являются также образующиеся хромосомные аберрации в трансплантированных ядрах в ходе даль- нейшего развития, которые сопровождаются гибелью трансгенных животных.

На стыке работ по изучению гибридизации клеток и иммунологических исследований возникла проблема, связанная с получением и изучением так называемых моноклональных антител. Как отмечено выше, антитела, продуцируемые организмом в ответ на введение антигена (бактерии, вирусы, эритроциты и т.д.), представляют собой белки, называемые иммуноглобулинами и составляющие фундаментальную часть защитной системы организма против возбудителей болезней. Но любое чужеродное тело, вводимое в организм, представляет собой смесь разных антигенов, которые будут возбуждать продукцию разных антител. Например, эритроциты человека обладают антигенами не только для групп крови А (II) и В (III), но и многими другими антигенами, включая резус-фактор. Далее, белки клеточной стенки бактерий или капсида вирусов также могут действовать в качестве разных антигенов, вызывающих образование разных антител. В то же время лимфоидные клетки иммунной системы организма обычно представлены клонами. Значит, даже только по этой причине в сыворотке крови иммунизированных животных антитела всегда представляют собой смесь, состоящую из антител, продуцируемых клетками разных клонов. Между тем для практических потребностей необходимы антитела только одного типа, т.е. так называемые моноспецифические сыворотки, содержащие антитела только одного типа или, как их называют, моноклональные антитела.

В поисках методов получения моноклональных антител швейцарскими исследователями в 1975 г. был открыт способ гибридизации между лимфоцитами мышей, иммунизированных тем или иным антигеном, и культивируемыми опухолевыми клетками костного мозга. Такие гибриды получили название «гибри- домные». От «лимфоцитарной» части, представленной лимфоцитом одного клона, одиночная гибридома наследует способность вызывать образование необходимых антител, причем одного типа, а благодаря «опухолевой (миэломной)» части она становится способной, как и все опухолевые клетки, бесконечно долго размно- жаться на искусственных питательных средах, давая многочисленную популяцию гибридов. На рис. 131 показана схема выделения клеточных линий, синтезирующих моноклональные антитела. Линии мышиных клеток, синтезирующих моноклональные антитела, выделяют путем слияния миеломных клеток с лимфоцитами из селезенки мыши, иммунизированной за пять дней до этого

желаемым антигеном. Слияния клеток достигают смешиванием их в присутствии полиэтиленгликоля, который индуцирует слияние клеточных мембран, а затем в высеве их на питательную среду, позволяющую рост и размножение только гибридных клеток (гибридом). Размножение гибридом проводят в жидкой среде, где они растут далее и секретируют антитела в культуральную жидкость, причем только одного типа, к тому же в неограниченных количествах. Эти антитела получили название моноклональных. Чтобы повысить частоту образования антител, прибегают к клонированию гибридом, т.е. к селекции отдельных колоний гибридом, способных вызывать образование наибольшего количе- ства антител желаемого типа. Моноклональные антитела нашли широкое применение в медицине для диагностики и лечения ряда болезней. В то же время важнейшее преимущество моноклональной технологии заключается в том, что с ее помощью могут быть получены антитела против материалов, которые невозможно очистить. Напротив, можно получить моноклональные антитела против клеточных (плазматических) мембран нейронов животных. Для этого мышей иммунизируют выделенными мембранами нейронов, после чего их селезеночные лимфоциты объединяют с миеломными клетками, а дальше поступают, как описано выше.

Рис. 131. Получение моноклональных антител

ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ И МЕДИЦИНА

Генная инженерия оказалась очень перспективной для медицины, прежде всего в создании новых технологий получения физиологически активных белков, используемых в качестве лекарств (инсулин, соматостатин, интерфероны, соматотропин и др.).

Инсулин используют для лечения больных диабетом, который стоит на третьем месте (после болезней сердца и рака) по частоте вызываемых смертельных случаев. Мировая потребность инсулина составляет несколько десятков килограммов. Традиционно его получают из панкреатических желез свиней и коров, но гормоны этих животных слегка отличаются от инсулина человека. Инсулин свиней различается по одной аминокислоте, а коровий - по трем. Считают, что инсулин животных часто вызывает побочные эффекты. Хотя химический синтез инсулина осуществлен давно, но до сих пор промышленное производство гормонов оставалось очень дорогим. Сейчас получают дешевый инсулин с помощью генно-инженерного метода путем химико-ферментативного синтеза гена инсулина с последующим введением этого гена в кишечную палочку, которая затем синтезирует гормон. Такой инсулин более «биологичен», так как химически идентичен инсулину, вырабатываемому клетками поджелудочной железы человека.

Интерфероны - белки, синтезируемые клетками главным образом в ответ на заражение организма вирусами. Интерфероны характери- зуются видовой специфичностью. Например, у человека установлены три группы интерферонов, продуцируемых различными клетками под контролем соответствующих генов. Интерес к интерферонам определяется тем, что их широко используют в клинической практике для лечения многих болезней человека, особенно вирусных.

Имея крупные размеры, молекулы интерферона мало доступны для синтеза. Поэтому большинство интерферонов сейчас получают из крови человека, но выход при таком способе получения небольшой. Между тем потребности в интерфероне исключительно велики. Это поставило задачу изыскать эффективный метод производства интерферона в промышленных количествах. Генетическая инженерия лежит в основе современного производства «бактериального» интерферона.

Усилилось влияние генетической инженерии на технологию тех лекарственных веществ, которые уже давно создаются по био- логической технологии. Еще в 40-50-е гг. XX в. была создана

биологическая промышленность для производства антибиотиков, которые составляют наиболее эффективную часть лекарственного арсенала современной медицины. Однако в последние годы отмечается значительный рост лекарственной устойчивости бактерий, особенно к антибиотикам. Причина заключается в широком распространении в микробном мире плазмид, детерминирующих лекарственную устойчивость бактерий. Именно поэтому многие знаменитые ранее антибиотики утратили свою былую эффективность. Единственный пока путь преодоления резистентности бактерий к антибиотикам - это поиски новых антибиотиков. По оценкам специалистов, в мире ежегодно создают около 300 новых антибиотиков. Однако большинство из них либо неэффективно, либо токсично. В практику же каждый год вводится лишь несколько антибиотиков, что заставляет не только сохранять, но и увеличивать мощность антибиотической промышленности на основе генно-инженерных разработок.

Основные задачи генной инженерии в тех технологиях лекарственных веществ, в которых продуцентами лекарств являются микроорганизмы, определяются необходимостью генно-инженерной реконструкции последних с целью повышения их активности. В то же

время началась реализация идеи создания лекарств в виде малых молекул, что способствует их большей эффективности.

Иммунная биотехнология связана с производством прежде всего вакцин нового поколения для профилактики инфекционных болезней человека и животных. Первыми коммерческими продуктами, созданными с помощью генетической инженерии, стали вакцины против гепатита людей, ящура животных и некоторые другие. Исключительно важное направление в этой области связано с производством моноклональных антител, реагентов, необходимых для диа- гностики возбудителей болезни, а также для очистки гормонов, витаминов, белков различной природы (ферментов, токсинов и др.).

Значительный практический интерес представляет метод получения искусственного гемоглобина путем введения гемоглобиновых генов в растения табака, где под контролем этих генов продуциру- ются α- и β-цепи глобина, которые объединяются в гемоглобин. Синтезируемый в клетках табачных растений гемоглобин полностью функционален (связывает кислород). Клеточная инженерия в применении к человеку связана не только с решением фундаментальных проблем биологии человека, но и с преодолением прежде всего женского бесплодия. Поскольку частота положительных случаев имплантации в матку женщин эмбрионов, полученных in vitro, является небольшой, то получение монозиготных близнецовэмбрионов in vitro также имеет значение, так как увеличиваются возможности повторных имплантаций за счет «запасных» эмбрионов. Особый интерес представляют перспективы использования стволовых клеток в качестве источника замены клеток и тканей в лечении таких болезней, как диабет, повреждения спинного мозга, боли сердца, остиоартриты, болезнь Паркинсона. Но для реализации этих перспектив необходимо углубленное изучение биологии стволовых клеток.

В использовании генетической инженерии применительно к проблемам медицины особое значение приобрела задача разработки генно-инженерных методов радикального лечения наследственных болезней, которые, к сожалению, еще не поддаются лечению существующими методами. Содержание этой задачи заключается в разработке способов исправления (нормализации) мутаций, результатом которых являются наследственные болезни, и в обеспечении передачи «исправлений» по наследству. Считают, что успешной разработке генно-инженерных методов лечения наследственных болезней будут

способствовать данные о геноме человека, полученные в результате выполнения международной научной программы «Геном человека».

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

Подняв на новый уровень биотехнологию, генетическая инженерия нашла также применение в разработке способов определения и устранения загрязнений окружающей среды. В частности, сконструированы штаммы бактерий, которые являются своеобразными индикаторами мутагенной активности химических загрязнений. С другой стороны, генно-инженерным способом сконструированы штаммы бактерий, содержащие плазмиды, под контролем которых происходит синтез ферментов, способных разрушать многие химические соединения- загрязнители среды обитания. В частности, некоторые плазмидосодержащие бактерии способны разлагать до безвредных соединений нефть и нефтепродукты, оказавшиеся в среде в результате различных аварий или других неблагоприятных причин.

Однако генетическая инженерия - это превращение генетического материала, которое в природе отсутствует. Следовательно, продукты генной инженерии - это абсолютно новые продукты, не существующие в природе. Поэтому она сама по себе из-за неизвестности ее продуктов таит опасность как для природы и среды обитания, так и для персонала, работающего в лабораториях, где используют методы генетической инженерии или работают со структурами, созданными в ходе генно-инженерных работ.

