Что значит а поле в физике. Фундаментальные физические поля

одно из осн. понятий физики, возникшее во 2-й пол. 17 в. [хотя термин "П. ф." был введен в физику значительно позднее англ. физиком Дж. К. Максвеллом; в математике появление; термина "поле" связано с работой англ. математика У. Р. Гамильтона "О кватернионах" (W. R. Hamilton, Lectures on quarternions, Dublin, 1853)]. С этого времени понятие П. ф. неоднократно изменяло свой смысл, сохранив, однако, на всех этапах этого изменения тесную связь с понятием пространства, выражающуюся в использовании понятия П. ф. для характеристики пространственно непрерывного распределения физич. величин. Представления совр. физики о П. ф. развертываются по двум существенно различным линиям – к л а с с и ч е с к о й и к в а н т о в о й. Классическая линия развития понятия П. ф. Эта линия начинается с установления Ньютоном закона всемирного тяготения (1687), который позволил вычислять П. ф. сил тяготения. Она продолжается в гидродинамич. работах Эйлера (50-е гг. 18 в.), рассматривавшего распределение скоростей в пространстве, заполненном движущейся идеальной жидкостью (поле скоростей). Наибольшие заслуги в становлении понятия П. ф. принадлежат англ. физику М. Фарадею (30-е гг. 19 в.), детально разработавшему понятие о силовых линиях П. ф. Классич. линия развития понятия П. ф. разветвляется на две. Главная ветвь связана с изучением П. ф. электрических и магнитных сил (закон Кулона, 1785), к-рые считались сначала независимыми, но благодаря работам дат. физика X. Эрстеда (1821), франц. физика А. Ампера (1826) и Фарадея (1831) они стали рассматриваться совместно – как компоненты единого электромагнитного П. ф. В этот период смысл понятия П. ф. зависел от представлений о природе действия сил. В концепции дальнодействия, восходящей к Ньютону, понятие П. ф. играло вспомогат. роль, оно служило лишь сокращенным обозначением области пустого пространства, в к-ром могут проявиться дальнодействующие силы. Зная потенциал П. ф., можно было вычислить в каждой точке пространства силу, действующую на помещенное туда тело, не обращаясь к закону взаимодействия тел. Носителями атрибутов физич. реальности (массы, энергии, импульса, заряда, силы) в этой концепции были тела, взаимодействующие на расстоянии без помощи к.-л. посредствующих агентов. При отсутствии хотя бы одного из взаимодействовавших тел отсутствовали и силы, т.е. П. ф. не имело самостоят. существования. В концепции близкодействия, берущей начало от Декарта, взаимодействие осуществлялось посредством изменения состояния промежуточной среды – эфира, заполняющего все пространство. Носителями энергии в этой концепции были не только взаимодейств. тела, но и окружающий их эфир, так что наряду с п о л е м с и л можно было говорить и о п о л е э н е р г и и. При этом как в механич. теориях, объяснявших возникновение сил механич. перемещением и упругим натяжением эфира, так и в чисто электромагнитных теориях, оставлявших эфир неподвижным и не деформируемым, П. ф. было по-прежнему лишено самостоят. существования. Будучи характеристикой изменения состояния эфира – субстанции, обладавшей первичной реальностью, П. ф. имело онтологич. статус его аттрибута, т.е. обладало только вторичной реальностью. Изменение это вызывалось дискретными источниками П. ф. – токами и зарядами, так что П. ф., неразрывно связанное с ними, в свободном от источников П. ф. эфире не существовало. Следующий шаг в развитии классич. понятия П. ф. связан с достижениями теории свободного динамич. электромагнитного П. ф. (электромагнитных волн, частным случаем к-рых является свет), к-рое, будучи создано, может существовать вне зависимости от породивших его источников (Максвелл, 1864; Герц, 1888). Благодаря этому стало возможным приписать П. ф. импульс. Однако поскольку эфир продолжал выполнять функцию материального носителя и для динамич. П. ф., последнее по-прежнему было лишено самостоят. существования, так что импульс П. ф. (равно как и его энергия) фактически был характеристикой не П. ф., а эфира. Вследствие этого выражение "энергия поля" следовало понимать не в его буквальном смысле, а как "поле энергии". Классич. теория электромагнитного П.ф. была завершена работами А. Эйнштейна по спец. относительности теории (1905). Лишение эфира функции быть абс. системой отсчета создало возможность для приписывания П. ф. самостоят. существования. Хотя такое решение и не диктовалось необходимостью, оно все же было принято большинством физиков. Превратившись из состояния материальной субстанции (эфира) в самостоят. материальную субстанцию, электромагнитное П. ф. разделило с веществом функции носителя энергии, импульса и массы. Энергия и импульс продолжают оставаться характеристиками движения. [Иногда статус материальной субстанции приписывают не П. ф., а энергии. Тем самым движение (энергия) (см. Ф. Энгельс, Диалектика природы, 1964, с. 45, 78, 168) превращается из атрибута в субстанцию. В этом случае П. ф. по-прежнему не имеет самостоят. существования, а служит характеристикой непрерывного распределения энергии в пространстве, что опять делает более правильным выражение "поле энергии", а не "энергия поля". Направление, приписывающее энергии статус субстанции, иногда отождествляется с энергетизмом).] Вторая ветвь классич. линии развития понятия П. ф. связана с достижениями в области теоретич. исследования П. ф. сил тяготения (гравитационного П. ф.). Начиная с Ньютона и вплоть до работ Эйнштейна по общей теории относительности (10-е гг. 20 в.) тяготение трактовалось на основе представления о дальнодействующих силах и не поддавалось включению в рамки концепции близкодействия. Опираясь на факт равенства инертной и тяжелой массы, Эйнштейн сформулировал реляти- вистскую теорию гравитац. П. ф., в к-рой как гравитационное П. ф., так и геометрич. св-ва пространства описываются одной и той же величиной. Это позволяет сделать новый шаг в развитии понятия П. ф. по сравнению с тем, что было достигнуто в классич. релятивистской теории электромагнетизма. Спец. теория относительности впервые вскрыла фундаментальную роль электромагнитного П. ф. в установлении метрических характеристик пространства и времени, зависящих, как оказалось, от скорости света. Но в ней пространственно-временной континуум по-прежнему оставался независимым элементом физич. реальности, служа лишь ареной взаимодействия П. ф. и вещества. Его можно было рассматривать как нечто абсолютное, ибо П. ф. и вещество существовали в пространстве – времени. В общей теории относительности пространственно-временной аспект реальности полностью выражается гравитац. П. ф., зависящим от четырех координат-параметров (три пространственных и одна временная). "...Он есть свойство этого поля. Если мы представим себе, что поле удалено, то не останется и "пространства", т.к. пространство не имеет независимого существования" (Эйнштейн?., Сущность теории относительности, М., 1955, с. 147). То же самое, очевидно, можно сказать и о времени. Наличие в классич. физике двух видов физич. реальности, коренным образом различающихся по своей пространственной структуре (П. ф. и вещества), а также двух качественно различных типов П. ф. (электромагнитного и гравитационного) породило многочисл. попытки построить последовательную единую теорию П. ф., в к-рой гравитация и электромагнетизм, с одной стороны, должны быть не логически разобщенными видами П. ф., а различными аспектами одного, единого П. ф.; с др. стороны, частицы вещества должны трактоваться в ней как особые области П. ф., так что П. ф. и его источники, трактуемые как особые точки (сингулярности) П. ф., были бы единств. средством описания физич. реальности. Однако отсутствие успехов в последоват. и убедит. выполнении такой программы породило сильный скептицизм по отношению к ней, так что в наст. время она имеет не много сторонников. Квантовая линия развития п о н я т и я П. ф. Эта линия, продолжающаяся и в наст. время, возникла в связи с потребностью интерпретировать результаты опытов по изучению фотоэффекта. Вплоть до работ Л. де Бройля (1924) представление о свете как потоке пространственно-дискретных частиц (фотонов), введенное Эйнштейном в 1905 для объяснения этих опытов, казалось несовместимым с классич. представлением о свете как пространственно непрерывном П. ф. Де Бройль предположил, что с каждой частицей (а не только с фотоном) связано волновое П. ф. Корпускулярно-волновой дуализм стал существенной чертой и в нерелятивистской квантовой механике. Однако?