Определение доминирующих признаков классификации и разработка математической модели изображений мимики. Методы математического моделирования. Задания на построение модели

Мастер – класс

« Использование моделирования в обучении математике»

Цель:

Содействовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

Задачи:

Создать условия для организации работы по освоению педагогами учебных моделей и определению возможностей и эффективности их применения в процессе обучении математике.

    Организационный этап.

Создание психологической готовности участников мастер-класса к совместной работе.

Уважаемые коллеги, здравствуйте! Я рада приветствовать вас на своём мастер-классе.

Тема моего мастер-класса «Использование моделирования в обучении математике ».

Перед вами лежит таблица-фиксация знаний, заполните, пожалуйста, вторую графу «Знаю» по данной теме и отложите.

Хочу узнать

Моделирование

Моя цель: Способствовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

А Ваша цель? (ответы)

2. Актуальность.

- Как вы думаете, почему именно математика так широко представлена в программе начального образования?

Математика как учебный предмет в начальной школе призвана максимально развивать личность младшего школьника, способствовать становлению его самостоятельности в учебно-познавательной деятельности, поэтому она широко представлена в программе начального образования: 4 часа в неделю или 536 часов за курс начальной школы. Задача учителя начальной школы – сформировать у всех детей базовый уровень математических представлений и способов деятельности, необходимых для социальной адаптации в обществе. Решение этой задачи часто вызывает большие трудности, так как ни один из математических объектов в реальной действительности не существует, а мышление детей младшего школьного возраста по преимуществу наглядно-образное, способности даже к простейшему осмыслению математического материала весьма различны.

Поэтому современные требования к формированию умственных действий на уроках математики требуют применения наиболее эффективных методов и приёмов обучения. Одним из них является метод моделирования.

Метод моделирования стал одним из основных методов научного исследования. Этот метод в отличие от других является всеобщим, используется во всех науках, на всех этапах научного исследования. Он обладает огромной эвристической силой, позволяет свести изучение сложного к простому, невидимого и неощутимого – к видимому и ощутимому, незнакомого – к знакомому, т.е. сделать сложное явление реальной действительности доступным для тщательного и всестороннего изучения. В связи с этим применение моделей и моделирования в обучении, по мнению большинства ученых теоретиков, приобретает особое значение для повышения теоретического уровня педагогической науки и практики.

Необходимость овладения младшими школьниками методом моделирования как методом познания в процессе обучения можно обосновать с разных позиций.

- Как вы думаете с каких?

Во-первых, как показывают эксперименты, введение в содержание обучения понятий модели и моделирования существенно меняет отношение учащихся к учебному предмету, делает их учебную деятельность более осмысленной и более продуктивной.

Во-вторых, целенаправленное и систематическое обучение методу моделирования приближает младших школьников к методам научного познания, обеспечивает их интеллектуальное развитие.

- В определении моделирования вставьте пропущенные слова.

«Моделирование – это метод опосредованного познания, при котором изучается не интересующий нас объект, а его заместитель (модель ), находящийся в некотором объективном соответствии с познавательным объектом, способный замещать его в определённых отношениях и дающий при этом новую информацию об объекте» (Л. М. Фридман) Слайд 2

При введение моделирования в содержание обучения математике важно, чтобы учащиеся сами овладели методом моделирования, научились строить и преобразовывать модели, отражая различные отношения и закономерности, сами изучали какие-либо объекты, явления с помощью моделирования.

Когда учащиеся, решая практическую математическую задачу, понимают, что она представляет собой знаковую модель некоторой реальной ситуации, составляют последовательность различных ее моделей, затем изучают (решают) эти модели и, наконец, переводят полученное решение на язык исходной задачи, то тем самым школьники овладевают методом моделирования.

    Знакомство с видами моделей.

- Какие виды моделей вы знаете и применяете на практике? (при затруднении предлагается выбрать из предложенных вариантов: вербальные, словесные, иллюстрационные, предметные, эвристические, схематические, математические, геометрические)

Виды моделей: вербальные, предметные, схематические, математические.

Можно выделить четыре модели, которые используются при работе над задачей на уроках математики: предметные, вербальные, схематические, математические.

Составляется кластер. (Сначала самостоятельно, а в процессе работы изменяется, пополняется, исправляются недочёты.)

Примерами предметных моделей могут быть сюжетные иллюстрации, отдельные предметы или их изображения. Слайд 3

К группе вербальных моделей мы относим в первую очередь сам текст задачи, кроме того, различные виды кратких записей текста задачи. Для некоторых текстовых задач более удобной формой вербальной модели является таблица. Слайд 4

Коля – 3

Таня - ?, на 2больше

Всего - ?

