Работа постоянной силы приложенной к вращающемуся телу. Элементарная работа силы. Работа сил в механизмах

Рассмотрим формулы для определения работы и мощности силы, приложенной в какой-либо точке твердого тела, совершающего поступательное или вращательное движение.

1. Работа и мощность силы, приложенной к твердому телу, совершающему поступательное движение.

Рассмотрим твердое тело, совершающее поступательное движение по отношению к инерциальной системе отсчета под действием силы , приложенной в произвольной точке (рис. 24).

В случае поступательного движения твердого тела все его точки движутся со скоростями одинаковыми по величине и направлению. Обозначим скорость тела .

Используя формулу (4.31), получим

где - дифференциал радиус-вектора произвольной точки твердого тела .

Рис. 24. Поступательное движение твердого тела под действием силы

Поделив (4.49) на dt , получим выражение для определения мощности силы, действующей на тело, совершающее поступательное движение:

где - угол между векторами силы скорости .

То есть мощность силы при поступательном движении твердого тела определяется как скалярное произведение вектора силы на вектор скорости твердого тела .

Интегрируя (4.49) на каком-либо конечном перемещении точки M из начального положения М 0 в положение М 1 , получим полную работу силы, действующей на тело на этом перемещении

2. Работа и мощность силы, приложенной к твердому телу, совершающему вращательное движение.

Рассмотрим вращение твердого тела вокруг неподвижной вертикальной оси Oz под действием силы , приложенной в произвольной точке этого тела М (рис. 25).

Рис. 25. Вращение твердого тела вокруг неподвижной оси

Положение точки М в осях Oxyz определяется радиус-вектором . Скорость точки М направлена по касательной к траектории движения (окружность с центром на оси вращения). Вектор этой скорости можно определить по векторной формуле Эйлера, известной из курса кинематики твердого тела

где - вектор угловой скорости вращения твердого тела.

Используя формулу (4.32), получим

Меняя в круговом порядке сомножители в смешанном векторном произведении, получим

где - векторный момент силы , относительно центра O .

Угол между векторами момента и угловой скорости .

Учитывая, что:

1. - момент силы , относительно оси вращения Oz.

2. и следовательно ,

окончательно получим

Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, вращающегося вокруг неподвижной оси, равна произведению момента этой силы относительно оси вращения на дифференциал угла поворота тела.

Для определения полной работы силы при повороте тела на угол φ, проинтегрировав выражение (4.53), получим

В случае когда , полную работу можно определить по формуле

где φ – угол поворота тела, на котором определяют работу силы.

Если направление момента и угловой скорости совпадают, то работа силы считается положительной, в противном случае – отрицательной.

Определим мощность силы при вращении твердого тела вокруг оси. Используя формулу (4.40), получим

То есть мощность силы, приложенной к вращающемуся твердому телу, определяется как произведение момента силы относительно оси вращения на угловую скорость тела . Знак мощности определяется аналогично знаку работы.

Теорема об изменении кинетической энергии механической системы

Учебные вопросы:

1. Работа силы.

2. Кинетическая энергия точки и механической системы.

3.Теорема об изменении кинетической энергии точки.

4. Теорема об изменении кинетической энергии механической системы.

5. Потенциальное силовое поле и потенциальная энергия.

1. Работа силы.

Элементарная работа силы - это бесконечно малая ска­лярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы :

.

-приращение ра­диуса-вектора точки приложе­ния силы, годографом которого является траектория этой точки. Элементарное перемещение
точ­ки по траектории совпадает с
в силу их малости. Поэтому

Так как
- проекция силы на направление пе­ремещения точки (при криволинейной траектории - на каса­тельную оськ траектории, то

,

т. е. работу совершает только касательная сила, а работа нор­мальной силы равна нулю.

Если
то

если
то

если
то
.

Представим векторы и
через их проекции на оси де­картовых координат:

,

Работа силы на конечном перемещении равна инте­гральной сумме элементарных работ на этом перемещении

.