-поле в ней не так прямолинейно онтологизируется, как у де Бройля и развивавших его идеи Э. Шредингера (1926, 1952) и Д. Бома (1952). Согласно копенгагенской интерпретации квантовой механики, разделяемой в наст. время подавляющим большинством ученых, ?-поле представляет собой т.н. п о л е вероятности (см. Микрочастицы). В релятивистской квантовой теории на совр. этапе ее развития квантовая теория волновых П. ф. является единств. способом описания элементарных частиц и их взаимодействий. В ее рамках понятие П. ф. претерпевает дальнейшее развитие. Благодаря волновым св-вам любых элементарных частиц и квантовым (корпускулярным) св-вам всех П. ф., каждое П. ф. (в прежнем, классич. смысле) является в то же время коллективом частиц, а каждый набор частиц (в прежнем, классич. понимании) представляет собой П. ф. Т.о., релятивистская квантовая теория на новой основе возвращается к онтологизации корпускулярно-волнового дуализма, трактуя?-поле Шредингера как классич. П. ф. материи (см. Э. Хенли и В. Тирринг, Элементарная квантовая теория поля, М., 1963, с. 19). Существенно, что онтологич. равноправие частиц и П. ф. имеет место лишь при учете т.н. в и р т у а л ь н ы х ч а с т и ц. Если же учитывать только р е а л ь н ы е ч а с т и ц ы, то П. ф. оказывается онтологически более существенным, ибо оно имеет вакуумное состояние, в к-ром отсутствуют реальные частицы (но имеется неопределенное переменное количество виртуальных частиц, существование к-рых проявляется во флуктуациях вакуумного состояния П. ф.). Нередко проводят различия между П. ф. частиц-источников взаимодействия и П. ф. частиц- п е р е н о с ч и к о в взаимодействия. Это связано с трактовкой взаимодействия между частицами-источниками как обмена виртуальными квантами П.ф., служащего переносчиком взаимодействия. При достаточной интенсивности взаимодействия (мерой интенсивности служит энергия) виртуальные кванты могут превращаться в реальные, давая начало существованию т.н. свободных П. ф. Свободные П. ф., описывающие состояние частиц до и после взаимодействия, не являются наблюдаемыми, ибо наблюдение в квантовой механике неотъемлемо от взаимодействия. Последнее же, с т. зр. квантовой теории П. ф., есть не что иное, как превращение одного определ. состояния П. ф. (совокупности частиц) в другое. Взаимодействие П. ф. обычно интерпретируют на основании представления о поглощении и испускании частиц. Эти частицы могут быть как реальными, так и виртуальными. У виртуальных частиц энергия и импульс подчиняются законам сохранения лишь с точностью до неопределенностей соотношения, поэтому на малых расстояниях может происходить обмен очень большим количеством виртуальных частиц. Это приводит к тому, что при наличии взаимодействий теряется отмеченная выше простая связь между частицами и П. ф. Взаимодействующие частицы (а также одна реальная частица, в отсутствии других взаимодействующая с вакуумом, а также со своим собств. П. ф., источником к-рого она сама является) окружены облаком виртуальных частиц. Строго говоря, с реальной частицей нельзя больше сопоставлять одно отд. П. ф. Др. словами, в ее образ входят в той или иной мере П. ф. всех др. элементарных частиц. Осн. трудности совр. квантовой теории П. ф. заключаются в отсутствии методов точного решения уравнений взаимодействующих П. ф. В квантовой электродинамике (теории взаимо-действия электромагнитного и электронно-позитронного П. ф.) приблизительное решение таких уравнений облегчается малостью силы взаимодействия, что позволяет использовать упрощенную модель взаимодействия (теорию возмущений). В теории же сильных взаимодействий, где квантовая теория П. ф. представляет собой лишь схему, до сих пор не решено строго ни одной задачи без предположения о малости взаимодействия. Необходимость привлечения всех П. ф. (в т.ч. и гравитационного, к к-рому также применим квантовый подход) для точного описания взаимодействий элементарных частиц породила стремление построить единую квантовую теорию. П. ф., к-рая не брала бы из опыта весь спектр масс и спинов элементарных частиц, а получила бы его автоматически. Наиболее известная попытка в этом направлении принадлежит Гейзенбергу (теория единого нелинейного спипорного П. ф. – "праматерии"), к-рая, однако, пока не принесла ощутимых физич. результатов. Упомянутые трудности квантовой теории П. ф. вызвали к жизни идею заменить попытки решения уравнений для операторов П. ф. построением такой системы уравнений, к-рая бы опиралась только на общие св-ва матрицы рассеяния (S-матрицы), непосредственно связывающей состояние свободного П. ф. до и после взаимодействия и не претендовала бы на детальное пространственно-временное описание процессов взаимодействия. На этом пути в наст. время нек-рыми учеными выдвигаются радикальные требования вообще отказаться от применения понятия П. ф. Это делается на основании допущения, что понятие пространственно-временного континуума не имеет физич. смысла в совр. микрофизике и по своему статусу похоже на понятие эфира в физике 19 в. (см. G. F. Chew, The dubious role of space-time continuum in microscopic physics, в журн.: "Science Progress", 1963, v. 51, No 204, p. 529). При этом отказ от использования пространственно-временных представлений (и вместе с ним представления о П. ф.) в микрофизике, разумеется, никоим образом не означает отказа от использования их в макрофизике (см. там жеи Е. I. Zimmerman, The macroscopio nature of space-time, в журн.: "American Journal of Physics", 1962, v. 30, p. 97). Однако большинство ученых по-прежнему считает необходимым использовать понятие П. ф. (а вместе с ним, естественно, и пространственно- временное представление) в качестве онтологич. основы для описания взаимодействия элементарных частиц. На этом пути в теории П. ф. возникает, в частности, интересная идея о существовании в природе т.н. к о м п е н с и р у ю щ и х П.ф., каждое из к-рых ответственно за сохранение той или иной фундаментальной физич. величины при взаимодействиях. Комплекс методологич. проблем, возникающих в связи с совр. представлениями о П. ф., чрезвычайно многогранен. Он включает проблему интерпретации крайне абстрактного математич. аппарата совр. теории П. ф. (в частности, сюда относится вопрос об онтологич. статусе виртуальных частиц) и проблему приемов описания взаимодействия (гамильтонов формализм или S-матрица?). Последняя проблема аналогична старой проблеме выражения движения в логике понятий, зафиксированной в апориях Зенона Элейского: как описывать взаимодействие – через его результаты (S-матрица) или через его пространственно-временное протекание (гамильтонов формализм). Сюда же относится и проблема адекватности описания взаимодействия на основе отд. представлений о П. ф. и о его источнике, поставленная Паули еще в 30-х гг. Дискуссии по всем этим и многим др. методологич. проблемам теории П. ф. продолжаются и еще далеки от своего завершения. Лит.: Максвелл Д. К., Избр. соч. по теории электромагнитного поля, пер. [с англ.], М., 1954; Эйнштейн?., Инфельд Л., Эволюция физики, пер. с англ., 2 изд., М., 1956; Овчинников?. ?., Понятие массы и энергии в их историч. развитии и филос. значении, М., 1957, с. 177; Марковы. ?., Гипероны и К-мезоны, М., 1958; его же, О совр. форме атомизма, "ВФ", 1960, No 3, 4; Штейнман Р. Я., Пространство и время, М., 1962, с. 68, 143; Кузнецов Б.Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, М., 1963, гл. 2, 3, 4; Whittaker ?., The history of the theories of aether and electricity. The classical theories, L.– , 1951.