Схематические модели служат для визуального представления задачной ситуации, но здесь используются не конкретные предметы и их изображения, а различного рода условные обозначения, которые заменяют реальные предметы(например, круги, квадраты, отрезки, точки и т.п.).

Наиболее распространённые в начальной школе модели этого вида – схематические иллюстрации и схематические чертежи. Слайд 6

Под математическими моделями надо понимать математические выражения или равенства (3+4, 3+5=8). Слайд 7

Математическое выражение (например, запись вида 5+3);

Математическое равенство (например, запись вида 5+3=8).

(Раздаточный материал для групп «Виды моделей»)

4.Действия которые можно проводить с моделями.

Чтобы процесс переходов от одной модели к другой при решении текстовой задачи был продуманным, хорошо организованным и эффективным, важно разработать комплекс дидактических заданий по работе с учебными моделями.

- Давайте уточним, какие действия можно проводить с моделями?

1)Задания на соотнесение моделей: Слайд 8

при выполнении заданий на соотнесение моделей ребёнок должен определить, соответствуют ли друг другу предложенные для сравнения модели, и объяснить, почему соответствие есть или отсутствует. Например, дан рисунок, схема и равенство. Ученик рассказывает, почему схема подходит к рисунку и к равенству. Слайд 9

2) Задания на построение модели:

самостоятельно построить на парте из геометрических фигур схему, соответствующую рисунку, тексту задачи или математической записи, составить математическое выражение, соответствующее предложенному рисунку, схеме или тексту задачи. Слайд 10

3) Задания на выбор модели:

при выполнении заданий этой группы дети из нескольких предложенных вариантов выбирают тот, который соответствует другой модели. Слайд 11

4) Примеры заданий на изменение модели:

изменить предложенную схему так, чтобы новая схема соответствовала сюжетной иллюстрации, тексту задачи, числовому выражению или равенству;

изменить предложенный текст задачи так, чтобы новый текст соответствовал сюжетной иллюстрации, схеме, числовому выражению. Слайд 12

Многие задания в учебнике можно дифференцировать.

Использование учебных моделей позволяет сделать более доступным для ребёнка восприятие и понимание текста задачи, поскольку модели помогают визуализировать скрытые при непосредственном наблюдении связи и отношения, представленные в тексте задачи.

Благодаря возможности наглядно представлять наиболее существенные характеристики изучаемого объекта, модель служит весьма продуктивным видом визуализации.

Поскольку мышление детей младшего школьного возраста по преимуществу наглядно-образное, опора на модели делает возможным приобщение учеников к некоторым (пусть самым простым) теоретическим обобщениям. Это весьма значимо на первых шагах обучения решению задачи. Однако для того, чтобы работа с моделями приводила к максимальной «отдаче», их применение должно быть последовательным и систематическим.

Слайд 13 (пустой)

(Раздаточный материал « Группы заданий, ориентированных на выполнение одного из следующих действий:….»

5. Группы заданий, ориентированных на выполнение одного из следующих действий:

- задания на соотнесение моделей:

1. Соотнесение предметной и вербальной моделей.

2. Соотнесение предметной и схематической моделей. Подходит ли схема к рисунку?

3.Соотнесение предметной и математической моделей.

Верно ли составлен пример к рисунку?

4.Соотнесениевербальной и математической моделей.

Верно ли Ваня решил задачу?

5.Соотнесение вербальной и схематической моделей.

Проверь, верно ли Петя составил схему к задаче.

6.Соотнесение схематической и математической моделей.

Верно ли составлен пример к схеме

- выбор модели:

1. Задания на выбор модели при сравнении предметных и вербальных моделей.

Какая краткая запись подходит к рисунку?

2. Задания на выбор модели при сравнении предметных и схематических моделей.

Выбери схему к рисунку.

3. Задания на выбор модели при сравнении предметных и математических моделей.

Какой пример подходит к рисунку?

4.Задания на выбор модели при сравнении вербальных и математических моделей.

Выбери верное решение задачи .

5. Задания на выбор модели при сравнении вербальных и схематических моделей.

Выбери схему

6. Задания на выбор модели при сравнении схематических и математических моделей.

Какой пример подходит к схеме?

- изменение модели:

1. Задание на изменение модели в паре « Предметная модель – вербальная модель»

Измени рисунок так, чтобы он соответствовал тексту задачи. Или наоборот.

Измени краткую запись, чтобы она подходила к рисунку

2. Задание на изменение модели в паре « Предметная модель – схематическая модель»

Дополни схему

3. Задание на изменение модели в паре « Предметная модель – математическая модель»

Петя записал пример к рисунку. Часть примера не видна. Дополни запись.