Поскольку возможности клонирования генов безграничны, то еще в самом начале этих исследований среди ученых возникли вопросы о природе создаваемых организмов. Одновременно были высказаны предположения о ряде нежелательных последствий этой методологии, причем эти предположения нашли поддержку и среди широкой общественности. В частности, появились раз- ногласия о свойствах бактерий, получивших в генно-инженерных экспериментах гены животных. Например, сохраняют ли бактерии Е. coli свою видовую принадлежность из-за содержания введенных в них генов животного происхождения (например, гена инсулина) или их следует считать новым видом? Далее, насколько долговечны такие бактерии, в каких экологических нишах они могут

существовать? Но самое главное стало заключаться в появлении опасений, что в ходе производства и манипуляций с рекомбинантными молекулами ДНК могут быть созданы генетические структуры со свойствами, непредвиденными и опасными для здоровья человека, для исторически сложившегося экологического равновесия. Тогда же начались и призывы к мораторию на генетическую инженерию. Эти призывы вызвали международный резонанс и привели к международной конференции, которая состоялась в 1975 г. в США и на которой широко обсуждались возможные последствия исследований в этой области. Затем в странах, где стала развиваться генетическая инженерия, были выработаны правила работы с рекомбинантными молекулами ДНК. Эти правила направлены на исключение попадания в среду обитания продуктов деятельности генно-инженерных лабораторий.

Другой аспект нежелательных последствий генно-инженерных работ связан с опасностью для здоровья персонала, работающего в лабораториях, где применяют методы генетической инженерии, поскольку в таких лабораториях используют фенол, этидий бромид, УФ-излучения, которые являются вредными для здоровья факторами. Кроме того, в этих лабораториях существует возможность заражения бактериями, содержащими рекомбинантные молекулы ДНК, контролирующие нежелательные свойства, например лекарственную резистентность бактерий. Эти и другие моменты определяют необходимость повышения уровня техники безопасности в генноинженерных работах.

Наконец, широко обсуждаются в обществе проблемы опасности генетически модифицированных продуктов (генетически изме- ненных томатов, картофеля, кукурузы, сои), а также таких продуктов, как хлеб, пасты, конфеты, мороженое, сыр, растительное масло, мясные продукты, которые в ряде стран, особенно в США, приобрели широкое распространение. На протяжении 12 000 лет сельского хозяйства человек употреблял продукты естественного происхождения. Поэтому предполагают, что с генетически модифицированной пищей в организм человека попадут новые токсины, аллергены, бактерии, канцерогены, что приведет к совершенно новым болезням будущих поколений. В связи с этим возникает вопрос о подлинно научной оценке генетически модифицированной пищи.

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ

1. Что понимают под генной, клеточной и генетической инженерией? Есть ли разница между этими понятиями и молекулярном клонировании?

2. В чем заключается прогрессивность генетической инженерии по сравнению с другими методами, используемыми в биологии?

3. Перечислите основные «инструменты» генной инженерии.

4. Что представляют собой ферменты-рестриктазы, каковы их свойства и их роль в генной инженерии?

5. Все ли рестриктазы образуют «липкие» концы исследуемых ДНК и зависит ли структура «липких» концов от вида рестриктазы?

6. Дайте определение генетическим векторам. Существуют ли природные векторы?

7. Как получают генетические векторы в лабораторных условиях? Какие биологические объекты являются исходным материалом для получения векторов?

8. Какова предельная длина последовательностей азотистых оснований ДНК, которые еще могут включиться в генетический вектор? Различаются ли векторы по «мощности»?

9. Охарактеризуйте свойства ДНК-лигазы и определите ее роль в генной инженерии.

10. Как смыкают клонируемый сегмент ДНК (ген) с генетическим вектором?

11. Какова частота введения рекомбинантных молекул ДНК в бактериальные клетки?

12. На каком принципе основана селекция бактериальных клеток, содержащих рекомбинантные молекулы ДНК? Приведите один из примеров такой селекции.

14. Многие штаммы бактерий обладают одинаковыми ферментами, практически одинаково обеспечивающими их метаболизм. Между тем нуклеотидная специфичность систем рестрикции-модификации бактерий различна. Можете ли вы объяснить это явление?

15. Почему последовательности ДНК, представляющие сайты распознавания рестриктазами, не могут содержать более восьми пар оснований?

16. Сколько раз последовательность ГГЦЦ, распознаваемая рестриктазой Нае III, будет встречаться в сегменте ДНК длиной в 50 000 пар оснований с 30-, 50- и 70-процентным содержанием ГЦ?

17. Рестриктазы Bam HI и Bgl I плавят последовательности Г ГАТЦЦ и Т ГАТЦА соответственно. Можно ли включить в сайт Bam HI фрагменты ДНК, продуцированные Bgl I-рестрикцией? Если да, то почему? Если используемая плазмида (вектор) содержит один сайт для рестрикции Bgl I, то на какой питательной среде можно осуществить селекцию бактерий, эту плазмиду?

18. Вычислите частоту трансформации бактерий на одну молекулу ДНК, если на 5000 плазмидных пар оснований образуется 5-10 5 трансформантов?

19. Можно ли клонировать 0-пункт репликации ДНК Е. coli и если да, то каким образом?

20. Можно ли определить, сколько необходимо молекул ДНК для трансформации одной клетки Е. coli?

21. Можно ли с помощью полимеразной цепной реакции определить сайт сплайсинга на мРНК?

22. Каким образом можно использовать полимеразную цепную реакцию для того, чтобы ввести желаемый сайт рестрикции в интересующее место на фрагменте ДНК, предназначенном для клонирования?

23. Назовите методы клеточной инженерии в применении к животным. Какова хозяйственная ценность животных, получаемых этими методами?

24. Дайте определение понятиям «трансгенные растения» и «трансгенные животные». Сохраняют ли трансгенные организмы свою видовую принадлежность или их можно считать организмами новых видов?

25. Что такое гибридомы и моноклональные антитела? Как их получают?

26. Применима ли клеточная инженерия к человеку?

27. Допустим, что инъекция чужеродной ДНК в яйцеклетку мыши и имплантация оплодотворенной таким путем яйцеклетки в организм мыши закончились ее беременностью и рождением мышат, содержащих в геноме копии инъецированной ДНК. Однако мышата оказались мозаиками, т.е. одни их клетки содержат копии инъецированной ДНК, другие лишены этой ДНК. Можете ли вы объяснить природу этого явления?

28. Считаете ли вы генетически опасной пищу, приготовленную из генетически измененных продуктов?

29. Необходима ли научная экспертиза генетически измененных продуктов питания?

Познание определяется тем, что утверждается нами как Истина.

П.А. Флоренский, 1923

ГЕННАЯ ИНЖЕНЕРИЯ (син. генетическая инженерия ) - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в т. ч. и не встречающимися в природе, комбинациями наследственных свойств. В основе Г. и. лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых к-т. К этим достижениям следует отнести установление универсальности генетического кода (см.), т. е. факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируется одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получать в изолированном виде отдельные гены или фрагменты нуклеиновой к-ты, осуществлять in vitro синтез фрагментов нуклеиновых к-т, объединить в единое целое полученные фрагменты. Т. о., изменение наследственных свойств организма с помощью Г. и. сводится к конструированию из различных фрагментов нового генетического материала, введению этого материала в реципиентный организм, созданию условий для его функционирования и стабильного наследования.

Один из способов получения генов - хим. синтез. После того как Холли (A. Holli) в США, А. А. Баеву в СССР и другим исследователям удалось расшифровать структуру различных транспортных РБГК (тРНК), X. Корана с соавт, осуществил хим. синтез ДНК, кодирующей аланиновую тРНК пекарских дрожжей.

Но наиболее эффективный метод искусственного синтеза генов связан с использованием фермента РНК-зависимой ДНК-полимеразы (обратная транскриптаза), обнаруженного Балтимором (D. Baltimore) и Темином (H. Temin) в онкогенных вирусах (см.). Этот фермент выделен и очищен из клеток, зараженных некоторыми РНК-содержащими онкогенными вирусами, в т. ч. вирусом птичьего миелобластоза, саркомы Рауса, мышиной лейкемии. Обратная транскриптаза обеспечивает синтез ДНК на матрице информационной РНК (иРНК). Использование молекул иРНК как матриц для синтеза ДНК в значительной степени облегчает искусственный синтез отдельных структурных генов высших организмов, поскольку последовательность азотистых оснований в молекуле иРНК является точной копией последовательности азотистых оснований соответствующих структурных генов, а методика выделения различных молекул иРНК достаточно хорошо разработана. Успехи в выделении иРНК белка глобина, входящего в состав гемоглобина человека, животных и птиц, иРНК белка хрусталика глаза, иРНК иммуноглобина, иРНК специфического белка злокачественной опухоли (миеломы) позволили с помощью обратной транскриптазы осуществить синтез структурной части генов, кодирующих некоторые из этих белков.