Физическое поле – вид материи на макроскопическом уровне, посредник взаимодействия между частицами вещества или удаленными друг от друга макроскопическими телами. Примерами поля физического является электромагнитное поле, гравитационное поле, поле ядерных сил. Часто понятие «физическое поле» применяют к совокупности распределенных физических величин, как, например, векторное поле скоростей и скалярные поля давлений и температур в потоке жидкости или газа, тензорное поле механических напряжений в деформированном твердом теле.
Понятие силового поля возникло в классической механике, которая использует принцип дальнодействия, и было способом описания взаимодействия между частицами вещества.
Физическое поле приобрело характер физической реальности с установлением конечности скорости распространения взаимодействия (электромагнитное и гравитационное поля) и возникновением классической электродинамики и теории относительности. Противопоставление вещества и поля как дискретного и непрерывного был снят на уровне элементарных частиц.
Квантовая теория поля с помощью квантования ставит каждой частице в соответствие поле с определенными трансформационными свойствами относительно пространства-времени и групп симметрий частиц.
Идея силового поля в классической физике в том, чтобы выделить в силах, действующих на физическое тело, множители, характеризующие тело и множители, характеризующие другие тела. Например, сила гравитации, действующая на тело с массой m со стороны других тел с массами m j может быть записана по закону всемирного тяготения в виде

Где G – гравитационная постоянная, а – Расстояние между данным телом и телом с индексом j.
Выделяя в этом выражении массу выбранного тела, можно записать

Где величина

Не зависит от характеристики (массы) исследуемого тела.
Векторное поле ,

Где – Векторное поле, которое называется напряженностью электрического поля и равна

.

В этом случае сила взаимодействия тоже записывается, как произведение характеристики исследуемого тела (заряда), а вся информация о других заряды сводится к введению единой векторной величины – напряженности электрического поля.
Приведенные определения полей опираются на принцип дальнодействия и справедливы лишь для классической физики. Если частицы, которые определяют поле двигаться, то в рамках классической физики, изучаемая частица моментально чувствовать изменение их положения.
Однако, при применении принципа близкодействия, справедливого в рамках теории относительности, информация о перемещении тел передается не мгновенно и требует посредника, поэтому понятие поля набирает значение отдельной сущности, перемещение которой в пространстве требует для своего описания отдельных уравнений.
Так, с учетом близкодействия, сила, действующая на заряд, опять же записываться

Однако напряженность электрического поля находится из уравнений Максвелла. Она равна приведенном выше выражения лишь в случае неподвижных зарядов.
Подробные сведения по этой теме Вы можете найти в статье Запаздывание.

параметров их движения (скорость, импульс, момент импульса), меняют их энергию, совершают работу и т.д. И это в общем-то было наглядно и понятно. Однако с изучением природы электричества и магнетизма возникло понимание, что взаимодействовать между собой электрические заряды могут без непосредственного контакта. В этом случае мы как бы переходим от концепции близкодействия к бесконтактному дальнодействию. Это и привело к понятию поля.

Формальное определение этого понятия звучит так: физическим полем называется особая форма материи, связывающая частицы (объекты) вещества в единые системы и передающая с конечной скоростью действие одних частиц на другие. Правда, как мы уже отмечали, такие определения слишком общие и не всегда определяют глубинную да и конкретно-практическую сущность понятия. Физики с трудом отказывались от идеи физического контактного взаимодействия тел и вводили для объяснения различных явлений такие модели как электрическую и магнитную «жидкость», для распространения колебаний использовали представление о механических колебаниях частичек среды - модели эфира, оптических флюидов, теплорода, флогистона в тепловых явлениях, описывая их тоже с механической точки зрения, и даже биологи вводили «жизненную силу» для объяснения процессов в живых организмах. Все это ни что иное, как попытки описать передачу действия через материальную («механическую») среду.