4. Задание на изменение модели в паре « Вербальная модель – математическая модель»

Измените текст задачи, чтобы она решалась так:

5. Задание на изменение модели в паре « Вербальная модель – схематическая модель »

Исправь схему

6. . Задание на изменение модели в паре « Схематическая модель – математическая модель»

Катя сделала схему, исправь её ошибку.

- Дополни условие и вопрос, чтобы задача решалась сложением.

- Измени схему так, чтобы показать её с помощью действия вычитания

- построение модели:

1.Задание на построение модели в паре « Предметная модель – вербальная модель»

Составь задачу по рисунку или сделай рисунок к тексту задачи (краткой записи)

2. Задание на построение модели в паре « Предметная модель – схематическая модель»

Составь схему к предложенному рисунку или, наоборот, сделай рисунок к предложенной схеме

3.Задание на построение модели в паре « Предметная модель – математическая модель»

Составь пример к рисунку

4.Задание на построение модели в паре «Вербальная модель – математическая модель»

Составь задачу, которая решается так 5. Задание на построение модели в паре « Вербальная модель – схематическая модель»

Составь задачу по схеме

Составь пример по схеме или схему к выражению

6. Работа в группах:

Задания для работы в группах

1) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

2) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

а) Подходит ли схема к рисунку?

б)Проверь, верно ли Катя составила схему к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли краткая запись к рисунку?

д) Верно ли составлен пример к рисунку?

е) Верно ли составлен пример к схеме?

3) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и схематической моделей при работе над задачей.

а) Верно ли составлен пример к схеме?

б) Подходит ли рисунок к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли схема к рисунку?

д) Верно ли составлен пример к рисунку?

е) Проверь, верно ли Катя составила схему к задаче?

1) Определите задание на выбор модели . Слайд 14

    Определите задание на соотнесение моделей . Слайд 15

3) Определите задание на построение моделей. Слайд 16

7.Методические варианты использования моделей. Слайд 17

Методические варианты использования моделей: репродуктивно-наглядный, продуктивно-наглядный, репродуктивно-практический, продуктивно-практический. Рассмотрим примеры использование моделей для поиска решения текстовой задачи: « У Коли 3 яблока, а у Лены 2 яблока. Сколько яблок у детей вместе?»

Вариант 1. Репродуктивно-наглядный

Учитель демонстрирует модель (на доске, наборном полотне) и на её основе даёт словесное объяснение о способе решения задачи. При этом объяснение выступает репродуктивной передачей информации от учителя к детям.

Ребята, я располагаю на наборном полотне 3 кружка слева, потому что у нас в задаче сказано, что у Коли было 3 яблока, и 2 кружка справа - столько яблок, по условию задачи у Лены. В задаче нужно узнать, сколько всего яблок у детей, поэтому я придвину кружки друг к другу. Значит, эта задача решается с помощью действия сложения. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 2. Продуктивно-наглядный

Учитель демонстрирует модель (на доске, на наборном полотне) и в процессе её построения проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи. Здесь используется продуктивная форма получения знания.

Пример объяснения решения задачи:

Дети, сейчас я покажу слева яблоки Коли, а справа яблоки Лены. Сколько кружков я должна поставить слева? Почему? (После ответов детей учитель располагает на наборном полотне 3 кружка слева.) Сколько кружков нужно расположить на наборном полотне справа? Почему? (После ответов детей учитель располагает на наборном полотне 2 кружка справа.) Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? (После ответов детей учитель придвигает одни кружки к другим). Каким действием решается задача? Почему? Как запишем решение задачи?

Вариант 3. Репродуктивно-практический

Учитель строит модель (на доске, на наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В ходе построения модели учитель даёт словесное объяснение репродуктивного характера о способе решения задачи.

Пример объяснения решения задачи:

Дети, сейчас я на наборном полотне поставлю 3 кружка слева, потому что, по условию задачи, у Коли было 3 яблока, а 2 кружка справа – столько яблок у Лены. Положите вместе со мной 3 кружка на парте слева, а 2 кружка на парте справа. В задаче нужно узнать, сколько всего яблок у детей. Поэтому я придвину кружки друг к другу и вы тоже на партах придвиньте свои кружки друг к другу. Так как мы с вами придвигаем кружки, задача решается сложением. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 4. Продуктивно - практический

Учитель строит модель (на доске, наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В процессе построения модели учитель проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи.

Пример объяснения решения задачи

Дети, давайте покажем слева яблоки Коли, а справа яблоки Лены. Сколько кружков мы должны показать слева? Почему? Давайте вместе сделаем это: я поставлю кружки слева на наборном полотне, а вы положите их слева у себя на парте.