.

Если сила постоянная, а точка ее приложения перемещает­ся прямолинейно, то

.

Работа силы тяжести

где h - перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх
(точка
- внизу,
- вверху). Итак
,

.

Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (
совпадает с
) работа равна нулю.

Работа силы упругости пружины.

Пружина растягивается только вдоль оси х

,

где - величина деформации пружины. При перемещении точки приложения силы
из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда
.

Поэтому работа силы упругости

.

Работа сил, приложенных к твердому телу.

а) Работа внутренних сил

Для двух k - х точек: , т. к.
и(доказывается в кинематике) (рис. 80).

Элементарная работа всех внутренних сил в твердом теле равна нулю:

.

Следовательно, на любом конечном перемещении тела

.

б) Работа внешних сил.

Поступательное движение тела.

Элементарная работа k –й силы

Для всех сил

.

Так как при поступательном движении , то

,

где
- проекция главного вектора внешних сил на направление перемещения.

Работа сил на конечном перемещении

.

Вращение тела вокруг неподвижной оси .

Элемен­тарная работа k - й силы

где
,
и
- составляю­щие силыпо естественным осям

Так как
,
, то работа этих сил на перемещение
точки приложения силы равна нулю. Тогда

.

Элементарная работа k - й внешней силы равна произве­дению момента этой силы относительно оси вращения
на элементарный угол поворота
тела вокруг оси.

Элементарная работа всех внешних сил

,

где
- главный момент внешних сил относительно оси.

Работа сил на конечном перемещении

.

Если
, то

где
- конечный угол поворота;
, гдеп - число оборотов тела вокруг оси.

Мощность - это работа, выполненная силой в единицу времени . Если работа совершается равномерно, то мощность

,

где А – работа, совершенная силой на конечном перемещении, за время t .

В более общем случае мощность силы можно определить как отношение элементарной работы силы dA к элементарному про­межутку времени dt , за который совершена эта работа, что представляет собой производную от работы по времени. Поэтому

При вращении тела вокруг неподвижной оси

,

где
- угловая скорость вращения тела.

Единицы измерения работы и мощности . В системе СИ единица измерения работы силы - джоуль (1 Дж = 1 Нм ),

Единица измерения мощности соответственно - ватт (1 Вт = 1 Дж/с )

75 кГм/с = 1 л. с . (лошадиная сила).

1 кВт = 1000 Вт = 1,36 л. с .

В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом движении тела вокруг полюса. В динамике за полюс всегда принимают центр масс тела. Скорость любой точки тела определяется по формуле

– скорость центра масс тела;

– вектор мгновенной угловой скорости тела;

– радиус-вектор по отношению к центру масс тела.

Для мощности силы, приложенной к абсолютно твердому телу, получаем:

Особый интерес представляет плоскопараллельное движение твердого тела. В этом важном частном случае мощность силы может быть вычислена по формуле:

где – угол между векторами силы и скорости центра масс тела.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механикакраткий курс конспект лекций по теоретической механике

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.. московский государственный строительный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы механики
Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

Аксиома 3
Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

Скорость точки
Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

Ускорение точки
Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

Аксиома 3
Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

Момент силы относительно точки
Пусть дана сила, приложенная в точке

Момент силы относительно оси
Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

Пара сил
Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

Дифференциальные уравнения движения механической системы
Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

Основные свойства внутренних сил
Рассмотрим две любые точки механической системы и

Теорема об изменении количества движения механической системы
Сложим почленно все равенства (3.1): Учитывая первое основное св

Теорема об изменении кинетического момента
Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

Условия равновесия
Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

Равновесие системы сил, линии действия которых лежат в одной плоскости
Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

Расчет ферм
Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

Равновесие тела при наличии трения
Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

Центр параллельных сил
Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

Центр тяжести тела
Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

Центр масс механической системы. Теорема о движении центра масс
Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

