Параболоид вращения построение. Свойства параболоида вращения. Расположение свободной поверхности в сосуде

Существует два вида параболоидов: эллиптические и гиперболические.

Эллиптическим параболоидом называется поверхность, которая в некоторой системе декартовых прямоугольных координат определяется уравнением

Эллиптический параболоид имеет вид бесконечной выпуклой чаши. Он обладает двумя взаимно перпендикулярными плоскостями симметрии. Точка, с которой совмещено начало координат, называется вершиной эллиптического параболоида; числа р и q называются его параметрами.

Гиперболическим параболоидом называется поверхность, определяемая уравнением

Гиперболический параболоид имеет форму седла. Он обладает двумя взаимно перпендикулярными плоскостями симметрии. Точка, с которой совмещено начало координат, называется вершиной гиперболического параболоида; числа р и q называются его параметрами.

Упражнение 8.4. Рассмотрим построение гиперболического параболоида вида

Пусть необходимо построить часть параболоида, лежащую в диапазонах: x Î[–3; 3], у Î[–2; 2] с шагом D=0,5 для обеих переменных.

Выполнение . Вначале необходимо разрешить уравнение относительно переменной z. В примере

Введем значения переменной х в столбец А . Для этого в ячейку А1 вводим символ х. В ячейку А2 вводится первое значение аргумента - левая граница диапазона (–3). В ячейку A3 - второе значение аргумента - левая граница диапазона плюс шаг построения (–2,5). Затем, выделив блок ячеек А2:АЗ , автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А14) .

Значения переменной у вводим в строку 1 . Для этого в ячейку В1 вводится первое значение переменной - левая граница диапазона (–2). В ячейку С1 - второе значение переменной - левая граница диапазона плюс шаг построения (–1,5). Затем, выделив блок ячеек В1:С1 ,автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки J1 ).

Далее вводим значения переменной z. Для этого табличный курсор необходимо поместить в ячейку В2 и ввести формулу - =$А2^2/18 -В$1^2/8, после чего нажать клавишу Enter . В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2 . Для этого автозаполнением (протягиванием вправо) копируем эту формулу вначале в диапазон B2:J2 , после чего (протягиванием вниз) - в диапазон В2:J14 .

В результате в диапазоне В2:J14 появится таблица точек гиперболического параболоида.

Для построения диаграммы на панели инструментов Стандартная необходимо нажать кнопку Мастер диаграмм . В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы указываем тип диаграммы - Поверхность , и вид - Проволочная (прозрачная) поверхность (правую верхнюю диаграмму в правом окне). После чего нажимаем кнопку Далее в диалоговом окне.


В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы необходимо выбрать вкладку Диапазон данных и в поле Диапазон мышью указать интервал данных В2:J14 .

Далее необходимо указать в строках или столбцах расположены ряды данных. Это определит ориентацию осей х и у. В примере переключатель Ряды в с помощью указателя мыши установим в положение столбцах.

Выбираем вкладку Ряд и в поле Подписи оси X указываем диапазон подписей. Для этого следует активизировать данное поле, щелкнув в нем указателем мыши, и ввести диапазон подписей оси х - А2:А14 .

Вводим значения подписей оси у. Для этого в рабочем поле Ряд выбираем первую запись Ряд 1 и, активизировав рабочее поле Имя указателем мыши, вводим первое значение переменной у: –2. Затем в поле Ряд выбираем вторую запись Ряд 2 и в рабочее поле Имя вводим второе значение переменной у: –1,5. Повторяем таким образом до последней записи - Ряд 9.

После появления требуемых записей следует нажать кнопку Далее .

В третьем окне требуется ввести заголовок диаграммы и названия осей. Для этого нужно выбрать вкладку Заголовки , щелкнув на ней указателем мыши. После чего в рабочее поле Название диаграммы ввести с клавиатуры название: Гиперболический параболоид. Затем аналогичным образом ввести в рабочие поля Ось X (категорий) ,Ось Y (рядов данных) иОсь Z (значений) соответствующие названия: х, у и z.

На вокруг своей оси, можно получить обыкновенный эллиптический . Он представляет собой полое изометрическое тело, сечениями которого являются эллипсы и параболы. Эллиптический параболоид задается вида:
x^2/a^2+y^2/b^2=2z
Все главные сечения параболоида являются параболами. При сечении плоскости XOZ и YOZ получаются только параболы. Если провести перпендикулярное сечение относительно плоскости Xoy, можно получить эллипс. Причем, сечения, представляющие собой параболы, задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=2z
Сечения эллипса задаются другими уравнениями:
x^2 /a^2+y^2/b^2=2h
Эллиптический параболоид при a=b превращается в параболоид вращения. Построение параболоида имеет ряд некоторых особенностей которые нужно учитывать. Операцию начните с подготовки основы - чертежа графика функции.