Однако в организме структурные гены функционируют совместно с регуляторными, нуклеотидная последовательность которых не воспроизводится молекулой иРНК. Поэтому ни один из указанных способов не позволяет осуществить синтез совокупности структурного и регуляторного гена. Решение этой проблемы стало возможным после разработки методов выделения отдельных генов. Для выделения бактериальных генов используют небольшие ДНК-содержащие цитоплазматические структуры, способные реплицироваться (см. Репликация) независимо от бактериальной хромосомы. Эти структуры образуют единую группу внехромосомных генетических элементов бактерий - плазмид (см. Плазмиды). Некоторые из них могут внедряться в бактериальную хромосому, а затем спонтанно либо под воздействием индуцирующих агентов, напр. УФ-облучения, переходить из хромосомы в цитоплазму, захватывая с собой и прилегающие хромосомные гены-клетки хозяина. Внехромосомные генетические элементы бактерий, обладающие такими свойствами, называют эписомами [Ф. Жакоб, Волльман (E. Wollman)]. К эписомам (см.) относят умеренные фаги (см. Бактериофаг), половой фактор бактерий, факторы лекарственной устойчивости микроорганизмов (см.), бактериоциногенные факторы (см.). В цитоплазме гены, захваченные эписомами, реплицируются в их составе и часто образуют множество копий. Разработка эффективного метода выделения плазмид, в частности умеренных фагов, несущих генетический материал бактериальной хромосомы, и выделения включенного в геном бактериофага фрагмента хромосомы бактериальной клетки позволила в 1969 г. Беквиту (J. Beckwith) с соавт, выделить лактозный оперон - группу генов, контролирующих синтез ферментов, необходимых для усвоения кишечной палочкой лактозы. Аналогичная техника была использована для выделения и очистки гена, контролирующего синтез тирозиновой транспортной РНК кишечной палочки (см. Рибонуклеиновые кислоты).

Использование плазмид дает возможность получить в изолированном виде практически любые бактериальные гены, а следовательно, и возможность конструировать молекулы ДНК из различных источников. Такие гибридные структуры можно накопить в клетках в значительных количествах, поскольку многие плазмиды в определенных условиях интенсивно реплицируются в цитоплазме бактерий, образуя десятки, сотни и даже тысячи копий.

Успехи Г. и. связаны с разработкой техники объединения генетических структур из различных источ-i ников в одной молекуле ДНК. Решающим в конструировании гибридных молекул in vitro явилось использование эндонуклеаз рестрикции - особых ферментов, способных разрезать молекулы ДНК в строго определенных участках. Такие ферменты обнаружены в клетках Escherichia coli, несущих плазмиды типа R, обусловливающие устойчивость бактерий к нек-рым лекарственным препаратам, в клетках Haemophilus influenzae, Serratia marcescens и других микроорганизмов. Один из наиболее часто используемых ферментов этого типа - эндонуклеаза рестрикции EcoRI, синтезируемая плазмидой RI в клетках E. coli. Фермент распознает участок ДНК с уникальной последовательностью из шести пар нуклеотидов и разрезает двунитчатую структуру ДНК на этом участке т. о., что с обеих сторон образуются однонитевые концы из четырех нуклеотидов (так наз. липкие концы). Поскольку фермент разрезает молекулы ДНК независимо от их происхождения строго определенным образом, все образовавшиеся в результате действия фермента фрагменты ДНК будут иметь одни и те же липкие концы. Комплементарные липкие концы любых фрагментов ДНК объединяются водородными связями, образуя гибридную кольцевую ДНК (рис.). Для стабилизации гибридной молекулы ДНК используют другой фермент - полинуклеотидлигазу, восстанавливающую ковалентные связи, разорванные ферментом рестрикции. Последовательность, специфично распознаваемая EcoRI, встречается в ДНК не чаще, чем через 4000-16 000 пар нуклеотидов. Следовательно, фрагмент ДНК, образовавшийся под действием EcoRI, может включать по крайней мере один неповрежденный ферментом ген (один ген в среднем содержит 1000-1500 пар нуклеотидов).

Применение эндонуклеаз рестрикции и ряда других ферментов дает возможность получать сложные рекомбинантные ДНК. Группа исследователей в США под руководством Берга (P. Berg) сумела объединить в составе одной молекулы ДНК генетическую информацию из трех источников: полный геном (см.) онкогенного вируса обезьян SV40, часть генома умеренного бактериофага λ и группу генов кишечной палочки, ответственных за усвоение галактозы. Сконструированная рекомбинантная молекула не была исследована на функциональную активность, поскольку авторы этой работы остановились перед потенциальной опасностью распространения онкогенных вирусов животных в популяции бактерий, обитающих в кишечнике человека. Известно, что очищенная ДНК вирусов может проникать в различные клетки млекопитающих и стабильно наследоваться ими.

Впервые функционально активные молекулы гибридной ДНК удалось сконструировать в США Коэну (S. Cohen) с соавт. Группа Коэна последовательно решала проблему объединения и клонирования (избирательного накопления) молекул ДНК, выделенных из видов, все более удаленных друг от друга в филогенетическом отношении. Процедура клонирования обычно заключается в том, что ДНК из различных источников фрагментируют с помощью эндонуклеаз рестрикции, затем эти фрагменты объединяют in vitro в общую структуру и вводят в реципиентный организм, к-рым в опытах Коэна служит кишечная палочка. Установлено, что клетки нескольких видов бактерий (в т. ч. Escherichia coli, Salmonella typhimurium, Staphylococcus aureus) могут быть трансформированы (см. Трансформация) с помощью рекомбинантных молекул ДНК. При этом плазмидная часть гибридной молекулы (либо одна из плазмид, если в составе гибридной молекулы объединены две плазмиды из различных источников) служит вектором, т. е. обеспечивает перенос в реципиентные клетки филогенетически чужеродного генетического материала и его размножение в них. Первой плазмидой, использованной Коэном с соавт, в качестве вектора, была полученная им in vitro плазмида pSC101, контролирующая устойчивость бактерий к тетрациклину. Эта небольшая плазмида состоит всего из 8000 пар нуклеотидов. Она атакуется ферментом EcoRI лишь в одном участке, причем фермент не повреждает способность плазмиды к последующей репликации в клетках E. coli и контролировать устойчивость к тетрациклину. Эти особенности позволили использовать ее для конструирования in vitro гибридных молекул ДНК. На первых этапах к pSC101 присоединили плазмидную ДНК, выделенную из различных видов бактерий, а затем и из высших организмов. Так были созданы «химерные» плазмиды (т. е. не способные возникать в природных условиях), объединившие в своем составе генетический материал кишечной палочки, участок ДНК из ооцитов шпорцевой лягушки Xenopus laevis, контролирующий синтез рибосомных РНК, и участок ДНК морского ежа, контролирующий синтез белков- гистонов, либо ДНК митохондрий мыши. В клетках кишечной палочки, в которые вводили такие гибридные, «химерные», плазмиды, была зарегистрирована работа генов высших организмов.

В отличие от pSC101, присутствующей в клетке лишь в 4-6-й копиях, некоторые другие плазмиды, используемые в качестве векторов, в определенных условиях могут многократно реплицироваться, образовывая несколько тысяч копий в одной клетке. Такими свойствами обладает, напр., плазмида ColEI, контролирующая синтез колицина (см. Бактериоциногения). Подобно pSC101, ColEI разрезается ферментом EcoRl лишь в одном участке, а к образовавшейся линейной молекуле с липкими концами легко присоединяется чужеродная ДНК, также обработанная EcoRI. Т. о., к ColEI удалось «подшить» гены триптофанового оперона кишечной палочки. В клетках, несущих множество копий сконструированной гибридной плазмиды, резко увеличилась продукция белков-ферментов, контролируемых генами биосинтеза триптофана. В системе in vitro удалось присоединить плазмиду ColEI к нек-рым R-факто-рам и умеренному фагу. Подобные работы впервые выполнены в СССР под руководством академика А. А. Баева и профессора С. И. Алиханяна. Комбинированные векторные плазмиды, образованные ColEI и R-факторами, способны интенсивно размножаться в бактериальных клетках, подобно ColEI, и в то же время обусловливают устойчивость клеток к антибиотикам, что значительно упрощает отбор бактерий - носителей гибридных плазмид.

В качестве векторов используют и умеренные фаги. В системе in vitro сконструированы гибридные частицы бактериофага, включившие в свою структуру бактериальные гены, ДНК других фагов либо высших организмов (напр., ДНК плодовой мушки-дрозофилы).

Функциональную активность гибридных ДНК определяют возможностью их переноса в клетки реципиентных организмов и последующего умножения (амплификации) в этих клетках. В качестве реципиентов уже сейчас эффективно используют не только бактерии, о чем упоминалось выше, но и клетки высших организмов, пока, однако, лишь в виде культуры ткани, культивируемой вне организма. Имеются указания на возможность проникновения ДНК фагов, несущих бактериальные гены, в клетки соединительной ткани (фибробласты) человека, в протопласты либо в недифференцированную культуру (каллус) клеток растений. В 1971 г. амер. исследователь Меррил (С. R. Merril) с соавт, сообщил об опытах по исправлению наследственного дефекта - галактоземии (см.) путем введения в «больные» клетки галактозных генов бактерий, включенных в состав ДНК трансдуцирующего фага. В результате клетки больного галактоземией, дефектные по ферменту бета-D-галактозо-1-фосфатуридилтрансферазе, не способные усваивать галактозу, восстанавливали нормальную способность к росту в присутствии галактозы, а в их экстрактах была зарегистрирована ранее отсутствовавшая ферментативная активность. Сходный результат был получен Хорстом (J. Horst) с соавт, при введении бактериального гена, контролирующего синтез бета-галактозидазы в фибробласты больного с генерализованным ганглиозидозом, характеризующимся резкой недостаточностью этого фермента. Маньон (W. Munyon) и его сотр. с помощью вируса герпеса перенесли ген, контролирующий синтез тимидинкиназы, из клеток человека в клетки мыши, восстановив способность дефектных мышиных фибробластов синтезировать этот фермент.