ЛЕКЦИЯ 5
5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

Поступательное движение твердого тела
Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Кинематика вращательного движения твердого тела
При вращательном движении в теле существует единственная прямая, все точки которой

Скоростью тела
Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

Дифференциальное уравнение вращательного движения твердого тела
Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

Кинематика плоскопараллельного движения твердого тела
Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

Дифференциальные уравнения плоскопараллельного движения твердого тела
При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

Система Кенига. Первая теорема Кенига
(Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

Работа и мощность силы. Потенциальная энергия
Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

Теорема об изменении кинетической энергии механической системы
Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

Работа внутренних сил геометрически неизменяемой механической системы
Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

Вычисление кинетической энергии абсолютно твердого тела
Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

Работа силы тяжести
При вычислении работы силы тяжести будем считать, что мы рассматриваем ограниченную область пространства вблизи поверхности Земли, размеры которой малы по сравнению с размерами Земл

Работа упругой силы
Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

Работа вращающего момента
Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

Возможные скорости и возможные перемещения
Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

Идеальные связи
Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

Принцип возможных перемещений
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

Общее уравнение динамики
Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде

Элементарной работой силы на перемещении (рис. 3.22) называется скалярное произведение силы на элементарное перемещение точки ее приложения:

где a – угол между направлениями векторов и

Так как то можно записать еще одно выражение элементарной работы:

Для элементарной работы можно записать еще несколько выражений:

Из формул элементарной работы следует, что эта величина может быть положительной (угол a острый), отрицательной (угол a тупой) или равна нулю (угол a прямой).

Полная работа сил . Для определения полной работы силы на перемещении от точки M 0 до М разобьем это перемещение на n перемещений, каждое из которых в пределе переходит в элементарное. Тогда работа силы А :

где dA k – работа на k -м элементарном перемещении.

Записанная сумма является интегральной и может быть заменена криволинейным интегралом, взятым вдоль кривой на перемещении M 0 М. Тогда

или

где момент времени t =0 соответствует точке M 0 , а момент времени t – точке М .

Из определения элементарной и полной работы следует:

1) работа равнодействующей силы на каком–либо перемещении равна алгебраической сумме работ составляющих сил на этом перемещении;

2) работа сил на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.

Мощность силы. Мощностью силы называют работу за единицу времени:

или с учетом, что

Мощность силы – это величина, равная скалярному произведению силы на скорость точки ее приложения.

Таким образом, при постоянной мощности увеличение скорости ведет к уменьшению силы и наоборот. Единицей измерения мощности является Ватт : 1Вт=1 Дж/с.

Если сила приложена к телу, вращающемуся вокруг неподвижной оси, то ее мощность равна

Аналогично определяется и мощность пары сил.

3.3.4.3. Примеры вычисления работы силы

Полная работа силы –

где h – высота, на которую опустилась точка.

Таким образом, работа силы тяжести положительная, когда точка опускается, и отрицательная, когда точка поднимается. Работа силы тяжести не зависит от формы траектории между точками M 0 и M 1 .

Работа линейной силы упругости. Линейной силой упругости называют силу, действующую по закону Гука (рис. 3.24):

где – радиус-вектор, проведенный из точки равновесия, где сила равна нулю, до рассматриваемой точки М ; с – постоянный коэффициент жесткости.

Работа силы на перемещении от точки M 0 до точки M 1 определим по формуле

Выполняя интегрирование, получаем

(3.27)

Рис. 3.25

По формуле (3.27) вычисляют работу линейной силы упругости пружин при перемещении по любому пути из точки M 0 , в которой ее начальная деформация равна в точку M 1 , где деформация соответственно равна В новых обозначениях формула (3.27) принимает вид

Работа силы, приложенной к вращающемуся твердому телу . При вращении твердого тела вокруг неподвижной оси скорость точки М можно вычислить по формуле Эйлера, см. рис. 3.25:

Тогда элементарную работу силы определим по формуле

Используя свойство смешанного векторного произведения
получим

Так как – момент силы относительно точки О . Учитывая, что – момент силы относительно оси вращения Oz и ωdt =d φ, окончательно получаем:

dA =M z d φ.