Однако работами Фарадея (экспериментально), Максвелла (теоретически) и многих других ученых было показано, что существуют электромагнитные поля (в том числе и в вакууме) и именно они передают электромагнитные колебания. Выяснилось, что и видимый свет есть эти же электромагнитные колебания в определенном диапазоне частот колебаний. Было установлено, что электромагнитные волны делятся на несколько видов в шкале колебаний: радиоволны (10 3 - 10 -4), световые волны (10 -4 - 10 -9 м), ИК (5 ×10 -4 - 8 ×10 -7 м), УФ (4 ×10 -7 - 10 -9 м), рентгеновское излучение (2 ×10 -9 - 6 ×10 -12 м), γ-излучение (< 6 ×10 -12 м).

Считается, что гравитационные и электрические поля действуют независимо и могут сосуществовать в любой точке пространства одновременно, не влияя друг на друга. Суммарная сила, действующая на пробную частицу с зарядом q и массой m, может быть выражена векторной суммой и . Суммировать векторы и не имеет смысла, поскольку они имеют разную размерность. Введение в классической электродинамике понятия электромагнитного поля с передачей взаимодействия и энергии путем распространения волн через пространство, позволило отойти от механического представления эфира. В старом представлении понятие эфира как некой среды, объясняющей передачу контактного действия сил, было опровергнуто как экспериментально опытами Майкельсона по измерению скорости света, так и, главным образом, теорией относительности Эйнштейна. Через поля оказалось возможным описывать физические взаимодействия, для чего собственно и были сформулированы общие для разных типов полей характеристики, о которых мы здесь говорили. Правда следует отметить, что сейчас идея эфира отчасти возрождается некоторыми учеными на базе понятия физического вакуума.

Так после механической картины сформировалась новая к тому времени электромагнитная картина мира. Ее можно рассматривать как промежуточную по отношению к современной естественнонаучной. Отметим некоторые общие характеристики этой парадигмы. Поскольку она включает не только представления о полях, но и появившиеся к тому времени новые данные об электронах, фотонах, ядерной модели атома, закономерностях химического строения веществ и расположения элементов в периодической системе Менделеева и ряд других результатов по пути познания природы, то, конечно, в эту концепцию вошли также идеи квантовой механики и теории относительности, о которых речь еще будет идти дальше.

Главным в таком представлении является возможность описать большое количество явлений на основе понятия поля. Было установлено, в отличие от механической картины, что материя существует не только в виде вещества, но и поля. Электромагнитное взаимодействие на основе волновых представлений достаточно уверенно описывает не только электрические и магнитные поля, но и оптические, химические, тепловые и механические явления. Методология полевого представления материи может быть использована и для понимания полей иной природы. Сделаны попытки увязать корпускулярную природу микрообъектов с волновой природой процессов. Было установлено, что «переносчиком» взаимодействия электромагнитного поля является фотон, который подчиняется уже законам квантовой механики. Делаются попытки найти гравитон, как носитель гравитационного поля.

Однако несмотря на существенное продвижение вперед в познании окружающего нас мира, электромагнитная картина не свободна от недостатков. Так, в ней не рассматриваются вероятностные подходы, по существу вероятностные закономерности не признаются фундаментальными, сохранены детерминистический подход Ньютона к описанию отдельных частиц и жесткая однозначность причинно-следственных связей (что сейчас оспаривается синергетикой), ядерные взаимодействия и их поля объясняются не только электромагнитными взаимодействиями между заряженными частицами. В целом такое положение понятно и объяснимо, так как каждое проникновение в природу вещей углубляет наши представления и требует создания новых адекватных физических моделей.

Поле - одна из форм существования материи и, пожалуй, самая важная. Понятие «поле» отражает тот факт, что электрические и магнитные силы действуют с конечной скоростью на расстоянии, взаимно и непрерывно порождая друг друга. Поле излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Фарадей сформулировал идеи поля как новой формы материи, а записи вложил в запечатанный конверт, завещав вскрыть его после своей смерти (этот конверт был обнаружен только в 1938 г.). Фарадей использовал (1840) идею всеобщего сохранения и превращения энергии, хотя сам закон еще не был открыт.

В лекциях (1845) Фарадей говорил не только об эквивалентных превращениях энергии из одной формы в другую, но и о том, что он давно пытался «открыть прямую связь между светом и электричеством» и что «удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Ему принадлежит методика изучения пространства вокруг заряженного тела с помощью пробных тел, введение для изображения поля силовых линий. Он описал свои опыты по вращению плоскости поляризации света магнитным полем. Изучение взаимосвязи электрических и магнитных свойств веществ привело Фарадея не только к открытию пара- и диамагнетизма, но и к установлению фундаментальной идеи - идеи поля. Он писал (1852): «Среда или пространство, его окружающие, играют столь же существенную роль, как и сам магнит, будучи частью настоящей и полной магнитной системы».

Фарадей показал, что электродвижущая сила индукции Е возникает при изменении магнитного потока Ф (размыкании, замыкании, изменении тока в проводниках, приближении или удалении магнита и пр.). Максвелл выразил этот факт равенством: Е = -д Ф /дt. По Фарадею, способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей. Согласно Максвеллу, переменное магнитное поле окружено вихревым электрическим полем, а знак минус связан с правилом Ленца: возникает индукционный ток такого направления, чтобы препятствовать изменению, порождающему его. Обозначение rot - от англ. rotor - вихрь. В 1846 г. Ф. Нейман нашел, что на создание индукционного тока надо затратить определенное количество энергии.

В целом система уравнений, записанная Максвеллом в векторной форме, имеет компактный вид:

Входящие в эти уравнения векторы электрической и магнитной индукции (D и В) и векторы напряженности электрического и магнитного полей (Е и Н) связаны указанными простыми соотношениями с диэлектрической постоянной е и магнитной проницаемостью среды μ. Использование этой операции означает, что вектор напряженности магнитного поля вращается вокруг вектора тока плотности j .


Согласно уравнению (1), любой ток вызывает возникновение магнитного поля в окружающем пространстве, постоянный ток - постоянное магнитное поле. Такое поле не может вызвать в «следующих» областях электрическое поле, так как, по уравнению (2), только изменяющееся магнитное поле порождает ток. Вокруг переменного тока создается и переменное магнитное поле, способное создать в «следующем» элементе пространства электрическое поле волны, волны незатухающей, - энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Поскольку свет распространяется в виде поперечных волн, можно сделать два вывода: свет - электромагнитное возмущение; электромагнитное поле распространяется в пространстве в виде поперечных волн со скоростью с = 3 10 8 м/с, зависящей от свойств среды, и поэтому невозможно «мгновенное дальнодействие». Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения. А оно за счет тока смещения создаст новое магнитное поле и так до бесконечности.