Одним из путей передачи генетической информации в культуре клеток человека, животных и растений является гибридизация соматических клеток, разработанная Эфрусси (В. Ephrussi) и Барски (G. Barski). Эффективность этого метода значительно повысилась после того, как было обнаружено, что частицы инактивированного вируса парагриппа типа Сендай увеличивают частоту слияния клеток из самых различных источников. Продемонстрирована возможность передачи отдельных генов из изолированных хромосом китайского хомячка в клетки соединительной ткани мыши. Описаны гибриды клеток человека и мыши, в которых часть хромосом человека удаляется, а часть остается функционально активной. Развитие методов микрохирургии клеток позволило пересаживать клеточные ядра из соматических клеток в оплодотворенные яйцеклетки и получать в результате абсолютно идентичные организмы. Гибридизация клеток дала возможность индуцировать синтез глобина человека в зародышевых клетках лягушки. Все эти примеры демонстрируют потенциальные возможности Г. и.

Практическое значение Г. и. для медицины связано с перспективами исправления наследственных дефектов обмена у человека (см. Генотерапия), создания микроорганизмов, потерявших свою патогенность, но сохранивших способность к формированию иммунитета, синтеза антибиотиков, аминокислот, гормонов, витаминов, ферментов, иммуноглобулинов и т. д., основанного на использовании микроорганизмов, включивших соответствующие гены. Исключительные результаты могут быть получены в ближайшее время Г. и. растений. С помощью методов Г. и. пытаются создать растения, способные усваивать атмосферный азот, и улучшить белковый состав растительной пищи. Успешное решение этих задач позволит резко повысить продуктивность растений, сократить производство и потребление минерального азота, а тем самым значительно оздоровить окружающую среду (см.). Изучается возможность создания совершенно новых форм животных и растений за счет преодоления межвидовых барьеров скрещиваемости. Однако при оценке Г. и. как новой формы освоения живой природы следует учитывать не только ее возможную революционизирующую роль в биологии, медицине и сельском хозяйстве, но и возникающие в связи с ее развитием возможности появления новых форм патогенных микроорганизмов, опасность распространения в популяциях бактерий, обитающих у человека, гибридных ДНК, несущих Онкогенные вирусы, и т. д. Конечно, преднамеренное использование достижений науки, и в т. ч. Г. и., в антигуманных, человеконенавистнических целях возможно лишь в обществе, в к-ром благо человека приносится в жертву наживе и агрессии.

Из дополнительных материалов

Генетическая инженерия продолжает оставаться быстро прогрессирующим методом исследования в молекулярной биологии и генетике. Необходимо отметить, что понятия «генетическая инженерия» и «генная инженерия» не являются полными синонимами, т. к. исследования, относящиеся к генетической инженерии, не ограничиваются только манипуляциями с генами как таковыми. В настоящее время методы генетической инженерии позволяют проводить наиболее глубокий и детальный анализ природных нуклеиновых к-т - веществ, ответственных за хранение, передачу и реализацию генетической информации (см. Нуклеиновые кислоты.), а также создавать модифицированные или абсолютно новые, не встречающиеся в природе гены (см. Ген), комбинации генов и с высокой эффективностью экспрессировать их в живой клетке (см. Экспрессивность гена). Из конкретных практических достижений генетической инженерии в последнее десятилетие наиболее важным следует признать создание продуцентов биологически активных белков - инсулина (см.), интерферона (см.), гормона роста (см. Соматотропный гормон) и др., а также разработку генно-инженерных способов активизации тех звеньев обмена веществ, к-рые связаны с образованием низкомолекулярных биологически активных веществ. Таким путем получены продуценты нек-рых антибиотиков, аминокислот и витаминов, во много раз более эффективные, чем продуценты этих веществ, выведенные традиционными методами генетики и селекции. Разрабатываются способы получения чисто белковых вакцин против вирусов гепатита, гриппа, герпеса, ящура, реализована идея использования вакцинации вирусом осповак-цины, в геном к-рого встроены гены, кодирующие синтез белков других вирусов (напр., вирусов гепатита или гриппа): в результате прививки сконструированным таким образом вирусом организм вырабатывает иммунитет не только против оспы, но и против гепатита, гриппа или другого заболевания, вызываемого тем вирусом, белок к-рого кодируется встроенным геном.

Существенно выросла мировая коллекция рестрикционных эндонуклеаз - рестриктаз, основных «инструментов» генно-инженерных манипуляций. Выделено более 400 рестриктаз, «узнающих» ок. 100 различных по структуре специфических участков (сайтов) в молекулах ДНК (см. Дезоксирибонуклеиновые кислоты) и расщепляющих полинуклео-тидную цепь ДНК по этим участкам. С помощью одного такого фермента или комбинации нескольких рестриктаз можно выделить практически любой ген в составе одного или нескольких фрагментов ДНК (так наз. рестрикционных фрагментов). Это расширило возможности генетической инженерии не только в отношении выделения генов, но и в отношении активизации их работы, анализа структуры генов и их молекулярного окружения. Разработаны методы синтеза целых генов с заданной последовательностью нуклеотидов, появилась возможность снабжать синтезированные и природные гены различными регуляторными нуклеотидными последовательностями, заменять, вставлять, удалять единичные нуклеотиды в строго заданных участках гена, укорачивать или достраивать его нуклеотидную цепь с точностью до одного нуклеотида.

Достижением генетической инженерии явилось ее проникновение в организацию и функционирование механизмов наследственности клеток высших организмов, в т. ч. и человека. Именно на высших эукариотах с помощью методов генетической инженерии получены наиболее интересные данные. Успехи генетической инженерии во многом связаны с получением новых специализированных векторов, позволяющих эффективно клонировать (размножать) индивидуальные фрагменты ДНК (гены) и синтезировать белки, кодируемые этими генами.

Рестрикционные фрагменты, соединенные с ДНК-векторами, клонируют в живой клетке, используя способность таких векторов воспроизводиться (реплицироваться) в клетке во множестве копий. В зависимости от размеров фрагментов, подлежащих клонированию, и цели исследования используют векторы одного из четырех типов - плазмиды (см.), фаги (см. Бактериофаг), космиды или производные фагов с однонитевой ДНК.

Для клонирования сравнительно небольших фрагментов ДНК (до 10 тыс. пар нуклеотидов) применяют плазмидные векторы (pBR322, рАТ 153, pUR250, pUC19 и др.). Достижением генетической инженерии последних лет было получение векторов на основе фага X (Харон 4А, gtwes-B), в к-ром часть генома замещена фрагментом чужеродной ДНК. Гибридный геном искусственным путем «упаковывают» в белковую оболочку и этим реконструированным фагом заражают бактерии. Образуя при размножении в клетке несколько тысяч копий, реконструированный фаг лизирует ее и выделяется в культуральную среду. С помощью таких векторов клонируют фрагменты ДНК длиной 10-25 тыс. пар нуклеотидов.

Космидные векторы (pIB8, MUA-3) представляют собой гибрид фага X и плазмиды. Они содержат так наз. COS-последовательности ДНК фага, необходимые для упаковки геномов фага в белковую оболочку, и участок ДНК плазмиды, позволяющий кос-мидным векторам реплицироваться в бактериях так же, как это делают плазмиды. Таким образом, полученный рекомбинантный геном с высокой эффективностью заражает бактерии подобно бактериофагу, но размножается в них как плазмида, не вызывая гибели бактериальной клетки. Космиды применяют для клонирования фрагментов ДНК длиной до 35-45 тыс. пар нуклеотидов.

Векторы, представляющие собой производные фагов с однонитевой ДНК (М13 mp8, М13, тр73 и др.), сконструированы на основе кольцевой молекулы ДНК бактериофага М13. Для встраивания чужеродной ДНК используют репликативную двуспиральную молекулу ДНК фага. Вектор, несущий чужеродную ДИК, вводят в бактериальные клетки, где рекомбинантные молекулы размножаются, не лизируя эту клетку, и «отпочковываются» в культуральную среду как вирусная частица с однонитевой молекулой ДНК. Эти векторы используют для клонирования фрагментов ДНК (до 300-400 пар нуклеотидов).

Ген, необходимый для генно-инженерных манипуляций, получают путем клонирования соответствующих рекомбинантных молекул ДНК и отбора таких клонов. В тех случаях, когда клонируют гены высших организмов и человека/ экспрессия к-рых в E. coli (чаще всего используемой для таких целей) невозможна, процедуру клонирования и отбора проводят в несколько этапов. На первом этапе создают так наз. библиотеку генов из фрагментов ДНК (клонированных непосредственно из генома клетки) или из клонированных ДНК-копий (кДНК) соответствующей матричной РНК. Сравнивая структуру фрагментов геномной ДНК и соответствующих кДНК, получают важную информацию об организации генетического материала, а в случае наследственных болезней - о характере аномалий в генетическом материале, следствием к-рых и является это заболевание. Из библиотеки генов, пользуясь современными приемами, можно извлечь необходимый ген с окружающими его участками генома. В настоящее время созданы полные библиотеки генов многих микроорганизмов, растений и животных (вплоть до млекопитающих и человека). Уже клонировано и в той или иной мере изучено несколько сот генов и других последовательностей нуклеотидов в ДНК человека.