Элементарная работа силы, приложенной к какой–либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа:

В частном случае, когда , работу определяют по формуле

где j – угол поворота тела, на котором вычисляют работу силы.

Рис. 3.26

Работа внутренних сил твердого тела . Докажем, что работа внутренних сил твердого тела равна нулю при любом его перемещении. Достаточно доказать, что сумма элементарных работ всех внутренних сил равна нулю. Рассмотрим две любые точки тела M 1 и M 2 (рис. 3.26). Так как внутренние силы есть силы взаимодействия точек тела, то:

Введем единичный вектор направленный по силе Тогда

Сумма элементарных работ сил и равна

Раскрывая скалярные произведения векторов в скобках, получаем

Так как в кинематике доказано, что проекции скоростей любых двух точек твердого тела на направление прямой линии, соединяющей эти точки, равны друг другу при любом движении твердого тела, то в полученном выражении в скобках стоит разность одинаковых величин, т.е. величина, равная нулю.

3.3.4.4. Теорема об изменении кинетической энергии точки

Для материальной точки массой m , движущейся под действием силы основной закон динамики можно представить в виде

Умножая обе части этого соотношения скалярно на дифференциал радиус-вектора точки имеем

или

Учитывая, что – элементарная работа силы,

(3.28)

Формула (3.28) выражает теорему об изменении кинетической энергии для точки в дифференциальной форме.

Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Если обе части равенства (3.28) проинтегрировать от точки M 0 до точки М (см. рис. 3.22), получаем теорему об изменении кинетической энергии точки в конечной форме:

Изменение кинетической энергии точки на каком–либо перемещении равно работе силы, действующей на точку на том же перемещении.

3.4.4.5. Теорема об изменении кинетической энергии системы

Для каждой точки системы можно выразить теорему об изменении кинетической энергии в форме:

Суммируя правые и левые части этих соотношений по всем точкам системы и вынося знак дифференциала за знак суммы, получаем:

или

где – кинетическая энергия системы; – элементарная работа внешних и внутренних сил соответственно.

Формула (3.29) выражает теорему об изменении кинетической энергии системы в дифференциальной форме.

Дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему.

Если обе части (3.29) проинтегрировать между двумя положениями системы – начальным и конечным, в которых кинетическая энергия равна T 0 и Т , то, изменяя порядок суммирования и интегрирования, имеем:

или

где – работа внешней силы для точки системы M k при ее перемещении из начального положения в конечное положение M k ; – работа внутренней силы, действующей на точку M k .

Формула (3.30) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме.

Изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.

Работа силы на бесконечно малом перемещении , называемая элементарной работой, выражается формулой

где - угол между силой F и скоростью v точки ее приложения (рис. 171), или в виде скалярного произведения:

где - дифференциал радиуса-вектора точки приложения силы.

Выражая это скалярное произведение через проекции векторов F и на координатные оси, получаем аналитическое выражение элементарной работы:

где X, Y, Z - проекции силы на координатные оси, - бесконечно малые изменения (дифференциалы) координат точки приложения силы при элементарном перемещении этой точки.

Если сила F приложена к твердому телу, вращающемуся вокруг неподвижной оси z, то

где - элементарный угол поворота тела вокруг оси.

Если к телу, имеющему неподвижную ось вращения приложена пара сил с моментом , то элементарная работа этой пары выражается следующим образом:

где - проекция вектора - момента пары на ось .

Особый интерес представляет случай, когда сила является функцией координат точки и, кроме того,

В этом случае существует такая функция координат , частные производные которой по координатам равны проекциям силы на соответствующие координатные оси, т. е.

