Кинетическая энергия вращающегося тела определяется по формуле. Кинетическая энергия вращающегося твердого тела. Силы внутреннего трения

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν 0 =720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω - ω 0 , причём ω =0 конечная угловая скорость, ω 0 =2πν 0 - начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

Mr 2 2πν 0 = МΔt (1)

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω 0 – βΔt, так как ω=0, ω 0 = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n = 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N = 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М 1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

M 1 Δt = Iω 2 - Iω 1

где Δt – время действия момента сил трения, I=mr 2 - момент инерции маховика, ω 1 = 2πν и ω 2 = 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М 2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔE к:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.


Тогда, откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m 1 и m 2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m 1 и m 2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m 2 > m 1 .

Тогда груз m 2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Первые два уравнения записаны для тел с массами m 1 и m 2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T 1 взят со знаком минус, так как сила T 1 стремится повернуть цилиндр против часовой стрелки). Справа I - момент инерции цилиндра относительно оси О, который равен

где R - радиус цилиндра; β - угловое ускорение цилиндра.

Так как проскальзывания нити нет, то
. С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону
. Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения
. Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как
. Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ - плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(J i -момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

J 0 ω 1 = J 2 ω 2 . (2)

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

J 0 = mℓ 2 /12. (3)

По теореме Штейнера

J =J 0 +mа 2

(J-момент инерции стержня относительно произвольной оси вращения; J 0 – момент инерции относительно параллельной оси, проходящей через центр масс; а - расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

J 2 =J 0 +mа 2 , J 2 = mℓ 2 /12 +m(ℓ/2) 2 = mℓ 2 /3. (4)

Подставим формулы (3) и (4) в (2):

mℓ 2 ω 1 /12 = mℓ 2 ω 2 /3

ω 2 = ω 1 /4 ω 2 =10с-1/4=2,5с -1

Пример 2.6 . Человек массой m =60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν 1 =12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν 2 будет тогда вращаться платформа.

Дано: m=60кг, М=120кг, ν 1 =12мин -1 = 0,2с -1 .

Найти: ν 1

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

I 1 ω 1 = I 2 ω 2

где
- момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус п
латформы), момент инерции человека на краю платформы равенmR 2).

- момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω 1 = 2π ν 1 и ω 1 = 2π ν 2 .

Подставив записанные выражения в формулу (1), получаем

откуда искомая частота вращения

Ответ : ν 2 =24мин -1 .

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri– расстояние до оси вращения. Следовательно,

Сопоставив и можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Основной закон динамики вращательного движения.

Динамика вращательного движения

Основной закон динамики вращательного движения:

или M=Je , где М - момент силы M=[ r · F ] , J - момент инерции -момент импульса тела.

если М(внешн)=0 - закон сохранения момента импульса. - кинетическая энергия вращающегося тела.

работа при вращательном движении.

Закон сохранения момента импульса.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где α - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса ri со скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi = ωri, получим

Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени:

Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

В замкнутой системе момент внешних сил М=0 и откуда

Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.

Давление в жидкости и газе.

Молекулы газа, совершая хаотическое, хаотическое движение, не связаны или довольно слабо связаны силами взаимодействия, из-за чего движутся практически свободно и в результате соударений разлетаются во все стороны, при этом заполняя весь предоставленный им объем, т. е. объем газа определяется объемом занимаемого газом сосуда.

А жидкость же, имея определенный объем, принимает форму того сосуда, в который она заключена. Но в отличие от газов в жидкостях среднее расстояние между молекулами в среднем сохраняется постоянным, поэтому жидкость обладает практически неизменным объемом.

Свойства жидкостей и газов во многом сильно отличаются, но в нескольких механических явлениях их свойства определяются одинаковыми параметрами и идентичными уравнениями. По этой причине гидроаэромеханика - раздел механики, который изучает равновесие и движение газов и жидкостей, взаимодействие между ними и между обтекаемыми ими твердыми телами, - т.е. применяется единый подход к изучению жидкотей и газов.

В механике жидкости и газы с большой степенью точности рассматриваются как сплошные, непрерывное распределенные в занятой ими части проставранства. У газов плостность от давления зависит существенно. Из опыта установлено. что сжимаемостью жидкости и газа часто можно пренебречь и целесообразно пользоваться единым понятие - несжимаемостью жидкости - жидкости, с всюду одинаковой плотностью, которая не изменяется со течением времени.