Возможности генно-инженерных исследований не ограничиваются клонированием гена и получением большого числа его копий. Часто необходимо не только клонировать ген, но и обеспечить его экспрессию в клетке, т. е. реализовать заключенную в нем информацию в аминокислотную последовательность полипеп-тидной цепи белка, кодируемого этим геном. Если вводимый в бактериальную клетку ген получен из бактерий той же (или близкой) видовой принадлежности, то бывает достаточно выделить ген с регуляторными элементами, контролирующими его экспрессию. Однако, если не считать нескольких исключений, регуляторные нуклеотидные последовательности эволюционно далеких друг от друга организмов не являются взаимозаменяемыми. Поэтому, чтобы добиться, напр., экспрессии эукариотического гена в клетках Е. coli, у него удаляют регуляторную область, а структурную часть такого гена присоединяют (на определенном расстоянии) к регуляторной области бактериального гена. Существенный прогресс в разработке этой методики был достигнут после открытия фермента нуклеазы Ва131, к-рая обладает уникальным свойством гидролизовать обе цепи двуспиральной линейной молекулы ДНК начиная с конца молекулы, т. е. этот фермент удаляет с конца фрагмента ДНК «лишние» последовательности нуклеотидов любой протяженности. В настоящее время структурную и регуляторную области выделяют порознь с помощью тех рестриктаз, участки «узнавания» к-рых расположены наиболее удачно на полинуклеотидной цепи, затем убирают «лишние» нуклеотидные последовательности и соединяют структурную область эукариотического гена с регуляторной областью бактериального гена. Таким путем удается добиться не только экспрессии генов эукариотов в бактериальных клетках, но и, наоборот, бактериальных генов в клетках высших и низших эукариотов.

Успехи генетической инженерии тесно связаны с развитием и совершенствованием методов определения последовательности нуклеотидов (секвенирования) в молекулах ДНК. Значительное число рестриктаз, имеющихся в распоряжении исследователей, позволяет с абсолютной специфичностью выделять определенные фрагменты ДНК, а разработка и совершенствование методов клонирования дает возможность получать фрагменты даже уникальных генов в количествах, необходимых для анализа. Методы секвенирова-ния ДНК оказались настолько эффективными, что часто через определение последовательности нуклеотидов ДНК получают данные о последовательности нуклеотидов в молекулах соответствующих РНК и о последовательности аминокислотных остатков в синтезирующейся молекуле белка. При обработке результатов секвенирования ДНК широко используют ЭВМ. Для более полной и быстрой интерпретации полученных экспериментальных данных создаются национальные и международные компьютерные «банки» нуклеотидных последовательностей. В настоящее время определены полные последовательности нуклеотидов геномов ряда бактериальных плазмид и вирусов, уже решается проблема определения полных нуклеотидных последовательностей сначала отдельных хромосом, а затем и всего генома высших организмов, в т. ч. и человека.

С помощью методов генетической инженерии были обнаружены отклонения в строении определенных участков генов человека, что являлось причиной наследственных болезней. Чаще всего таким методом служит так наз. б лот-анализ. Выделенную клеточную ДНК подвергают гидролизу рестриктазой, полученные фрагменты разделяют по величине с помощью электрофореза в агарозе или полиакриламидном геле. Разделенные фрагменты переносят («перепечатывают») на специально обработанную хроматографическую бумагу, нитроцеллюлозу или нейлоновый фильтр и снова подвергают электрофоретическому разделению. Вырезают места электрофореграмм, соответствующие отдельным фракциям и содержащие однотипные фрагменты ДНК; вырезанные участки электрофореграмм инкубируют с ранее клонированным геном или его частью либо с полученной путем хим. синтеза последовательностью нуклеотидов, содержащими радиоактивную метку. Меченая ДНК связывается только с теми фрагментами анализируемой клеточной ДНК, к-рые имеют комплементарные ей последовательности нуклеотидов. Изменение распределения и количества фиксированной метки по сравнению с нормой позволяет судить о перестройках в анализируемом гене или близлежащих к нему последовательностях нуклеотидов.

Участки «узнавания» определенных рестриктаз в молекуле ДНК располагаются неравномерно, поэтому при гидролизе этими ферментами молекула ДНК расщепляется на ряд фрагментов различной длины. Перестройка структуры ДНК, в результате к-рой исчезают имевшиеся или появляются новые участки «узнавания», приводит к изменению набора этих фрагментов (так наз. рестрикционных фрагментов), т. е. к появлению полиморфизма длин рестрикционных фрагментов(ГВДРФ). Перестройки в молекуле ДНК могут вызывать или не вызывать изменения в процессе синтеза или в структуре кодируемого белка; перестроек, не вызывающих изменений, большинство, и они служат причиной нормального ПДРФ. Выяснилось, что ПДРФ является четким генетическим признаком. В настоящее время анализ ПДРФ стал одним из наиболее точных методов, используемых в генетике человека и медицинской генетике. Для ряда наследственных болезней описаны формы ПДРФ, прямо свидетельствующие о наличии заболевания или о носительстве патологически измененного гена.

Генетическая инженерия положила начало новому направлению исследований, получившему название «генетика наоборот». Традиционный генетический анализ (см.) проводится в следующей последовательности: выбирается признак, устанавливается связь признака с генетической детерминантой и локализация этой детерминанты по отношению к уже известным. В «генетике наоборот» все происходит в обратном порядке: выбирают фрагмент ДНК с неизвестной функцией, устанавливают сцепление этого фрагмента ДНК с другими областями генома и его связь с определенными признаками. Этот подход позволил разработать методы ранней диагностики и выявления носителей таких заболеваний, как хорея Гентингтона, болезнь Дюшен-на, муковисцидоз, биохимическая природа наследственных дефектов при к-рых пока не известна. При генеалогическом методе установления закономерностей наследственной передачи хореи Гентингтона было показано, что выделенный из генома человека фрагмент ДНК G8 тесно сцеплен с геном, определяющим заболевание, и по форме ПДРФ фрагмента G8 в данной популяции можно диагностировать это заболевание и выявлять носителей дефектных генов.

На пути внедрения в медицинскую практику методов, используемых в генетической инженерии, еще много трудностей технического порядка. Во многих лабораториях мира активно ведется разработка практически пригодных генно-инженерных диагностических методов, и можно надеяться, что такого рода методы уже в ближайшем будущем найдут применение, если и не для массового генетического просеивания (скрининга) при диспансеризации населения, то, но крайней мере, для выборочного обследования групп повышенного риска в отношении наследственных болезней.

Генетическая инженерия позволяет не только копировать природные соединения и процессы, но и модифицировать их, делать их более эффективными. Примером этого может служить новое направление исследований, названное белковой инженерией. Расчеты, производимые на основании данных об аминокислотной последовательности и пространственной организации молекул белков, показывают, что при определенных заменах нек-рых аминокислотных остатков в молекулах ряда ферментов возможно значительное усиление их ферментативной активности. В изолированном гене, кодирующем синтез конкретного фермента, методами генетической инженерии проводят строго контролируемую замену определенных нуклеотидов. При синтезе ферментного белка под контролем такого модифицированного гена происходит заранее спланированная замена строго определенных аминокислотных остатков в полипептидной цепи, что вызывает повышение ферментативной активности во много раз по сравнению с активностью природного прототипа.

В области сельского хозяйства от генетической инженерии ожидают большого вклада в селекцию новых высокоурожайных сортов растений, устойчивых к засухе, болезням и вредителям, а также в выведение новых высокопродуктивных пород с.-х. животных.

Как и любое достижение науки, успехи генетической инженерии могут быть использованы не только на благо, но и во вред человечеству. Специально проведенные исследования показали, что опасность неконтролируемого распространения рекомбинантных ДНК не так велика, как представлялось ранее. Рекомбинантные ДНК и несущие их бактерии оказались очень неустойчивыми к влияниям окружающей среды, нежизнеспособными в организме человека и животных. Известно, что в природе и без вмешательства человека имеются условия, к-рые обеспечивают активный обмен генетической информацией, это так наз. поток генов. Однако на пути проникновения в организм чужеродной генетической информации природа создала много эффективных барьеров. В настоящее время очевидно, что при работе с большинством рекомбинантных молекул ДНК вполне достаточно обычных мер предосторожности, к-рые применяют, напр., микробиологи при работе с инфекционным материалом. Для особых случаев разработаны эффективные способы как биологической защиты, так и физической изоляции экспериментальных объектов от человека и окружающей среды. Поэтому весьма жесткие первые варианты правил работы с рекомбинантными ДНК были переработаны и значительно смягчены. Что касается преднамеренного использования достижений генетической инженерии во вред человеку, то и ученые, и общественность должны активно бороться за то, чтобы эта опасность так и осталась возможной лишь теоретически.

См. также Биотехнология.

Библиография: Алиханян С. И. Успехи и перспективы генной инженерии, Генетика, т. 12, Jvft 7, с. 150, 1976, библиогр.; АлиханянС. И. и др. Получение функционирующих рекомбинантов (гибридных) молекул ДНК, in vitro, там же, т. И, № 11, с. 34, 1975, библиогр.; Баев А. А. Генетическая инженерия, Природа, М1,с. 8, 1976; Тихомирова Л. П. и д р. Гибридные молекулы ДНК фага X и плазмиды ColEl, Докл. АН СССР, т. 223, №4, с. 995, 1975, библиогр.; Brown D. D. a. S t e r n R. Methods of gene isolation, Ann. Rev. Biochem., v. 43, p. 667, 1974, bibliogr.; C h a n g A. C. Y. a. o. Studies of mouse mitochondrial DNA in Escherichia coli, Cell, v. 6, p. 231,1975, bibliogr.; Hedgpeth J., Goodman H. M. a. B o y e r H. W. DNA nucleotide sequence restricted by the R1 endonuclease, Proc. nat. Acad. Sci. (Wash.), v. 69, p. 3448, 1972, bibliogr.; Hershfield V. a. o. Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA, ibid., v. 71, p. 3455, 1974; Morrow J. F. a. o. Replication and transcription of eukaryotic DNA in Escherichia coli, ibid., p. 1743; T e m i n H. M. a. Mizu-t ani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus, Nature (Lond.), v. 226, p. 1211, 1970.

