Периодические колебания и их виды. Колебания: механические и электромагнитные. Свободные и вынужденные колебания. Характеристика. Виды динамических нагрузок

Колебания периодические

"...периодические колебания - колебания, при которых каждое значение колеблющейся величины повторяется через равные интервалы времени..."

Источник:

" ГОСТ 24346-80 (СТ СЭВ 1926-79). Государственный Союза ССР. . Термины и определения"

(утв. и введен в действие Постановлением Госстандарта СССР от 31.07.1980 N 3942)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Колебания периодические" в других словарях:

    периодические колебания (вибрация) - Колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. Пояснения Термины и определения для близких понятий, различающиеся лишь отдельными словами, совмещены,… …

    КОЛЕБАНИЯ - движения или процессы, обладающие той или иной степенью повторяемости во времени. К. свойственны всем явлениям природы: пульсирует излучение звёзд, внутри к рых происходят циклич. яд. реакции; с высокой степенью периодичности вращаются планеты… … Физическая энциклопедия

    КОЛЕБАНИЯ ВЕКОВЫЕ - периодические и долгопериодические колебания: ур. м., суши (в результате эпейрогенических движений), климата, ур. озер, концов ледников. Термин устарел, так как периодические колебания интенсивности проявления тех или иных процессов могут быть… … Геологическая энциклопедия

    периодические колебания - Механические колебания, при которых состояние механической системы повторяется через равные промежутки времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической терминологии. 1987 … Справочник технического переводчика

    КОЛЕБАНИЯ КЛИМАТИЧЕСКИЕ - устанавливаются как периодические с разл. ритмами колебаний. В основном они синхронные, так как прослеживаются на больших пространствах, лишь местами отклоняясь, в зависимости как от общих (географических и т. п.), так и местных (особенности геол … Геологическая энциклопедия

    КОЛЕБАНИЯ УРОВНЯ МОРЯ ПЕРИОДИЧЕСКИЕ - 1. Колебания ур. м. в виде приливов и отливов. 2. Сезонные понижения и повышения ур. м., а также годовые, многолетние и вековые, обусловливаемые климатическими причинами. Амплитуда сезонных колебаний не превышает 28 см. Во внутренних морях она… … Геологическая энциклопедия

    Периодические колебания (вибрация) - – колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. [ГОСТ 24346 80] Рубрика термина: Виды вибрации Рубрики энциклопедии: Абразивное оборудование,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Периодические колебания уровня - изменения уровня воды в зависимости от приливно отливных явлений, выпадения осадков, изменения атмосферного давления и направления действия ветров в данном районе. Периодичность изменений, как правило, бывает полусуточной, сезонной, годовой.… … Морской словарь

    колебания - Движения или процессы, обладающие той или иной степенью повторяемости во времени [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] колебания Элемент временного ряда, отражающий происходящие в экономике периодические … Справочник технического переводчика

    Колебания - элемент временного ряда, отражающий происходящие в экономике периодические изменения, например, подъемы и спады производства продукции и потребления тех или иных товаров. В экономико математических моделях для приближенного… … Экономико-математический словарь

Книги

В колебательной системе происходит периодический переход одного вида энергии в другой, когда потенциальная энергия (энергия, зависящая от положения системы) переходит в кинетическую энергию (энергию движения) и наоборот.

Наглядное представление колебательного процесса можно получить, если построить график колебаний отдельной массы в координатах t (время) и y (перемещение).

Если в колебательную систему будет поступать внешняя энергия, колебания будут нарастающими (рис. 16.6 а). Если к консервативной системе внешняя энергия не поступает, колебания будут незатухающими (рис.16.6 б). Если энергия системы уменьшается (например, за счет трения в диссипативной системе), колебания будут затухающими (рис. 16.6 в).

Важной характеристикой колебательного процесса является форма колебаний. Форма колебаний – это кривая, показывающая положение точек колебательной системы относительно положения равновесия в фиксированный момент времени. Простейшие формы колебаний можно и наблюдать. Например, хорошо видны формы колебаний провода, висящего между двумя столбами, или струны гитары.