Для того чтобы начать строить параболоид, нужно вначале построить параболу. Начертите параболу в плоскости Oxz, как показано на рисунке. Задайте будущему параболоиду определенную высоту. Для этого проведите прямую таким образом, чтобы она касалась верхних точек параболы и была параллельно оси Ox. Затем начертите параболу в плоскости Yoz и проведите прямую. Вы получите две параболоидные плоскости, перпендикулярные друг другу. После этого в плоскости Xoy постройте параллелограмм, который поможет начертить эллипс. В этот параллелограмм впишите эллипс таким образом, чтобы он касался всех его сторон. После этих преобразований сотрите параллелограмм, и останется объемное изображение параболоида.

Существует также гиперболический параболоид, который имеет более вогнутую форму, чем эллиптический. Его сечения также имеют выд параболы, а в некоторых случаях - гиперболы. Главные сечения по Oxz и Oyz, как и у эллиптического параболоида, представляют собой параболы. Они задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=-2z
Если провести сечение относительно оси Oxy, можно получить гиперболу. При построении гиперболического параболоида руководствуйтесь следующим уравнением:
x^2/a^2-y^2/b^2=2z - уравнение гиперболического параболоида

Первоначально постройте неподвижную параболу в плоскости Oxz. В плоскости Oyz начертите подвижную параболу. После этого задайте высоту параболоида h. Для этого отметьте на неподвижной параболе две точки, которые будут вершинами еще двух подвижных парабол. Затем изобразите еще одну систему координат O"x"y", чтобы нанести гиперболы. Центр этой системы координат должен совпадать с высотой параболоида. После всех построений изобразите те две подвижные параболы, о которых упоминалось выше, так чтобы они касались крайних точек гипербол. В результате получится гиперболический параболоид.

Эллипсо́ид - поверхность в трёхмерном пространстве, полученная деформацией сферы вдоль трёх взаимно перпендикулярных осей. Каноническое уравнение эллипсоида в декартовых координатах, совпадающих с осями деформации эллипсоида: .

Величины a, b, c называют полуосями эллипсоида. Также эллипсоидом называют тело, ограниченное поверхностью эллипсоида. Эллипсоид представляет собой одну из возможных форм поверхностей второго порядка.

В случае, когда пара полуосей имеет одинаковую длину, эллипсоид может быть получен вращением эллипса вокруг одной из его осей. Такой эллипсоид называют эллипсоидом вращения или сфероидом.

Эллипсоид более точно, чем сфера, отражает идеализированную поверхность Земли.

Объём эллипсоида:.

Площадь поверхности эллипсоида вращения:

Гиперболоид - это вид поверхности второго порядка в трёхмерном пространстве, задаваемый в декартовых координатах уравнением - (однополостный гиперболоид), где a и b - действительные полуоси, а c - мнимая полуось; или - (двуполостный гиперболоид), где a и b - мнимые полуоси, а c - действительная полуось.

Если a = b, то такая поверхность называется гиперболоидом вращения. Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси, двухполостный - вокруг действительной. Двухполостный гиперболоид вращения также является геометрическим местом точек P, модуль разности расстояний от которых до двух заданных точек A и B постоянен: | AP − BP | = const. В этом случае A и B называются фокусами гиперболоида.

Однополостный гиперболоид является дважды линейчатой поверхностью; если он является гиперболоидом вращения, то он может быть получен вращением прямой вокруг другой прямой, скрещивающейся с ней.

Параболо́ид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

· если a и b одного знака, то параболоид называется эллиптическим.

· если a и b разного знака, то параболоид называется гиперболическим.

· если один из коэффициентов равен нулю, то параболоид называется параболическим цилиндром.

ü - эллиптический параболоид, где a и b одного знака. Поверхность описывается семейством параллельных парабол с ветвями, направленными вверх, вершины которых описывают параболу, с ветвями, также направленными вверх. Если a = b то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.



ü - гиперболический параболоид.

Высота параболоида может быть определена по формуле

Объем параболоида, касающегося дна равен половине объема цилиндра с радиусом основания R и высотой Н, такой же объем занимает пространство W’ под параболоидом (рис.4.5а)

Рис.4.5. Соотношение объемов в параболоиде, касающемся дна.

Wп- объем параболоида,W’ – объем под параболоидом, Hп – высота параболоида

Рис.4.6. Соотношение объемов в параболоиде, касающемся краев цилиндра Hп – высота параболоида., R – радиус сосуда, Wж–объем под высотой жидкости в сосуде до начала вращения, z 0 – положение вершины параболоида, Н - высота жидкости в сосуде до начала вращения.