Такая функция называется силовой, или потенциальной, функцией. Таким образом, если существует силовая функция, то

т. е. элементарная работа силы равна полному дифференциалу силовой функции. Ограниченная или неограниченная часть пространства, где проявляется действие силы, имеющей силовую функцию, называется силовым потенциальным полем.

Геометрическое место точек силового потенциального поля, в которых силовая функция сохраняет постоянное значение, называется эквипотенциальной поверхностью, или поверхностью уровня.

Работа А силы F на конечном пути определяется как предел суммы элементарных работ и выражается в виде криволинейного интеграла, взятого вдоль дуги траектории от точки до точки М:

Если произведение а выражается известной функцией дуговой координаты s точки приложения силы, то переменной интегрирования является эта величина s и формула для вычисления работы принимает вид

(168)

где - значения дуговой координаты, соответствующие положениям и М точки приложения силы, - проекция силы на касательную к траектории этой точки.

Если постоянная по модулю сила образует с прямой, по которой движется ее точка приложения, постоянный угол , то

В частном случае, когда точка М движется по прямой под действием постоянной силы F, направленной по той же прямой в сторону движения или против движения, то соответственно имеем:

где - путь пройденный точкой.

Если при вращательном движении твердого тела вокруг неподвижной оси момент приложенной к нему силы является функцией угла поворота тела, т. е.

Аналогично определяется работа пары сил:

Работа силы, имеющей потенциальную функцию, на конечном перемещении выражается разностью значений этой функции в конечной и начальной точках пути:

т. е. в этом случае работа силы не зависит от кривой, по которой перемещается точка М, а зависит лишь от начального и конечного ее положений. При изучении движения материальной точки в силовом потенциальном поле весьма большое значение имеет понятие потенциальной энергии. Потенциальная энергия материальной точки представляет собой особый вид энергии, которым обладает точка, находящаяся в силовом потенциальном поле. Потенциальная энергия П равна работе, которую совершила бы сила поля при перемещении точки ее приложения из данного положения М(х, у, z) в положение , принятое за нулевое, т. е.

Работа силы на конечном пути через потенциальную энергию выражается так:

Если на точку действует несколько сил, то работа равнодействующей этих сил на каком-либо пути равна сумме работ составляющих сил на том же пути.

В технической системе единиц работа измеряется в килограмм-метрах . В Международной системе единиц единицей работы является 1 джоуль .

Мощность N характеризует быстроту, с которой совершается работа, и в общем случае определяется как производная от работы по времени:

т. е. мощность равна скалярному произведению вектора силы на вектор скорости.

Если работа А производится равномерно, то мощность определяется так:

где - время, в течение которого произведена работа.

Таким образом, в этом частном случае мощность численно равна работе, производимой в единицу времени.

При вращательном движении твердого тела вокруг неподвижной оси :

где - главный момент приложенных к телу сил относительно оси вращения, - угловая скорость тела.

В технической системе единиц мощность измеряется в или в лошадиных силах, причем

В Международной системе единиц единицей мощности является

При решении задач на вычисление работы и мощности часто используют коэффициент полезного действия. Коэффициентом полезного действия называется отношение полезной работы или мощности к работе или мощности движущих сил:

Так как вследствие вредных сопротивлений , то .

При вычислении работы нужно различать следующие случаи.

1. Прямолинейное движение под действием постоянной по модулю и направлению силы, в задачах такого типа применяются формулы (169) и (170) (задачи 756, 762).

2. Прямолинейное движение под действием силы, проекция которой на направление прямолинейной траектории является функцией расстояния точки от некоторого неподвижного центра на этой прямой (задача № 768), в задачах этого типа применяется формула (167), которая, если направить ось по траектории точки, принимает вид

3. Криволинейное движение под действием постоянной по модулю и направлению силы, в этом случав можно использовать формулу (167).

4. Криволинейное движение под действием силы, которая является функцией координат точки приложения силы.