Колебания, происходящие при отсутствии внешней нагрузки, называются свободными колебаниями . Свободные колебания диссипативной системы являются затухающими, потому что ее полная энергия убывает. Энергия консервативной системы остается постоянной, и ее свободные колебания будут незатухающими. Однако в природе консервативных систем не существует, поэтому их колебания изучаются только теоретически. Свободные колебания консервативных систем называются собственными колебаниями .

Периодические колебания – это колебания, удовлетворяющие условию y(t)=y(t+T) . Здесь T – период колебаний, т.е. время одного колебания. Периодические колебания имеют и другие важные характеристики. Например, амплитуда a – это половина размаха колебания: a=(y max – y min )/2 , круговая частота – число колебаний за 2 секунды, техническая частота f – число колебаний за одну секунду. Обе эти частоты и период взаимосвязаны:

(Гц),(рад/с).

Гармонические колебания – это колебания, изменяющиеся по закону илиЗдесь фаза колебаний , начальная фаза .

Вынужденные колебания возникают под воздействием внешних сил.

Вибрация – это вынужденные колебания, происходящие с относительно малой амплитудой и не слишком малой частотой.

4. Виды динамических нагрузок

Колебания сооружения возникают от динамических нагрузок. В отличие от статических, динамические нагрузки изменяются с течением времени по величине, направлению или положению. Они сообщают массам системы ускорения, вызывают инерционные силы, что может привести к резкому возрастанию колебаний, и в итоге – к разрушению всего сооружения или его частей.

Рассмотрим основные виды динамических нагрузок.

– это нагрузка, прикладываемая к сооружению через определенный период. Источниками периодических нагрузок являются различные машины и механизмы: электродвигатели, металлообрабатывающие станки, вентиляторы, центрифуги и др. Если их вращающиеся части не уравновешены, то они при работе вызывают гармоническую нагрузку (нагрузку, изменяющуюся по закону синуса или косинуса). Такая нагрузка называется вибрационной нагрузкой . Поршневые компрессоры и насосы, штамповочные машины, дробилки, копры и др. создают негармоническую нагрузку .

Можно теперь ответить на вопрос, поставленный в § 5: что означает отсутствие определенной частоты у негармонического периодического колебания периода ?

Согласно теореме Фурье такое периодическое колебание представляет собой набор гармонических колебаний и, следовательно, характеризуется не одной частотой, а набором частот и т. д., т. е. кратных наиболее низкой (основной) частоте .

Рассмотрим осциллограммы колебаний, имеющих одинаковый период , но различных по своей форме. Пример таких осциллограмм мы имели на рис. 6, где было изображено несколько различных периодических колебаний одного и того же периода. По теореме Фурье каждое из этих колебаний является суммой гармонических колебаний, причем и основная частота , и ее обертоны и т. д. у всех рассматриваемых периодических колебаний одинаковы, так как одинаков период .

Но если частоты гармоник одни и те же, то с чем связано различие формы наших периодических колебаний?

Попробуем выяснить этот вопрос на примерах сложения гармонических колебаний. Это сложение осуществляется по общим правилам сложения движений (см. том I, § 6). Если складываемые перемещения происходят вдоль одной прямой, то результирующее перемещение равно алгебраической сумме складываемых перемещений. Отсюда вытекает и графический способ сложения колебании, которым мы будем сейчас пользоваться.

Рис. 30. Сумма гармонического колебания и его первого обертона

На рис. 30 штриховой линией показаны развертки (осциллограммы) двух гармонических колебаний - основного тона и первого обертона. Прямая линия соответствует положению равновесия. В какой-то момент времени, т. е. в какой-то точке этой прямой линии, имеем отрезки и , изображающие отклонения от положения равновесия, вызванные каждым из колебаний в этот момент. Сложив эти отрезки, мы получаем отрезок , изображающий результирующее отклонение в точке . Выполнив такое построение для ряда точек на прямой (с учетом знаков отклонений, т. е. плюс - вверх, минус - вниз), соединим концы всех результирующих отрезков линией. Мы получим развертку суммарного колебания (сплошная кривая на рисунке). Оно имеет тот же период, что и основная гармоника, но форма его несинусоидальная.