Смысл уравнений (3) и (4) понятен - (3) описывает электростатическую теорему Гаусса и обобщает закон Кулона, (4) отражает факт отсутствия магнитных зарядов. Дивергенция (от лат. divergere - обнаруживать расхождение) есть мера источника. Если в стекле, например, не рождаются световые лучи, а только проходят сквозь него, divD = 0. Солнце как источник света и теплоты обладает положительной дивергенцией, а темнота - отрицательной. Поэтому силовые линии электрического поля кончаются на зарядах, плотность которых р, а магнитного - замкнуты сами на себя и нигде не кончаются.

Система взглядов, которая легла в основу уравнений Максвелла, получила название максвелловской теории электромагнитного поля. Хотя эти уравнения имеют простой вид, но чем больше Максвелл и его последователи работали над ними, тем более глубокий смысл открывался им. Г. Герц, опыты которого явились первым прямым доказательством верности теории электромагнитного поля Фарадея-Максвелла, писал о неисчерпаемости уравнений Максвелла: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом - кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время было в них заложено».

Процесс распространения поля будет продолжаться до бесконечности в виде незатухающей волны - энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Среди постоянных, входящих в уравнения, была константа с; Максвелл нашел, что ее значение равнялось точно значению скорости света. На это совпадение нельзя было не обратить внимания. Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения.

Световая волна - это волна электромагнитная, «бегущая в пространстве и отделенная от испустивших ее зарядов», как выразился Вайскопф. Открытие Максвелла он сравнил по важности с открытием закона тяготения Ньютона. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и вывел фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего закона тяготения, труды Максвелла - понятия электромагнитного поля и к установлению законов его распространения. Если электромагнитное поле может существовать независимо от материального носителя, то дальнодействие должно уступить место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Идеи тока смещения (1861), электромагнитных волн и электромагнитной природы света (1865) были настолько смелыми и необычными, что даже следующее поколение физиков не сразу приняло теорию Максвелла. В 1888 г. Г. Герц открыл электромагнитные волны, но такого активного противника теории Максвелла, как У. Томсон (Кельвин), смогли убедить лишь эксперименты П.Н.Лебедева, открывшего в 1889 г. существование светового давления.

В середине XIX в. Максвелл объединил электричество и магнетизм в единой теории поля. Электрический заряд связан с элементарными частицами, из которых самые известные - электрон и протон - имеют одинаковый по величине заряд е, это универсальная постоянная природы. В СИ = 1,6 10 -19 Кл. Хотя магнитных зарядов пока не обнаружено, в теории они уже возникают. По мнению физика Дирака, величина магнитных зарядов должна быть кратной заряду электрона

Дальнейшие исследования в области электромагнитного поля привели к противоречиям с представлениями классической механики, которые пытался устранить путем математического согласования теорий голландский физик X.А. Лоренц. Он ввел преобразования координат инерциальных систем, которые в отличие от классических преобразований Галилея содержали константу - скорость света, которая и осуществляла связь с теорией поля. Изменились масштабы времени и длин при скоростях, близких к скорости света. Физический смысл этих преобразований Лоренца был объяснен только А. Эйнштейном в 1905 г. в его работе «К электродинамике движущихся тел», составившей основу специальной теории относительности (СТО), или релятивистской механики.

Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей знаем, что природные вещества - это химические соединения элементов, построенных из атомов и собранных в Периодическую таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные - через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.

Гравитация (от лат. gravitas - тяжесть) - исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые - вниз, к Земле, легкие - вверх). Физике XVII-XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r - расстояние между телами (считается, что размер тел намного меньше r), т 1 и т 2 - массы тел. Величина G - универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 10 -11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица - источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия - его универсальность.

Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых - обе теории совпадают. Согласно ОТО, гравитация - это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение - это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т - масса отталкиваемого объекта; r - его расстояние от отталкивающего тела; L - константа. В настоящее время устанавливают верхний предел для L = 10 -53 м -2 , т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 10 25 раз. Если две галактики с массами 10 41 кг находятся на расстоянии 10 млн св. лет (около 10 22 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1 и q 2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q 1 и q 2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 10 -12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 10 9 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них - протона и электрона - одинакова: это универсальная постоянная е = 1,6 10 -19 Кл. Заряд протона считается положительным, электрона - отрицательным.

Магнитные силы порождаются электрическими токами - движением электрических зарядов. Существуют попытки объединить теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают - отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

Гравитация и электромагнетизм - дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия - короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10 -14 м.

Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад - превращение нейтронов в протоны) с радиусом действия почти точечным: около 10 -18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, - универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды - один из немногих случаев наблюдаемого слабого взаимодействия.

Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10 -15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии. Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими все взаимодействия в природе. Самое сильное - короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое - на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10 -23 с. Процессы слабого взаимодействия происходят за 10 -9 с, а гравитационные - порядка 10 16 с, или 300 млн лет.

«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений - появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому - распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

От Ньютона и П.Лапласа сохранилось рассмотрение механики как универсальной физической теории. В XIX в. это место заняла механическая картина мира, включающая механику, термодинамику и кинетическую теорию материи, упругую теорию света и электромагнетизм. Открытие электрона стимулировало пересмотр представлений. В конце века Х.Лоренц построил свою электронную теорию для охвата всех явлений природы, но этого не достиг. Проблемы, связанные с дискретностью заряда и непрерывностью поля, и проблемы в теории излучения («ультрафиолетовая катастрофа») привели к созданию квантово-полевой картины мира и квантовой механики. После создания СТО ожидалось, что всеобщий охват мира природы способна дать электромагнитная картина мира, соединявшая теорию относительности, теорию Максвелла и механику, но и эта иллюзия вскоре была развеяна.

Многие теоретики пытались едиными уравнениями охватить гравитацию и электромагнетизм. Под влиянием Эйнштейна, который ввел четырехмерное пространство-время, строились многомерные теории поля в попытках свести явления к геометрическим свойствам пространства.

Объединение осуществилось на основе установленной независимости скорости света для разных наблюдателей, движущихся в пустом пространстве при отсутствии внешних сил. Эйнштейн изобразил мировую линию объекта на плоскости, где пространственная ось направлена горизонтально, а временная - вертикально. Тогда вертикальная прямая - это мировая линия объекта, который покоится в данной системе отсчета, а наклонная - объекта, движущегося с постоянной скоростью. Кривая мировая линия соответствует движению объекта с ускорением. Любая точка на этой плоскости отвечает положению в данном месте в данное время и называется событием. Гравитация при этом уже не сила, действующая на пассивном фоне пространства и времени, а представляет собой искажение самого пространства-времени. Ведь гравитационное поле - это «кривизна» пространства-времени.