Здесь определение работы сводится к вычислению криволинейного интеграла по формуле (167). Если в рассматриваемом случае существует силовая функция, то работу определяют по формуле (173) или (176).

5. Вращательное движение твердого тела под действием постоянного момента или момента, являющегося функцией угла поворота тела; в этом случае для вычисления работы применяется формула (171).

Для вычисления мощности в зависимости от характера движения пользуемся формулой (177) при прямолинейном или криволинейном движении точки приложения силы (задачи 760, 764), или формулой (179) - в случае вращательного движения твердого тела (задачи 771, 772, 765). Среднюю мощность можно определять по формуле (178).

Пример 131. Вдоль тяги, при помощи которой тянут вагончик по горизонтальному пути, действует постоянная сила (рис. 172). Тяга образует с горизонтом угол . Определить работу, совершенную силой F на пути .

Решение. Здесь работу определяем по формуле (169):

Пример 132. Тело весом передвигают по горизонтальному полу при помощи горизонтальной силы на расстояние . Определить работу, которую совершит при этом сила трения, если коэффициент трения между поверхностью тела и полом .

Решение. Согласно закону Кулона, сила трения , где N - нормальное давление тела на поверхность пола, причем в данном случае . Так как сила трения направлена в сторону, противоположную движению, то работа этой силы отрицательна:

Пример 133. Найти работу силы тяжести при перемещении материальной точки из положения в положение М (х, у, z), а также вычислить потенциальную энергию точки в положении М (рис. 173).

Решение. Направляя ось z вертикально вверх, имеем:

где - вес тела. Следовательно, по формуле (162)

(182)

т. е. работа силы тяжести равна произведению веса материальной точки на разность ее высот в начальном и конечном положениях, причем эти высоты отсчитываются от произвольно выбранной горизонтальной плоскости.

Потенциальную энергию точки определим на основании формулы (175):

где С - произвольная постоянная интегрирования.

Пример 134. Определить работу силы упругости растянутого стержня, к концу которого подвешен груз М, при перемещении этого груза из положения в положение М, если длина недеформированного стержня равна вычислить также потенциальную энергию точки в положении М (рис. 174).

Решение. Обозначив силу упругости F и направив ось х по вертикали вниз, имеем:

где х - удлинение стержня, с - его жесткость.

Следовательно,

Пример 135. На материальную точку действует сила, проекции которой на координатные оси выражаются так:

Определить работу этой силы при перемещении точки из положения в положение , если сила выражена в н, а координаты - в см.

Решение. Выясним прежде всего, существует ли в данном случае силовая функция: для этого находим частные производные:

Отсюда получаем, что

т. е. условия (164) выполняются, и силовая функция существует. Полный дифференциал этой функции равен элементарной работе, т. е. . Элементарную работу находим по формуле или, подставляя значения :

Это выражение действительно является полным дифференциалом

Значения функции в точках и М равны:

Следовательно, искомая работа равна

Пример 136. Определить работу центральной силы, модуль которой является функцией расстояния материальной точки от центра этой силы, т. е. (рис. 175).

Решение. В данном случае единичный вектор силы равен

Причем знак выбирается в зависимости от того,отталкивается от центра силы или притягивается к нему точка М.

Таким образом, вектор силы F выразится так:

Отсюда, пользуясь формулой (161), имеем:

Следовательно,

т. е. элементарная работа является полным дифференциалом и, значит, существует силовая функция, причем

Итак, в данном случае имеем общую формулу, по которой сразу можем определить силовую функцию в зависимости от радиуса-вектора точки приложения силы, а затем вычислить работу силы при перемещении этой точки из положения в положение

Пример 137. Один конец пружины закреплен шарнирно в точке О, а к другому концу ее прикреплен шарик Длина нерастянутой пружины - , жесткость . Шарик перемещают из положения в положение , причем пружина растянута и не изгибается. Определить работу силы упругости пружины, если

Решение. Модуль силы упругости пружины в данном случае выражается так.