Попробуем теперь вдвое уменьшить амплитуду обертона. Результат сложения в этом случае показан на рис. 31. На рис. 32 амплитуды обеих гармоник те же, что и на рис. 30, но обертон сдвинут по времени на четверть своего периода. Наконец, на рис. 33 обе гармоники взяты такими же, как на рис. 30, но добавлен еще второй обертон. Во всех случаях результирующие колебания получаются с одним и тем же периодом, но совершенно различными по форме.

Рис. 31. То же, что на рисунке 30, но амплитуда обертона вдвое меньше

Итак, различие формы периодических колебаний связано с тем, сколько гармоник входит в их состав, с какими они входят амплитудами и фазами.

Рис. 32. То же, что на рисунке 30, но обертон сдвинут на четверть своего периода

Мы брали для простоты всего две или три складываемые гармоники; но формы периодических колебаний могут быть (и чаще всего бывают) такими, что количество обертонов будет очень большим и даже бесконечно большим. При этом для всякой формы периодического колебания каждая его гармоника имеет вполне определенную амплитуду и фазу. Стоит изменить амплитуду или фазу хотя бы одной-единственной гармоники, и форма результирующего периодического колебания в какой-то мере изменится.

Впрочем, очень часто изменения формы колебаний, обусловленные фазами гармоник, т. е. их сдвигами повремени, не играют роли в физическом явлении и поэтому не представляют интереса. Именно так, в частности, обстоит дело по отношению к звуковым колебаниям, к которым мы обратимся в следующих параграфах. В таких случаях нам важно знать лишь частоты и амплитуды гармоник, входящих в состав данного сложного колебания. Набор этих частот и амплитуд называется гармоническим спектром (или просто спектром) данного колебания.

Рис. 33. То же, что на рисунке 30, но добавлен второй обертон

Рис. 34. Периодическое колебание в форме толчков и спектр такого колебания

Спектры можно изображать в виде очень наглядных графиков, откладывая в определенном масштабе по горизонтальной оси частоты (или номера) гармоник, а по вертикали - их амплитуды. На рис. 34 показана осциллограмма колебания, представляющего собой периодические выбросы в одну сторону. Так меняется со временем, например, действующая периодическими толчками сила. В нижней части рисунка показан спектр этого колебания. Положение каждой линии определяет номер соответствующей гармоники и, следовательно, ее частоту, а высота линии - амплитуду этой гармоники.

Вступление

Изучая явление, мы одновременно знакомимся со свойствами объекта и учимся их применять в технике и в быту. В качестве примера обратимся к колеблющемуся нитяному маятнику. Любое явление «обычно» подсматривается в природе, но может быть предсказано теоретически, либо случайно обнаружено при изучении другого. Еще Галилей обратил внимание на колебания люстры в соборе и «было в этом маятнике что-то, что заставило его остановиться». Однако наблюдения обладают крупным недостатком, они пассивны. Для того чтобы перестать зависеть от природы, необходимо построить экспериментальную установку. Теперь мы можем воспроизводить явление в любое время. Но какова цель наших опытов с тем же нитяным маятником? Человек многое взял от «братьев наших меньших» и поэтому можно представить, какие опыты провела бы с нитяным маятником обыкновенная обезьяна. Она бы попробовала его «на вкус», понюхала, дернула за ниточку и потеряла к нему всякий интерес. Природа научила ее очень быстро изучать свойства объектов. Съедобно, несъедобно, вкусно, невкусно - вот краткий перечень свойств, которые изучила обезьяна. Однако человек пошел дальше. Он обнаружил такое важное свойство, как периодичность, которое можно измерить. Любое измеримое свойство объекта называют физической величиной. Ни один механик мира не знает всех законов механики! А нельзя ли путем теоретического анализа или тех же экспериментов выделить главные законы. Те, кому удалось это сделать, навсегда вписали свое имя в историю науки.