Для установления связи между системами отсчета, движущимися относительно друг друга, нужно измерять пространственные интервалы в тех же единицах, что и временные. Множителем для такого пересчета может служить скорость света, связывающая расстояние с временем, за которое свет может это расстояние преодолеть. В такой системе 1 м равен 3,33 не (1 не = 10 -9 с). Тогда мировая линия фотона пройдет под углом 45°, а любого материального объекта - под меньшим углом (так как скорость у него всегда меньше скорости света). Поскольку пространственная ось соответствует трем декартовым осям, то мировые линии материальных тел будут находиться внутри конуса, описываемого мировой линией фотона. Результаты наблюдений солнечного затмения 1919 г. принесли всемирную славу Эйнштейну. Смещения звезд, которые можно увидеть в окрестности Солнца только во время затмения, совпали с предсказаниями теории тяготения Эйнштейна. Так что его геометрический подход к построению теории тяготения был подтвержден впечатляющими экспериментами.

В том же 1919 г., когда появилась ОТО, приват-доцент Кенигсбергского университета Т. Калуца отправил Эйнштейну свою работу, где предлагал пятое измерение. Пытаясь найти первооснову всех взаимодействий (тогда было известно два - тяготение и электромагнетизм), Калуца показал, что они могут быть выведены единообразно в пятимерной ОТО. Для успеха объединения не имели значения размеры пятого измерения и, может быть, они столь малы, что их не удается обнаружить. Только после двухгодичной переписки с Эйнштейном статью опубликовали. Шведский физик О. Клейн предложил модификацию основного уравнения квантовой механики с пятью переменными вместо четырех (1926). Неощущаемые нами измерения пространства он «свернул» до очень малых размеров (приведя пример небрежно брошенного поливального шланга, который издалека кажется извилистой линией, а вблизи каждая его точка оказывается окружностью). Размеры этих своеобразных петелек 10 20 раз меньше размера атомного ядра. Поэтому пятое измерение и не наблюдаемо, но возможно.

В развитие пятимерной теории внесли свой вклад советские ученые Г.А. Мандель и В.А. Фок. Они показали, что траектория заряженной частицы в пятимерном пространстве может быть строго описана как геодезическая линия (от греч. geodaisia - землеразделение), или кратчайший путь между двумя точками на поверхности, т. е. пятое измерение может быть физически реальным. Оно не обнаружено из-за соотношения неопределенности Гейзенберга, которое каждую частицу представляет в виде волнового пакета, занимающего в пространстве область, размер которой зависит от энергии частицы (чем больше энергия, тем меньше объем области). Если пятое измерение свернуто в малую окружность, то, чтобы ее обнаружить, освещающие ее частицы должны обладать большой энергией. Ускорители дают пучки частиц, обеспечивающие разрешающую способность 10 -18 м. Поэтому, если окружность в пятом измерении имеет меньшие размеры, ее пока нельзя обнаружить.

Советский профессор Ю.Б. Румер в своей пятимерной теории показал, что пятому измерению можно придать смысл действия. Тут же появились попытки представить наглядно это пятимерное пространство, как ранее четырехмерное пространство-время, введенное Эйнштейном. Одна из таких попыток - гипотеза о существовании «параллельных» миров. Четырехмерное изображение мяча представить было несложно: это совокупность его изображений в каждой временной точке - «труба» из мячей, которая тянется из прошлого в будущее. А пятимерный мяч - это уже поле, плоскость из абсолютно одинаковых миров. Во всех мирах, имеющих от трех до пяти измерений, даже одна причина, хотя бы случайная, может породить несколько следствий. Шестимерная Вселенная, построенная выдающимся советским авиаконструктором Л.Р. Бартини, включает три пространственных измерения и три временных. У Бартини длина времени - длительность, ширина - количество вариантов, высота - скорость времени в каждом из возможных миров.

Теория квантовой гравитации должна была соединить ОТО и квантовую механику. Во Вселенной, подчиненной законам квантовой гравитации, кривизна пространства-времени и его структура должны флуктуировать, квантовый мир никогда не находится в покое. И понятия прошлого и будущего, последовательность событий в таком мире тоже должны быть иными. Эти изменения пока не обнаружены, так как квантовые эффекты проявляются в исключительно малых масштабах.

В 50-е гг. XX в. Р.Фейнман, Ю.Швингер и С.Томогава независимо друг от друга создали квантовую электродинамику, связав квантовую механику с релятивистскими представлениями и объяснив многие эффекты, полученные при исследовании атомов и их излучений. Затем была разработана теория слабых взаимодействий, и показано, что электромагнетизм можно объединить математически только со слабым взаимодействием. Один из ее авторов, пакистанский физик-теоретик А. Салам, писал: «Секрет достижения Эйнштейна состоит в том, что он осознал фундаментальное значение заряда в гравитационном взаимодействии. И пока мы не поймем природу зарядов в электромагнитных, слабых и сильных взаимодействиях так же глубоко, как это сделал Эйнштейн для тяготения, надежды на успех в окончательной унификации мало... Мы хотели бы не только продолжить попытки Эйнштейна, в которых ему не удалось преуспеть, но и включить в эту программу остальные заряды».

Возродился интерес к многомерным теориям, и вновь стали обращаться к работам Эйнштейна, Бергмана, Калуцы, Румера, Йордана. В работах советских физиков (Л.Д.Ландау, И.Я.Померанчук, Е.С.Фрадкин) показано, что при расстояниях 10 -33 см в квантовой электродинамике появляются неустранимые противоречия (расходимости, аномалии, все заряды обращаются в нуль). Многие ученые работали над идеями создания единой теории. С. Вайнберг, А. Салам и Ш. Глэшоу показали, что электромагнетизм и слабое ядерное взаимодействие можно считать проявлением некоей «электрослабой» силы и что истинные носители сильного взаимодействия - кварки. Созданная теория - квантовая хромодинамика - построила протоны и нейтроны из кварков и сформировала так называемую стандартную модель элементарных частиц.

Еще Планк отметил фундаментальную роль величин, составленных из трех констант, определяющих основные теории, - СТО (скорости света с), квантовую механику (постоянной Планка h) и теорию тяготения Ньютона (гравитационной постоянной G). Из их комбинации можно получить три величины (планковские) с

размерностями массы, времени и длины

5 10 93 г/см 3 . Планковская длина совпадает с критическим расстоянием, на котором теряет смысл квантовая электродинамика. Сейчас определена геометрия лишь на расстояниях более 10 - 16 см, которые больше планковских на 17 порядков величины! Объединение взаимодействий нужно для устранения в теории расхо-димостей и аномалий - проблему составляло определение частиц как точек и искажение ими пространства-времени. И его стали искать с помощью идей более высоких симметрий. Эти идеи получили «второе дыхание» в 80-е гг. XX в. в теориях великого объединения ТВО и супергравитации. ТВО - это теория, позволяющая объединить все взаимодействия, кроме гравитационного. Если удастся объединить с ней и гравитационное взаимодействие, то получится Теория Всего Сущего (ТВС). Тогда мир будет описываться единообразно. Поиск такой «суперсилы» продолжается.