Биотехнология, под ред. А. А. Баева, М., 1984; Б о ч к о в Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; М а н и а-тис Г., ФричЭ. и Сэмбрук Д ж. Методы генетической инженерии. Молекулярное клонирование, пер. с англ., М., 1984; A n t о n a r a k i s S. E. a. o. DNA polymorphism and molecular pathology of human globin gene clusters, Hum. Genet., v. 69, p. 1, 1985; Beaudet A. L. Bibliography of cloned human and other selected DNAs, Amer. J. hum. Genet., v. 37, p. 386, 1985; В o t s t e i n D. a. o. Construction of a genetic linkage map in man using restriction fragment length polymorphisms, ibid., v. 32, p. 314, 1980; G u s e 1 1 a J. E. a. o. DNA markers for nervous system diseases, Science, v. 225, p. 1320, 1984; Motulsky A. G. Impact of genetic manipulation on society and medicine, ibid., v. 219, p. 135, 1983; White R. a. o. A closely linked genetic marker for cystic fibrosis, Nature (Lond.), v. 318, p. 382, 1985; Wo о S. L. C., L i d s к у A. S. a. Guttler F. Prenatal diagnosis of classical phenylketonuria by gene mapping, J. Amer. med. Ass., v. 251, p. 1998, 1984.

Л. С. Чернин, В. H. Калинин.

Генная инженерия — это область биотехнологий, включающая в себя действия по перестройке генотипов. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя таким образом деятельность организмов, а также — переносить генетические инструкции из одного организма в другой, в том числе - организмы другого вида. По мере того, как генетики всѐ больше узнают о работе генов и белков, всѐ более реальной становится возможность произвольным образом программировать генотип (прежде всего, человеческий), с лѐгкостью достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждѐнных органов и даже бессмертие.

Генетическая информация . Генетическая информация (геном) содержится в клетке в хромосомах (у человека их 46), состоящих из молекулы ДНК и упаковывающих еѐ белков, а также в митохондриях. ДНК (дезоксирибонуклеиновая кислота) является последовательностью нуклеотидов, каждый из которых содержит одно из четырех азотистых. С функциональной точки зрения ДНК состоит из множества блоков (последовательностей нуклеотидов), хранящих определенный объем информации — генов.

Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок ). Совокупность всех генов организма составляет его генотип. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Лишь те гены активны, которые необходимы для функционирования данной клетки, поэтому, например, нейроны и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Роль белков в организме . Белки являются наиболее важными молекулами в каждом живом организме, химической основой живой материи. По определению Энгельса "жизнь есть способ существования белковых тел". Белки осуществляют обмен веществ (перенос веществ в организме) и энергетические превращения, обеспечивают структурную основу тканей, служат катализаторами химических реакций, защищают организмы от патогенов, переносят сообщения, регулирующие деятельность организма. Химически белки представляют собой цепочку аминокислот, свѐрнутую в пространстве особым образом. Одна из функций белков - активация генов. Некоторые гены содержат фрагменты, притягивающие к себе определѐнные белки. Если такие белки содержатся в клетке, они присоединяются к этому участку гена и может разрешать или запрещать его копирование на РНК. Наличие или отсутствие в клетке подобных регулирующих белков определяет, какие гены активируются, а значит, какие новые белки синтезируются. Именно этот регулирующий механизм определяет, должна ли клетка функционировать как мышечная или как нервная клетка или какая часть тела должна развиваться в этой части эмбриона. Если внести в организм (растение, микроорганизм, животное или даже человек) новые гены, то можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал

Генная инженерия берет свое начало в 1973 году, когда генетики Стэнли Кохен и Герберт Бойер внедрили новый ген в бактерию кишечной палочки (E. coli).Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечно-сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генно-инженерных фирм 60% работают над производством лекарственных и диагностических препаратов.

Генная инженерия в сельском хозяйстве. К концу 1980-х удалось успешно внедрить новые гены в десятки видов растений и животных — создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов. Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций. Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60%. Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке. Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений.

Генная терапия человека

На людях технология генной инженерии была впервые применена для лечения Ашанти Де Сильвы, четырѐхлетней девочки, страдавшей от тяжѐлой формы иммунодефицита. Ген, содержащий инструкции для производства белка аденозиндезаминазы (ADA), был у неѐ повреждѐн. А без белка ADA белые клетки крови умирают, что делает организм беззащитным перед вирусами и бактериями. Работающая копия гена ADA была введена в клетки крови Ашанти с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. Через 6 месяцев количество белых клеток в организме девочки поднялось до нормального уровня. После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения заболеваний. Сегодня мы знаем, что с помощью генной терапии можно лечить диабет, анемию, некоторые виды рака, болезнь Хантингтона и даже очищать артерии. Сейчас идѐт более 500 клинических испытаний различных видов генной терапии. Неблагоприятная экологическая обстановка и целый ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения. Сегодня существует возможность диагностировать многие генетические заболевания ещѐ на стадии эмбриона или зародыша. Пока можно только прекратить беременность на самой ранней стадии в случае серьѐзных генетических дефектов, но скоро станет возможным корректировать генетический код, исправляя и оптимизируя генотип будущего ребѐнка. Это позволит полностью избежать генетических болезней и улучшить физические, психические и умственные характеристики детей.

Проект "Геном человека". В 1990 году в США был начат проект "Геном человека", целью которого было определить весь генетический год человека. Проект, в котором важную роль сыграли и российские генетики, был завершѐн в 2003 году. В результате проекта 99% генома было определено с точностью 99,99% (1 ошибка на 10000 нуклеотидов). Завершение проекта уже принесло практические результаты, например, простые в применении тесты, позволяющие определять генетическую предрасположенность ко многим наследственным заболеваниям. Высказаны, например, надежды, что, благодаря расширфровке генома, уже к 2006 году будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010-2015 году будут установлены механизмы возникновения почти всех видов рака. К 2020 году может быть завершена разработка препаратов, предотвращающих рак.

Перспективы контроля над генами. Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям. Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. С объективной точки зрения в этом нет ничего плохого или не этичного. Уже сегодня многие всемирно известные учѐные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима. Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придѐтся сталкиваться с увяданием, с упадком сил, с дряхлостью. Люди станут практически бессмертными - смерть будет становиться всѐ более редким явлением, перестав быть неизбежностью. Известно, например, что одной из причин старения является сокращение теломер при каждом делении клетки. В конце 1990-х ученым удалось внедрить в клетки открытый ими ген, отвечающий за выработку белка теломеразы, восстанавливающего теломеры, и тем самым сделать их бессмертными. Конечно, отдельные группы, не отягченные соответствующими знаниями, но, преследующие какие то личные, идеологические или лоббистские цели могут пытаться запретить подобные технологии, но как показывает история развития науки, надолго это сделать им не удастся.

Генная инженерия совершила прорыв в лечении рака. Стивен Розенберг (Steven Rosenberg) и его коллеги из американского Национального института рака (National Cancer Institute) опробовали на ряде пациентов новый метод борьбы с опухолями, основанный на введении в организм перепроектированных иммунных клеток. Помните, как недавно учѐные сумели «обучить» иммунные системы мышей эффективной борьбе с раковыми опухолями путѐм простой трансплантации белых клеток крови, забранных от особей, по естественным причинам к раку невосприимчивым (ведь бывают и такие организмы)? Теперь схожий метод лечения рака опробован на людях. Сначала авторы работы взяли иммунные клетки — Т-лимфоциты — у человека, который, в силу своих природных особенностей, смог успешно «отогнать» у себя меланому. Учѐные определили в них гены, отвечающие за работу рецептора, признающего раковые клетки, и растиражировали этот ген. Затем они взяли Т-лимфоциты у нескольких больных меланомой и при помощи ретровируса внедрили в них искусственный, клонированный ген. Затем пациенты перенесли процедуру химиотерапии, после которой их иммунные системы оказались ослабленными, с крайне небольшим числом выживших иммунных клеток. Тут-то этим больным вернули их же собственные Т-клетки, забранные ранее, но теперь уже — с внедрѐнным в них новым геном (подробнее — в пресс-релизе института).Через месяц в 15 пациентах из 17 эти новые клетки не только выжили, но составили от 9% до 56% всего «населения» Т-лимфоцитов в организме.Но главное удивление — через 18 месяцев после лечения два пациента полностью избавились от рака, и также продемонстрировали высокий уровень Т-клеток в крови.У одного пациента раковых образований было два, одно из которых было разрушено полностью, а второе — сократилось на 89% (после чего его удалили хирургическим путѐм), а у второго пациента — была одна опухоль, которая «рассеялась». Розенберг отмечает, что «впервые генные манипуляции привели к регрессу опухоли у людей». «Мы теперь можем брать нормальные лимфоциты у пациентов и модифицировать их в лимфоциты, реагирующие на раковые клетки», — заявил учѐный, который намерен продолжить исследование. Он хочет узнать, как генетически модифицированные клетки выживут в организме в течение большего срока, как будет работать эта терапия в комплексе с другими методами лечения рака, как она сможет помочь при борьбе с другими типами раковых образований (здесь будут работать иные гены, кодирующие строительство других рецепторов). В общем — вопросов ещѐ немало. Если немного отойти то можно сказать еще и о ультразвуковой абляции HIFU терапии. Лидером в этой области являются врачи КНР. Ее технология заключается в сжигании раковых клеток ультразвуком, при температуре 100 градусов Цельсия опухоль буквально тает. Лидером в производстве специализированной техники является пекинская компания Haifuning HIFU Technology, которая совместно с американской компанией General Electric создала полностью компьютеризированный аппарат с управляемым температурным режимом- FEP BY 02.