В своей работе мне бы хотелось изучить свойства физических маятников, определить в какой степени уже изученные свойства можно применить в практике, в жизни людей, в науке, а может применять их в качестве метода изучения физических явлений других областей этой науки.

Колебания

Колебания - один из самых распространенных процессов в природе и технике. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

С колебательными системами приходится иметь дело не только в различных машинах и механизмах, термин "маятник" широко используют в приложении к системам различной природы. Так, электрическим маятником называют цепь, состоящую из конденсатора и катушки индуктивности, химическим - смесь химикатов, вступающих в колебательную реакцию, экологическим маятником - две взаимодействующие популяции хищников и жертв. Этот же термин применяется к экономическим системам, в которых имеют место колебательные процессы. Мы также знаем, что колебательными системами является большинство источников звука, что распространение звука в воздухе возможно лишь потому, что сам воздух представляет собой своего рода колебательную систему. Более того, кроме механических колебательных систем, существуют электромагнитные колебательные системы, в которых могут совершаться электрические колебания, составляющие основу всей радиотехники. Наконец, имеется очень много смешанных -- электромеханических -- колебательных систем, используемых в самых различных технических областях.

Мы видим, что звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой. Землетрясения - колебания почвы, приливы и отливы - изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса - периодические сокращения сердечной мышцы человека и т.д. Смена бодрствования и сна, труда и отдыха, зимы и лета. Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Итак, колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же дифференциальными уравнениями. Специальный раздел физики - теория колебаний - занимается изучением закономерностей этих явлений. Знать их необходимо судостроителям и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Любые колебания характеризуются амплитудой - наибольшим отклонением некоторой величины от своего нулевого значения, периодом (T) или частотой (v). Последние две величины связаны между собой обратно пропорциональной зависимостью: T=1/v. Частота колебаний выражается в герцах (Гц). Единица измерения названа так в честь известного немецкого физика Генриха Герца (1857...1894). 1Гц - это одно колебание в секунду. Примерно с такой частотой бьется человеческое сердце. Слово «херц» по-немецки означает «сердце». При желании в этом совпадении можно усмотреть некую символическую связь.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). Галилей установил изохронизм (независимость периода от амплитуды) малых колебаний, наблюдая за раскачиванием люстры в соборе и отмеряя время по ударам пульса на руке. Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника. Большой вклад в изучение колебаний внесли многие ученые: английские - У.Томсон (лорд Кельвин) и Дж.Рэлей, русские - А.С. Попов и П.Н. Лебедев, советские - А.Н. Крылов, Л.И. Мандельштам, Н.Д. Папалекси, Н.Н. Боголюбов, А.А. Андронов и другие.

Периодические колебания

Среди всевозможных совершающихся вокруг нас механических движений и колебаний часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с теми же скоростями. Если мы посмотрим, как раскачиваются от ветра ветви и стволы деревьев, как качается на волнах корабль, как ходит маятник часов, как движутся взад и вперед поршни и шатуны паровой машины или дизеля, как скачет вверх и вниз игла швейной машины; если мы будем наблюдать чередование морских приливов и отливов, перестановку ног и размахивание руками при ходьбе и беге, биения сердца или пульса, то во всех этих движениях мы заметим одну и ту же черту -- многократное повторение одного и того же цикла движений.

В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий (качания маятника, движения частей машины, работающей с постоянной скоростью), в других случаях различие между следующими друг за другом циклами может быть заметным (приливы и отливы, качания ветвей, движения частей машины при ее пуске или остановке). Отклонения от совершенно точного повторения очень часто настолько малы, что ими можно пренебречь и считать движение повторяющимся вполне точно, т. е. считать его периодическим.

Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл. Продолжительность одного цикла называется периодом. Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки.

Общая характеристика колебаний

Ритмические процессы любой природы, характеризующиеся повторяемостью во времени, называются колебаниями.

Колебание – процесс, характеризующийся повторяемостью во времени параметров, его описывающих. Единство закономерностей ритмических процессов позволило разработать единый математический аппарат для их описания – теорию колебаний. Существуют множество признаков, по которым могут быть классифицированы колебания.

По физической природе колеблющейся системы различают механические и электромагнитные колебания.

Колебания называются периодическими, если величина, характеризующая состояние системы, повторяется через равные промежутки времени – период колебания.

Период (T ) - минимальное время, через которое повторяется состояние колебательной системы, т.е. время одного полного колебания.

Для таких колебаний

x(t)=x(t+T) ;(3. 1)

Периодическими являются колебания маятника часов, переменный ток, биение сердца, а колебания деревьев под порывом ветра, курсов иностранных валют – не периодические.

Кроме периода в случае периодических колебаний определена их частота.

Частота ()т.е. число колебаний в единицу времени.

Частота -величина, обратная периоду колебания,

Единицей измерения частоты являетсяГерц: 1 Гц = 1 с -1 , частота соответствующая одному колебанию в секунду. При описании периодических колебаний также используется циклическая частота – число колебаний за 2π секунд:

При периодических колебаниях эти параметры постоянны, а при других колебаниях могут изменяться.

Закон колебаний – зависимость колеблющейся величины от времени x(t) - может быть может быть разной. Наиболее простыми являются гармонические колебания (рис3.1), для которых колеблющаяся величина меняется по закону синуса или косинуса, что позволяет использовать одну функцию для описания процесса во времени:

Здесь: x (t) – значение колеблющейся величины в данный момент времени t , А амплитуда – наибольшее отклонение колеблющейся величины от среднего значения., ω – циклическая частота, (ωt+φ ) – фаза колебания , φ – начальная фаза.

Гармоническому закону подчиняются многие известные колебательные процессы. в т.ч. упомянутые выше, но наиболее существенно что с помощью метода Фурье любая периодическая функция раскладывающаяся на гармонические составляющие (гармоники ) с кратными частотами:

f (t )= А + А 1 cos( t + )+ А cos (2 t+ )+…; (3.5)

Здесь основная частота определяется периодом процесса: .

Каждая гармоника характеризуется частотой () и амплитудой (А ). Совокупность гармоник называется спектром . Спектры периодических колебаний дискретные (линейчатые) (рис.3.1а), а не периодических непрерывные (рис.3.1б) .

Рис. 3.1 Дискретные (а) и непрерывные (б) спектры сложных колебательных

Виды колебаний

Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.

Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.

Свободные колебания совершаются в системе, однократно выведенной из положения равновесия и в дальнейшем предоставленной самой себе. При этом колебания происходят с собственной частотой (), которая не зависит от их амплитуды, т.е. определяется свойствами самой системы.

В реальных условиях колебания всегда являются затухающими , т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.

Для создания незатухающих колебаний в реальных системах необходимо периодическое внешнее воздействие – периодическое пополнение энергии, теряемой за счет диссипации. Гармонические колебания, происходящие за счет внешнего периодического воздействия («вынуждающей силы»), называются вынужденными . Их частота совпадает с частотой вынуждающей силы (), а амплитуда оказывается зависящей от соотношения между частотой силы и собственной частотой системы. Важнейшим эффектом, осуществляющимся при вынужденных колебаниях, является резонанс – резкое возрастание амплитуды при приближении частоты вынужденных колебаний к собственной частоте колебательной системы. Резонансная частота тем ближе к собственной, а максимум амплитуды тем больше, чем меньше диссипация.

Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:

колебательную систему (с затуханием),

усилитель колебаний (источник энергии),

нелинейный ограничитель (клапан),

звено обратной связи

При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.

Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.