Теории супергравитациииспользуют многомерные построения, свойственные геометрическому подходу при построении ОТО. Можно построить мир из разного числа измерений (используют 11- и 26-мерные модели), но 11-мерные наиболее интересны и красивы с математической точки зрения: 7 - минимальное число скрытых измерений пространства-времени, которые допускают включение в теорию трех негравитационных сил, а 4 - обычные измерения пространства-времени. Четыре известных взаимодействия рассматривают как геометрические конструкции, имеющие более пяти измерений.

Теория суперструнразрабатывается с середины 80-х гг. XX в. наряду с супергравитацией. Эту теорию начали развивать английский ученый М. Грин и американский ученый Дж. Шварц. Они сопоставили частицам вместо точки одномерную струну, помещенную в многомерное пространство. Эта теория, заменив точечные частицы крошечными энергетическими петлями, устранила абсурдности, возникающие при расчетах. Космические струны - это экзотические невидимые образования, порожденные теорией элементарных частиц. В этой теории отражена иерархичность понимания мира - возможность того, что не существует окончательного основания для физической реальности, а есть только последовательность все меньших и меньших частиц. Существуют и очень массивные частицы, и около тысячи частиц без массы. У каждой струны, имеющей планковский размер (10 -33 см), при этом может быть бесконечно много типов (или мод) колебаний. Как вибрация струн скрипки порождает различные звуки, так и вибрация этих струн может генерировать все силы и частицы. Суперструны позволяют понять киральность (от греч. cheir - рука), тогда как супергравитация не может объяснить разницы между левым и правым - в ней поровну частиц каждой направленности. Теория суперструн, как и супергравитации, связана не с опытом, а с более характерным для математики устранением аномалий и расходимостей.

Американский физик Э. Виттен заключил, что теория суперструн - основная надежда на будущее физики, она не только учитывает возможность силы тяжести, но и утверждает ее существование, и тяжесть - есть следствие теории суперструн. Его технология, заимствованная из топологии и теории квантового поля, позволяет открывать глубокие симметрии между запутанными узлами высокой мерности. Была зафиксирована размерность, соответствующая относительно непротиворечивой теории, она равна 506.

С помощью теории суперструн можно объяснить «клочковатость» распределения вещества во Вселенной. Суперструны - это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно подвижны и плотны, искривляют пространство вокруг себя, образуют клубки и петли, причем массивные петли могли бы создавать гравитационное притяжение, достаточно сильное, чтобы зарождались элементарные частицы, галактики и скопления галактик. К 1986 г. опубликовано много работ по космическим струнам, хотя сами они до сих пор не обнаружены. Найти суперструны считают возможным по искривлению пространства, которое они вызывают, действуя как гравитационная линза, или по испускаемым ими гравитационным волнам. Эволюцию суперструн разыгрывают на компьютерах, и на экране дисплея возникают картины, соответствующие наблюдаемым в космосе, - там тоже образуются волокна, слои и гигантские пустоты, в которых практически нет галактик.

Это необычайное сближение космологии и физики элементарных частиц в последние 30 лет дало возможность разобраться в сути процессов рождения пространства-времени и вещества в коротком интервале от 10 -43 до 10 -35 с после первичной сингулярности, называемой Большим Взрывом. Число размерностей 10 (супергравитация) или 506 (теория суперструн) - не окончательно, могут появиться и более сложные геометрические образы, но непосредственному обнаружению множество дополнительных размерностей не доступно. Истинная геометрия Вселенной, вероятно, не имеет трех пространственных измерений, что характерно лишь для нашей Метагалактики - наблюдаемой части Вселено.

И все они, кроме трех, в момент Большого Взрыва (10-15 млрд лет назад) свернулись до планковских размеров. На больших расстояниях (до размеров Метагалактики 10 28 см) геометрия евклидова и трехмерна, а на планковских - неевклидова и многомерна. Считают, что разрабатываемые сейчас Теории Всего Сущего (ТВС) должны объединить описания всех фундаментальных взаимодействий между частицами.

Совпадение предмета исследований изменило сложившуюся методологию наук. Астрономия считалась наблюдательной наукой, а ускорители - инструментом в физике элементарных частиц. Теперь стали строить предположения о свойствах частиц и их взаимодействиях в космологии, и проверить их стало возможным уже для нынешнего поколения ученых. Так, из космологии следует, что число фундаментальных частиц должно быть невелико. Это предсказание относилось к анализу процессов первичного синтеза нуклонов, когда возраст Вселенной составлял около 1 с, и сделано оно было в то время, когда казалось, что достижение больших мощностей на ускорителях приведет к увеличению числа элементарных частиц. Если бы частиц было много, Вселенная была бы сейчас иной.

Как было указано, под физическим полем понимается особое состояние пространства вокруг вещества, проявляющееся в создании силового воздействия на качественно подобное вещество в любой точке этого пространства.

В соответствии с данным определением можно говорить о поле скоростей движущегося газа (например, ветра на разных высотах), поле температур (при передаче тепла от какого-либо объекта), поле электрических или магнитных сил, поле притяжения материальных тел независимо от их природы (поле тяготения).

Физические поля существуют в трехмерном пространстве и изменяются во времени. Следовательно, их описание должно даваться функцией (или функциями) трех координат (в декартовой системе) и времени. Анализ подобных выражений оказывается крайне сложным. Поэтому по возможности выражения упрощают, рассматривая различные частные случаи.

С точки зрения зависимости от времени поля разделяют на статические, не зависящие от времени, стационарные, параметры которых изменяются во времени периодически по известным зависимостям, и нестационарные, изменяющиеся во времени без периодического повторения значений поля в отдельных точках пространства. Проще всего рассматривать статические и стационарные поля.

С точки зрения пространственного воздействия на физические объекты поля делятся на скалярные и векторные.

Скалярное поле - это поле, параметр которого в каждой точке пространства задается одним числом. Например, распределение (поле) температуры металлического бруска, нагреваемого с одного конца. В каждой точке бруска температура своя, но ее значение зависит только от координаты рассматриваемой точки и времени нагрева t и не зависит от какого-то выделенного направления. Поэтому, выбрав некоторую систему координат, температуру Т в любой точке бруска можно представить как функцию координат (х, у, z ) и времени V.