Поместим в покоящуюся тонкую пластинку, в результате части жидкости, расположенные по разные стороны от пластины, будут действовать на каждый ее элемент ΔS с силами ΔF, которые будут равны по модулю и направленый перпендикулярно площадке ΔS независимо от ориентации площадки, в ином случае наличие касательных сил привело бы частицы жидкости в движение (рис.1)

Физическая величини, опеределяемая нормальной силой, действующей со стороны жидкости (или газа) на единицу площади, называется давлением p/ жидкости (или газа): p=ΔF/ΔS.

Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, которая равномерно распределена по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по воем направлениям, причем давление одинаково передается по всему объему, который занимает покоящаяся жидкость.

Исследуем влияние веса жидкости на распределение давления внутри неподвижной несжимаемой жидкости. При равновесии жидкости давление вдоль любой горизонтальной всегда одинаково, иначе не было бы равновесия. Значит свободная поверхность покоящейся жидкости всегда горизонтальна (притяжение жидкости стенками сосуда не учитываем). Если жидкость несжимаема, то плотность данной жидкости не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес P=ρgSh, при этом давление на нижнее основание: p=P/S=ρgSh/S=ρgh, (1)

т. е. давление линейно изменяется с высотой. Давление ρgh называется гидростатическим давлением.

Согласно формуле (1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): FА=ρgV, где ρ - плотность жидкости, V- объем погруженного в жидкость тела.

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Начнем с рассмотрения вращения тела вокруг неоодвижной оси которую мы назовем осью z (рис. 41.1). Линейная скорость элементарной массы равна где - расстояние массы от оси . Следовательно для кинетической энергии элементарной массы получается выражение

Кинетическая энергия тела слагается из кинетических энергий его частей:

Сумма в правой части этого соотношения представляет собой момент инерции тела 1 относительно оси вращения. образом, кинетическая энергия тела, вращающегося вокруг неподвижной оси равна

Пусть на массу действуют внутренняя сила и внешняя сила (см. рис. 41.1). Согласно (20.5) эти силы совершат за время работу

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей (см. (2.34)), получим:

где N - момент внутренней силы относительно точки О, N - аналогичный момент внешней силы.

Просуммировав выражение (41.2) по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

Сумма моментов внутренних сил равна нулю (см. (29.12)). Следовательно, обозначив суммарный момент внешних сил через N придем к выражению

(мы воспользовались формулой (2.21)).

Наконец, приняв во внимание, что есть угол на который поворачивается тело за время получим:

Знак работы зависит от знака т. е. от знака проекции вектора N на направление вектора

Итак, при вращении тела внутренние силы работы не совершают, работа же внешних сил определяется формулой (41.4).

К формуле (41.4) можно прийти, воспользовавшись тем, что работа, совершаемая всеми приложенными к телу силами, идет на приращение его кинетической энергии (см. (19.11)). Взяв дифференциал от обеих частей равенства (41.1), придем к соотношению

Согласно уравнению (38.8) так что, заменив через придем к формуле (41.4).

Таблица 41.1

В табл. 41.1 сопоставлены формулы механики вращательного движений с аналогичными формулами механики поступательного движения (механики точки). Из этого сопоставления легко заключить, что во всех случаях роль массы играет момент инерции, роль силы момент силы, роль импульса - момент импульса и т. д.

Формулу. (41.1) мы получили для случая, когда тело вращается вокруг неподвижной фиксированной в теле оси. Теперь допустим что тело вращается произвольным образом относительно неподвижной точки, совпадающей с его центром масс.

Свяжем жестко с телом декартову систему координат, начало которой поместим в центр масс тела. Скорость i-й элементарный массы равна Следовательно, для кинетической энергии тела, можно написать выражение

где - угол между векторами Заменив а через и учтя, что получим:

Распишем скалярные произведения через проекции векторов на оси связанной с телом координатной системы:

Наконец, объединив слагаемые с одинаковыми произведениями компонент угловой скорости и вынеся эти произведения за знаки сумм, получим: так что формула (41.7) принимает вид (ср. с (41.1)). При вращении произвольного тела вокруг одной из главных осей инерции, скажем оси и формула (41.7) переходит в (41.10.

Таким, образом. кинетическая энергия вращающегося тела равна половине произведения момента инерции на квадрат угловой скорости в трех случаях: 1) для тела вращающегося вокруг неподвижной оси; 2) для тела вращающегося вокруг одной из главных осей инерции; 3) для шарового волчка. В остальных случаях кинетическая энергия определяется белее сложными формулами (41.5) или (41.7).