На рис.4.6а уровень жидкости в цилиндре до начала вращения Н. Объем жидкости Wж до и после вращения сохраняется и равен сумме объема Wц цилиндра с высотой z 0 плюс объем жидкости под параболоидом, который равен объему параболоидаWп с высотой Нп

Если параболоид касается верхнего края цилиндра, высота жидкости в цилиндре до начала вращения Н делит высоту параболоида Нп на две равные части, нижняя точка (вершина) параболоида расположена по отношению к основанию(рис.4.6в)

Кроме того, высота Н делит параболоид на две части (рис.4.6в), объемы которых равны W 2 =W 1 . Из равенства объемов параболического кольца W 2 и параболической чашки W 1 , рис.4.6в

При пересечении поверхностью параболоида днища сосуда (рис.4.7) W 1 =W 2 =0,5W кольца

Рис.4.7 Объемы и высоты при пересечении поверхностью параболоида днища цилиндра

Высоты на рис.4.6

объемы на рис.4.6 .

Расположение свободной поверхности в сосуде

Рис.4.8. Три случая относительного покоя при вращении

1. Если сосуд открыт, Po=Ратм (рис.4.8а). Вершина параболоида при вращении опускается ниже начального уровня-Н, а края поднимаются над начальным уровнем, положение вершины

2. Если сосуд заполнен полностью, прикрыт крышкой, не имеет свободной поверхности, находится под избыточным давлением Ро>Ратм, до вращения поверхность (П.П.), на которой Ро=Ратм будет находиться над уровнем крышки на высоте h 0и =М/ρg , H 1 =Н+ М/ρg.

3. Если сосуд заполнен полностью, находится под вакуумом Ро<Ратм, до вращения поверхность П.П., на которой Ро=Ратм будет находиться под уровнем крышки на высоте h 0и =-V/ρg, Н 2 =Н-V/ρg ,

4.7. Вращение с большой угловой скоростью (рис.4.9)

При вращении сосуда с жидкостью с большой угловой скоростью силой тяжести можно пренебречь по сравнению с центробежными силами. Закон изменения давления в жидкости можно получить из формулы




(4.22),

Поверхности уровня образуют цилиндры с общей осью, вокруг которой вращается сосуд. Если сосуд перед началом вращения не полностью заполнен, давление Р 0 будет действовать по радиусу r = r 0 , вместо выражения (4.22) будем иметь

в котором принимаем g(z 0 - z) = 0,

Рис. 4.9 Расположение поверхностей вращения при отсутствии силы тяжести.

Радиус внутренней поверхности при известных H и h

Эллиптический параболоид

Эллиптический параболоид при a=b=1

Эллипти́ческий параболо́ид - поверхность, описываемая функцией вида

,

где a и b одного знака. Поверхность описывается семейством параллельных парабол с ветвями, направленными вверх, вершины которых описывают параболу, с ветвями, также направленными вверх.

Если a = b то эллиптический параболоид представляет собой поверхность вращения , образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

Гиперболический параболоид

Гиперболический параболоид при a=b=1

Гиперболи́ческий параболо́ид (называемый в строительстве «гипар») - седлообразная поверхность, описываемая в прямоугольной системе координат уравнением вида

.

Из второго представления видно, что гиперболический параболоид является линейчатой поверхностью .

Поверхность может быть образована движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается со второй своей вершиной.

Параболоиды в мире

В технике

В искусстве

В литературе

Устройство, описанное в Гиперболоид инженера Гарина должно было быть параболоидом .


Wikimedia Foundation . 2010 .

  • Элон Менахем
  • Элтанг

Смотреть что такое "Эллиптический параболоид" в других словарях:

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД Большой Энциклопедический словарь

    эллиптический параболоид - один из двух типов параболоидов. * * * ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД, один из двух типов параболоидов (см. ПАРАБОЛОИДЫ) … Энциклопедический словарь

    Эллиптический параболоид - один из двух видов параболоидов (См. Параболоиды) … Большая советская энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - незамкнутая поверхность второго порядка. Канонич. уравнение Э. п. имеет вид Э. п. расположен по одну сторону от плоскости Оху (см. рис.). Сечения Э. п. плоскостями, параллельными плоскости Оху, являются эллипсами с равным эксцентриситетом (если р … Математическая энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - один из двух типов параболоидов … Естествознание. Энциклопедический словарь

    ПАРАБОЛОИД - (греч., от parabole парабола, и eidos сходство). Тело, образуемое вращающеюся параболой. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПАРАБОЛОИД геометрическое тело, образовавшееся от вращения параболы, так… … Словарь иностранных слов русского языка

    ПАРАБОЛОИД - ПАРАБОЛОИД, параболоида, муж. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид. Толковый словарь Ушакова … Толковый словарь Ушакова

    ПАРАБОЛОИД - ПАРАБОЛОИД, поверхность, получаемая при движении параболы, вершина которой скользит по другой, неподвижной параболе (с осью симметрии, параллельной оси движущейся параболы), тогда как ее плоскость, смещаясь параллельно самой себе, остается… … Современная энциклопедия

    Параболоид - ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… … Википедия

    ПАРАБОЛОИД - незамкнутая нецентральная поверхность второго порядка. Канонич. уравнения П.: эллиптический параболоид (при р = q называется П. вращения) и гиперболический параболоид. А. Б. Иванов … Математическая энциклопедия