Предположим, скалярное поле статично, т.е. значения температур в каждой точке бруска остаются неизменными во времени. Тогда можно соединить мысленно все точки равной температуры, они образуют поверхность равных температур. В каждой точке указанной


поверхности можно указать направление, по которому температура нарастает быстрее всего. Еще раз подчеркнем, что речь идет не о повышении температуры во времени, а о росте (или спаде) ее в пространстве при переходе от точки к точке. Указанное направление быстрейшего роста или спада скалярного поля называется градиентом (в уравнениях или пишут grad Т, или используют специальный знак Д Т).

Градиент как характеристика скорости пространственного нарастания поля включает в себя производные по координатам, а как характеристика направления является вектором. Окончательно - градиент функции Т(х, у, z) есть вектор, проекциями которого на координатные оси служат значения частных производных этой функции.

В литературе принято обозначать направления координатных осей х, у, z единичными векторами, т.е. стрелками, направленными по соответствующим координатным осям и длиной в одну единицу; эти единичные векторы обозначаются соответственно буквами *,у, к (векторы будут обозначаться жирным шрифтом). В указанных стандартных обозначениях градиент температурного поля запишется так:

Предполагается, что читатель знаком с элементарными операциями над векторами, в частности знает, что сумма векторов есть вектор, полученный по правилу параллелограмма, а разность двух векторов есть вектор, направленный от конца одного к концу другого.

Векторное поле - это поле, параметр воздействия на физические объекты которого в каждой точке пространства задается величиной и направлением действия. Для описания векторного поля используют два метода:

  • графический, когда значение поля в каждой точке пространства изображают в виде стрелки (вектора), направление которой показывает направление действия поля в данной точке, а длина в условных единицах равна величине (модулю) поля в этой точке;
  • аналитический, в котором вектор обозначается либо в виде выделенной жирным шрифтом буквы (например, сила /), либо в виде буквы, умноженной на вектор единичной длины. Например, выражение для импульса частицы: р = m v п, где р - вектор импульса; m - масса частицы (скаляр); v - модуль скорости частицы (скаляр); п - единичный вектор скорости, т.е. вектор, модуль которого равен единице, а направление совпадает с направлением скорости частицы.

Для полного уяснения правил изображения векторных полей и выполнения некоторых математических операций с векторами рас-



Рис. 4.1.

смотрим точки на поверхности диска, вращающегося с постоянной угловой скоростью (рис. 4.1).

Выделим на поверхности диска некую точку А и проведем к ней из центра круга О радиус-вектор г, который не только определяет минимальное расстояние от центра О до точки А, но и указывает в системе координат, связанной с диском, направление на точку А. Ясно, что г - вектор (имеет длину и определенное направление).

Относительно системы координат, не связанной с диском, видно, что радиус-вектор г вращается с постоянной периодичностью вокруг точки О, образуя стационарное векторное поле. Другими словами, все точки на радиусе-векторе г, описав угол 2я за время At, возвращаются в исходное состояние; интервал времени At называется периодом вращения.

Угол, на который поворачивается за единицу времени вектор г, называется угловой скоростью вращения со. Отношение угла к интервалу времени со = 2n/At является, конечно, скаляром, но необходимо каким-то образом указать, что вращение происходит не хаотично в трехмерном пространстве, а в определенной плоскости (в нашем случае - это плоская поверхность диска).

Плоскость, согласно аналитической геометрии, задается перпендикуляром единичной длины к ней, который обозначен на рис. 4.1 буквой п. Окончательно имеем: все точки диска, вращающегося с постоянным периодом At, образуют поле постоянной угловой скорости со = со п, причем по договоренности вектор со направлен так, чтобы, глядя с его конца на диск, видно было перемещение радиуса-вектора г против движения часовой стрелки.

Каждая точка диска, кроме угловой скорости со, имеет и линейную скорость v, которую легко вычислить: за время одного периода At точка на диске проходит путь 2пг, следовательно, v = 2-кг/At. По


скольку со = 2nr/At, линейную скорость можно записать через угловую:

Но диск вращается, точка А на нем непрерывно меняет свое положение, поэтому возникает вопрос: а куда же направлен вектор скорости? Он направлен, как легко доказать, по касательной к окружности. Сама касательная перпендикулярна радиусу г в точке касания и лежит в плоскости диска, т.е. перпендикулярна вектору угловой скорости со.

Если вектор (в частности, скорости v) перпендикулярен плоскости, в которой лежат два других вектора (со и г), то знаком х (векторное умножение) обозначают операцию получения вектора, перпендикулярного плоскости, в которой лежат перемножаемые векторы, а модуль нового вектора равен произведению модулей исходных векторов, умноженному на синус угла между ними. В рассматриваемом случае можно, следовательно, записать вектор линейной скорости с учетом выражения (4.9) в виде

Если вспомнить, что точки на радиусе-векторе имеют различные модули (т.е. расстояния от оси вращения), то можно заключить: на вращающемся диске точки образуют поле линейных скоростей, направленных по касательной к окружности вращения в каждой точке и величиной (модулем), пропорциональной расстоянию от центра вращения до соответствующей точки.

Непрерывное изменение направления линейной скорости v вращающейся точки А приводит к появлению центростремительного ускорения а , равного по модулю а = v 2 /r и направленного по радиусу-вектору г. По второму закону Ньютона произведение массы материальной точки т на ускорение (вектор) создает силу, направленную по направлению ускорения. На рис. 4.1 в формуле силы задание направления достигается умножением произведения массы т и модуля ускорения v 2 /r на вектор г. Но вектор г может быть любой длины, поэтому умножение на него не только указывает направление действия силы, но изменяет и ее модуль. Чтобы указать направление силы F и исключить влияние длины вектора г, одновременно с умножением на него выражение делится на длину (модуль) вектора г, что дает в итоге

Мы рассмотрели поле скоростей и сил неподвижных материальных точек на вращающемся диске. А что будет, если по поверхности


вращающегося диска материальная точка массой т движется с постоянной линейной скоростью v p вдоль радиуса-вектора #*? Как показано в курсах теоретической механики, в этом случае на точку действует сила, лежащая в плоскости вращения (т.е. перпендикулярная вектору угловой скорости со) и перпендикулярная вектору v . Сила эта по имени описавшего ее ученого называется кориолисовой силой ^ив векторной форме равна

Векторные поля можно, конечно, описать с помощью введения трехмерной системы координат, как это сделано для скалярного поля. Однако подобное представление не слишком удобно: во-первых, результаты вычислений оказываются зависимыми от выбранных направлений осей координат; во-вторых, одному векторному уравнению соответствует три уравнения разложения вектора по координатным осям, что усложняет решение задач.

Поэтому обычно задача формулируется в векторной форме, далее переходят к разложению векторов по координатным осям, но при этом направления осей подбирают так, чтобы задача имела простое решение (например, одну из осей направляют по неизменному направлению поля), а окончательный результат решения вновь обобщают в векторной форме.