Сколько кружков мы должны показать справа? Почему? Давайте вместе сделаем это: я поставлю кружки справа на наборном полотне, а вы положите их справа у себя на парте. Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? Правильно, нужно придвинуть кружки друг к другу. Давайте вместе сделаем это: я на наборном полотне, а вы у себя на партах. Что мы сделали, чтобы найти ответ к задаче? Значит, каким действием решается задача? Как запишем решение задачи?

При объяснении трудного для детей материала рекомендуется чаще использовать продуктивно – практический вариант моделирования, поскольку при этом обеспечивается эвристическая форма передачи информации («субъективное открытие знания») и практическая деятельность ребёнка по построению и преобразованию моделей, что особенно важно для ребёнка со средними или слабыми математическими способностями.

8. Конструкции текста задачи: Слайд 18

(Раздаточный материал для учителей)

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный вопросительным предложением; наиболее часто встречающаяся конструкция текста.

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный повествовательным предложением.

    Часть условия выражена в повествовательной форме в начале текста, затем вопросительное предложение, включающее вопрос и часть условия.

    Часть условия выражена в повествовательной форме, затем следует также повествовательное предложение, включающее вопрос и часть условия.

    Текст задачи представляет одно сложное вопросительное предложение, в котором сначала стоит вопрос задачи, затем условие.

9. Задания для работы в группах:

1 . Каждой группе подобрать из учебника или составить задачу 2,3,4,5 конструкций.

2. Практикум « Виды работ над задачей»

1) на нахождение остатка (опорное слово: осталось)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1(блок « Задания на изменение модели»)

    изменить конструкцию задачи

2)на нахождение суммы (опорное слово: стало)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 2 (блок « Задания на соотнесение модели»)

    изменить конструкцию задачи

3)на нахождение разности (опорное слово: на сколько)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1 (блок « Задания на построение модели»)

    изменить конструкцию задачи

10. Практикум «Разработка вспомогательных моделей, которые используются при решении задач в начальной школе» Объединение моделей в систему.

1 тип схем

a b

2 тип схем

?, на б/м

a b

3 тип схем

Было –

Стало --

a b

4 тип схем

Было –

Осталось --

a

b c

5 тип схем

a c

Рефлексия мастер-класса

Возьмите карточку с таблицей-фиксацией, если есть, чем дополнить, впишите в третий столбик. Кто может зачитать данные своей таблицы? (Ответы участников)

Метод « Чемодан, Корзина, Мясорубка»

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Математическая модель - приближенное описание объекта моделирования, выраженное с помощью математической символики .

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического моделирования изображены на рисунке. Первый этап - определение целей моделирования . Эти цели могут быть различными:

1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, “вдруг” начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап : определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. Формализация и моделирование ”).

Третий этап : построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление.

Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап : выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап : разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, C, - в зависимости от характера задачи и склонностей программиста.

Шестой этап : тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап : собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

· дескриптивные (описательные) модели;

· оптимизационные модели;

· многокритериальные модели;

· игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3–4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях.
Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель.
Второй - выполнение проекта учащимися под руководством учителя.
Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

· с помощью табличного процессора (как правило, MS Excel);

· путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual Basic for Application и т.п.);

· с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.


Развитие основных психических процессов - памяти, внимания, воображения, образного мышления, речи; перекодирование информации, т.е. преобразование из абстрактных символов в образы; формирование навыка самостоятельного моделирования; развитие мелкой моторики при частичном или полном графическом воспроизведении. Развитие у детей познавательного интереса к математике Значение моделирования в развитии дошкольников.


Использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно: -позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка; -улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления; - повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;


Этапы работы с моделями Четырех ступенчатая последовательность применения метода моделирования. Первый этап предполагает знакомство со смыслом арифметических действий. Второй - обучение описанию этих действий на языке математических знаков и символов. Третий - обучение простейшим приемам арифметических вычислений Четвертый этап - обучение способам решения задач Этапы работы с моделями






Наглядная плоскостная модель "Домик, где знаки и числа живут" Цель применения: -закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа; -дать детям представления о неизменности числа, величины при условии различий в суммировании; - учить или закреплять умение сравнивать числа (больше, меньше, равно).




Наглядная плоскостная модель "Солнечная система" Только для детей старшей и подготовительной группы. Цели применения: -дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами); -научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система); -научить (или закрепить) умение детей определять последовательность ряда предметов по размеру; -развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других; -совершенствовать порядковый и количественный счет; -закрепить умение пользоваться условной меркой для измерения расстояний; - закрепить умение решать арифметические задачи.




Наглядная плоскостная модель "Счетный торт" Цель применения: -учить детей решать арифметические задачи и развивать познавательные способности ребенка; - учить выделять математические отношения между величинами, ориентироваться в них.