Литература:

  1. Сингер М., Берг П. Гены и геномы. — Москва, 1998.
  2. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва,
  3. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. —
  4. Патрушев Л. И. Искусственные генетические системы. — М.:Наука, 2004.
  5. Щелкунов С. Н. Генетическая инженерия. — Новосибирск: Сиб. унив. изд-во, 2008.
  6. Свобода слова (газета, материалы с номера №4(348) 2.02.2012)

Введение

В своей работе я раскрываю тему генной инженерии. Возможности, открываемые генетической инженерией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.

Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.

Таким образом, генная инженерия, будучи одними из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.

Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии может привести к коренным преобразованиям медицины.

1. Сущность генетической инженерии.

1.1. История генной инженерии.

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики.

На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу.

Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК.

С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50-60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально.

Шло интенсивное развитие молекулярной генетики, объектами которой стали кишечная палочка (E. Coli), ее вирусы и плазмиды.

Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов.

ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов.

В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно условно разделить на три этапа:

Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-реципиента) генов эукариот, главным образом, животных.

Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг и С. Коэн с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.

1.2. Понятие о генной инженерии

Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.

Генная инженерия – это сумма методов, позволяющих переносить гены из одного организма в другой, или – это технология направленного конструирования новых биологических объектов.

Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка.

Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.

Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.

Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин.

Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на 1 кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см.

Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы.

Компания «Genentec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.

1.3. Цели и задачи генной инженерии

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.

Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.

Технология рекомбинантных ДНК использует следующие методы:

·специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

·быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

·конструирование рекомбинантной ДНК;

·гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;

·клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

·введение рекомбинантной ДНК в клетки или организмы.


2.

2.1. Выделение генов, содержащих необходимую информацию.

Получение генов возможно несколькими путями: выделением из ДНК, химико-ферментным синтезом и ферментным синтезом.

Выделение генов из ДНК проводят с помощью рестриктаз, катализирующих расщепление ДНК на участках, имеющих определенные нуклеотидные последовательности (4–7 нуклеотидных пар). Расщепление можно проводить по середине узнаваемого участка нуклеотидных пар; при этом обе нити ДНК «разрезаются» на одном уровне. Образующиеся фрагменты ДНК имеют так называемые «тупые» концы. Возможно расщепление ДНК со сдвигом, при этом одна из нитей выступает на несколько нуклеотидов. Образуемые при этом «липкие» концы в силу своей комплементарности вступают во взаимодействие. Нуклеотидную последовательность с липкими концами можно присоединить к вектору (предварительно обработанному той же рестриктазой), Превратить в кольцевую в результате сшивания лигазами взаимно комплиментарных концов. Метод имеет существенные недостатки, так как достаточно трудно подобрать действие ферментов для строгого вычленения нужного гена. Вместе с геном захватываются «лишние» нуклеотиды или, наоборот, ферменты отрезают часть гена, превращая его в функционально неполноценный.

Химико-ферментный синтез применяют в том случае, если известна первичная структура белка или пептида, синтез которого кодирует ген. Необходимо полное знание нуклеотидной последовательности гена. Этот метод позволяет точно воссоздать нужную последовательность нуклеотидов, а также вводить в гены участки узнавания рестриктаз, регуляторных последовательностей и пр. Метод состоит из химического синтеза одно цепочечных фрагментов ДНК (олигонуклеотидов) за счет поэтапного образования эфирных связей между нуклеотидами, обычно 8–16-звенных. В настоящее время существуют «генные машины», которые под контролем микропроцессора очень быстро синтезируют специфические короткие последовательности одноцепочечной ДНК

Нужная последовательность оснований вводится на клавишный пульт управления. Микропроцессор открывает клапаны, через которые с помощью насоса в синтезирующую колонку последовательно поступают нукеотиды, а также необходимые реагенты и растворители. Колонка наполена бусинками кремния, на которых собираются молекулы ДНК. В данном устройстве возможен синтез цепей длиной до 40 нуклеотидов со скростью 1 нуклеотид за 30 минут. Полученные олигонуклеотиды с помощью ДНК-лигазы сшиваются между собой с образованием двуцепочечного нуклеотида. С помощью данного метода были получены гены А- и В-цепей инсулина, проинсулина, соматостатина и др.

Ферментный синтез гена на основе выделенной матричной РНК(мРНК) является в настоящее время наиболее распространенным методом. Сначала из клеток выделяют матричные РНК, среди которых присуттвует мРНК, кодируемая геном, который требуется выделить. Затем в одобранных условиях на выделенной из клетки мРНК, как на матрице, с помощью обратной транскриптазы (ревертазы) синтезируется нить ДНК, комплиментарная мРНК (кДНК). Полученная комплиментарная ДНК (кДНК) служит матрицей для синтеза второй нити ДНК с использованием ДНК-полимеразы или ревертазы. Затравкой при этом служит олигонуклеотид, комплиментарный 3’-концу мРНК; новая цепь ДНК образуется из дезоксинуклеозидтрифосфатов в присутствии ионов магния.

Метод с большим успехом применен для получения в 1979 г. гена гормона роста человека (соматотропина). Полученный тем или иным способом ген содержит информацию о структуре белка, но сам не может ее реализовать. Поэтому нужны дополнительные механизмы для управления действием гена. Перенос генетической информации в клетку реципиента осуществляется в составе вектора. Вектор – это, как правило, кольцевая молекула ДНК, способная к самостоятельной репликации. Ген вместе с вектором образует рекомбинантную ДНК.

2.2. Подбор векторов (вирусы, плазмиды), способных к самостоятельной репликации в клетке реципиента.

Под понятием «вектор» понимается молекула нуклеиновой кислоты, способная после введения в клетку к автономному существованию за счет наличия в ней сигналов репликации и транскрипции.

Векторные молекулы должны обладать следующими свой­ствами:

1) способностью автономно реплицироваться в клстке-реципиенте, то есть быть самостоятельным репликоном;

В зависимости от целей эксперимента векторы можно условно разделить на две группы: 1) используемые для клонирования и амплификации нужного гена; 2) специализированные, применяемые для экспрессии встроенных чужеродных генов. Вторая группа векторов объединяет векторы, призванные обеспечить синтез белковых продуктов клонированных генов. Векторы для экспрессии содержат последовательности ДНК, которые необходимы для транскрипции клонированных копий генов и трансляции их мРНК в штаммах клеток.

В качестве прокариотических векторов используются плазмиды, бактериофаги; в качестве эукариотических векторов применяют вирусы животных и растений, векторы на основе 2 мкм дрожжей и митохондрий и ряд искусственно сконструированных векторов, способных реплицироваться как в бактериальных, так и в эукариотических клетках (челночные векторы).

Плазмиды - это внехромосомные генетические элементы про- и эукариот, которые автономно реплицируются в клетках. Большинство плазмидных векторов получено на основе природных плазмид ColE1, pMB1 и p15A.

Бактериальные плазмиды делят на два класса. Одни плазмиды (например, хорошо изученный фактор F, определяющий пол у E.coli) сами способны переходить из клетки в клетку, другие такой способно­стью не обладают. По ряду причин, и прежде всего для предотвращения неконтролируемого распространения потенциально опасного генети­ческого материала, подавляющее большинство бактериальных плазмидных векторов создано на базе плазмид второго класса. Многие при­родные плазмиды уже содержат гены, определяющие устойчивость клеток к антибиотикам (продукты этих генов - ферменты, модифици­рующие или расщепляющие антибиотические вещества). Кроме того, в эти плазмиды при конструировании векторов вводятся дополнитель­ные гены, определяющие устойчивость к другим антибиотикам.

На рис. 1 показан один из самых распространенных плазмидных векторов E.coli - pBR322. Он сконструирован на базе детально изученной плазмиды E.coli - колициногенного фактора ColE1 - и содер­жит ориджин репликации этой плазмиды. Особенность плазмиды ColE1 (и pBR322 соответственно) состоит в том, что в присутствии ингибитора синтеза белка антибиотика хлорамфеникола (опосредо­ванно ингибирующего репликацию хозяйской хромосомы) ее число в E.coli возрастает от 20-50 до 1000 молекул на клетку, что позволяет получать большие количества клонируемого гена. При конструирова­нии вектора pBR322 из исходных плазмид был делегирован целый ряд «лишних» сайтов для рестриктаз.

В настоящее время наряду с множеством удобных векторных систем для E.coli сконструированы плазмидные векторы для ряда дру­гих грамотрицательных бактерий (в том числе таких промышленно важных, как Pseudomonas, Rhizobium и Azotobacter), грамположительных бактерий (Bacillus), низших грибов (дрожжи) и растений.

Плазмидные векторы удобны для клонирования относительно небольших фрагментов (до 10 тыс. пар оснований) геномов небольших размеров. Если же требуется получить клонотеку (или библиотеку) генов высших растений и животных, общая длина генома которых достигает огромных размеров, то обычные плазмидные векторы для этих целей непригодны. Проблему создания библиотек генов для высших эукариот удалось решить с использованием в качестве клонирующих векторов производных бактериофага l.

Среди фаговых векторов наиболее удобные системы были созда­ны на базе геномов бактериофагов l и М13 E.coli. ДНК этих фагов содержит протяженные области, которые можно делегировать или за­менить на чужеродную ДНК, не затрагивая их способности реплицироваться в клетках E.coli. При конструировании семейства векторов на базе ДНК l фага из нее сначала (путем делений коротких участков ДНК) были удалены многие сайты рестрикции из области, не сущест­венной для репликации ДНК, и оставлены такие сайты в области, предназначенной для встраивания чужеродной ДНК. В эту же область часто встраивают маркерные гены, позволяющие отличить рекомбинантную ДНК от исходного вектора. Такие векторы широко использу­ются для получения «библиотек генов». Раз­меры замещаемого фрагмента фаговой ДНК и соответственно встраи­ваемого участка чужеродной ДНК ограничены 15-17 тыс. нуклеотидных остатков, так как рекомбинантный фаго - вый геном, который на 10% больше или на 75% меньше генома дикого l фага, уже не может быть упакован в фаговые частицы.

Рисунок 1. Детальная рестрикционная карта плазмиды pBR322.

Таких ограничений теоретически не существует для векторов, сконструированных на базе нитчатого бактериофага М13. Описаны случаи, когда в геном этого фага была встроена чужеродная ДНК длиной около 40 тыс. нуклеотидных остатков. Известно, однако, что фаг М13 становится нестабильным, когда длина чужеродной ДНК пре­вышает 5 тыс. нуклеотидных остатков. Фактически же векторы, полу­ченные из ДНК фага М13, используются главным образом для секвенирования и мутагенеза генов, и размеры встраиваемых в них фрагментов намного меньше.

Эти векторы конструируются из реплекативной (двутяжевой) формы ДНК фага М13, в которую встроены «полилинкерные» участки (пример такой конструкции показан на рис. 5). В фаговую частицу ДНК включается в виде однотяжевой молекулы. Таким образом, этот вектор позволяет получать клонированный ген или его фрагмент как в двутяжевой, так и в однотяжевой форме. Однотяжевые формы рекомбинантных ДНК широко используются в настоящее время при опреде­лении нуклеотидной последовательности ДНК методом Сэнгера и для олигодезоксинуклеотид-направленного мутагенеза генов.

Перенос чужеродных генов в клетки животных осуществляется с помощью векторов, полученных из ДНК ряда хорошо изученных вирусов животных - SV40, некоторых аденовирусов, вируса папиломы быка, вируса оспы и так далее. Конструирование этих векторов проводится по стандартной схеме: удаление «лишних» сайтов для рестриктаз, введе­ние маркерных генов в области ДНК, не существенные для ее репликации (например, гена тимидин-киназы (tk) из HSV (вируса герпеса)), введение регуляторных районов, повышающих уровень экспрессии ге­нов.

Удобными оказались так называемые «челночные векторы», спо­собные реплицироваться как в клетках животных, так и в клетках бактерий. Их получают, сшивая друг с другом большие сегменты век­торов животных и бактерий (например, SV40 и pBR322) так, чтобы районы, ответственные за репликацию ДНК, остались незатронутыми. Это позволяет проводить основные операции по конструированию век­тора в бактериальной клетке (что технически намного проще), а затем полученную рекомбинантную ДНК использовать для клонирования генов в животной клетке.

Рисунок 2. Рестрикционная карта вектора М13 mp8.

2.3. Получение рекомбинантной ДНК.

Суть конструирования рекомбинантных ДНК заключается во встраивании фрагментов ДНК, среди которых находится интересую­щий нас участок ДНК, в так называемые векторные молекулы ДНК (или просто векторы) - плазмидные или вирусные ДНК, которые могут быть перенесены в клетки про- или эукариот и там автономно репли-цироваться. На следующем этапе проводится отбор тех клеток, кото­рые несут в себе рекомбинантные ДНК (с помощью маркерных призна­ков, которыми обладает сам вектор), и затем индивидуальных клонов с интересующим нас сегментом ДНК (используя признаки или пробы, специфичные для данного гена или участка ДНК).

При решении ряда научных и биотехнологических задач конст­руирование рекомбинантных ДНК требует также создания систем, в которых обеспечивается максимальная экспрессия клонируемого гена.

Существует три основных способа встраивания чужеродной ДНК в векторные молекулы. В первом случае 3"-концы фрагментов ДНК, среди которых находится интересующий нас участок ДНК (ген или его сегмент, регуляторный район), с помощью фермента терминальной нуклеотидилтрансферазы наращиваются гомополинуклеотидной последовательностью (например, поли (Т)). 3"-концы ли­нейной формы векторной ДНК тем же способом наращиваются комп­лементарной ей гомополинуклеотидной последовательностью (то есть по­ли (А)). Это позволяет соединить две молекулы ДНК путем комплемен­тарного спаривания искусственно полученных «липких» концов.

Во втором случае «липкие» концы создаются с помощью расщеп­ления молекул ДНК (как векторной, так и содержащей интересующий нас фрагмент) одной из эндонуклеаз рестрикции (рестриктаз). Рестриктазы характеризуются исключительно высокой специ­фичностью. Они «узнают» в ДНК последовательность из нескольких нуклеотидных остатков и расщепляют в них строго определенные межнуклеотидные связи. Поэтому даже в ДНК больших размеров рестриктазы вносят ограниченное число разрывов.

Третий способ представляет собой комбинацию двух первых, когда липкие концы ДНК, образованные рестриктазой, удлиняются синтетическими последовательностями (рис. 3).

Концы фрагментов ДНК можно превратить в «липкие», наращи­вая их двутяжевыми олигонуклеотидами («линкерами»), в состав кото­рых входит участок узнавания рестрикта-

Рисунок 3. Схема конструирования рекомбинантной ДНК с помощью рестриктаз PstI и поли(G)- поли(С)-линкера.

зой. Обработка такого фраг­мента данной рестриктазой делает его пригодным для встраивания в векторную молекулу ДНК, расщепленную той же рестриктаэой. Часто в качестве «линкера» применяются полинуклеотидные фрагменты, ко­торые содержат специфические участки сразу для нескольких рестриктаз (их называют «полилинкерами»).

После встраивания чужеродной ДНК в вектор их ковалентное сшивание осуществляется ДНК-лигазой. Если же размер бреши в рекомбинированной молекуле превышает одну фосфодиэфирную связь, она застраивается in vitro с помощью ДНК-полимеразы или in vivo с помощью репарирующих систем клетки.

2.4. Введение рекомбинантной ДНК в клетку – реципиент

Перенос рекомбинантных ДНК осуществляется путем трансформации или конъюгации. Трансформация – это процесс изменения генетических свойств клетки в результате проникновения в нее чужеродной ДНК. Впервые она была обнаружена у пневмококков Ф. Гиффитом, который показал, что некоторые клетки невирулентных штаммов бактерий при заражении ими мышей совместно с вирулентными штаммами приобретают патогенные свойства. В дальнейшем трансформация была продемонстрирована и изучена у различных видов бактерий. Установлено, что к трансформации способны лишь некоторые, так называемые «компетентные», клетки (способные включать чужеродную ДНК и синтезирующие особый трансформирующий белок). Компетентность клетки определяется также факторами внешней среды. Этому может способствовать обработка клеток полиэтиленгликолем или хлоридом кальция. После проникновения в клетку одна из нитей рекомбиантной ДНК деградирует, а другая за счет рекомбинации с гомологичным участком реципиентной ДНК может включиться в хромосому или внехромосомную единицу. Трансформация является наиболее универсальным способом передачи генетической информации и имеет наибольшее значение для генетических технологий.

Конъюгация – один из способов обмена генетического материала, при котором происходит однонаправленный перенос генетической информации от донора к реципиенту. Этот перенос находится под контролем особых конъюгативных плазмид (фактор фертильности). Перенос информации от донорской клетки в реципиентную осуществляется через специальные половые ворсинки (пили). Возможна передача информации и с помощью неконъюгативных плазмид при участии плазмид-помощниц.Передача всего набора генов вируса или фага, приводящая к развитию в клетке фаговых частиц, называется трансфекцией. Методика применительно к бактериальным клеткам включает получение сферопластов, очистку инкубационной среды от нуклеаз и добавление очищенной фаговой ДНК (присутствие протаминсульфата повышает эффективность трансфекции). Методика применима к животным и растительным клеткам с участием специальных челночных вирусных векторов.

3.

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генно-инженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генно-инженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генно-инженерных вирусов воспринимается многими как угроза для всего человечества.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генно-инженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) - игрунка обыкновенная.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия/ Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.

Заключение

В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее.

Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.

Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.


ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

1) Бекиш О.-Я.Л. Медицинская биология. – Мн.: Ураджай, 2000. – с.114-119.

2) Мутовин Г.Р. Основы клинической генетики. – М.: Высшая школа, 1997. – с. 83-84.

3) Заяц Р.С. Основы медицинской генетики. – Мн.: Высшая школа, 1998. – с. 60-65.

4) biotechnolog.ru

План:

Введение.

1.Сущность генетической инженерии.

1.1. История генной инженерии

1.2. Понятие о генной инженерии

1.3. Цели и задачи генной инженерии

2. Этапы создания организмов с генетически измененной программой.

2.1. Выделение генов (естественных или синтезированных), содержащих необходимую информацию.

2.2. Подбор векторов (вирусы, плазмиды), способных к самостоятельной репликации в клетке реципиента.

2.3. Получение рекомбинантной ДНК.

2.4. Введение рекомбинантной ДНК в клетку - реципиент.

3.Применение генно-инженерных технологий в медицине.