Формула для определения силы упругости имеет вид. Купить диплом о высшем образовании недорого. Расчет жесткости системы

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Для начала определим основные термины , которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация - это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д.), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F - сила упругости, x - расстояние, на которое изменилась длина тела в результате растяжения, k - необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ - на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ - Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости . В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k - общая жесткость системы, k1, k2, …, ki - отдельные жесткости каждого элемента, i - общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно , величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука . Для проведения эксперимента понадобятся:

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, - это сила тяжести тела. Формула для ее расчета - F = mg, где m - это масса используемого в эксперименте груза (переводится в кг), а g - величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14-10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Формула жесткости пружины - едва ли не самый важный момент в теме об этих упругих элементах. Ведь именно жесткость играет очень важную роль в том, благодаря чему эти комплектующие используются так широко.

Сегодня без пружин не обходится практически ни одна отрасль промышленности, они используются в приборо- и станкостроении, сельском хозяйстве, производстве горно-шахтного и железнодорожного оборудования, энергетике, других отраслях. Они верой и правдой служат в самых ответственных и критических местах различных агрегатов, где требуются присущие им характеристики, в первую очередь жесткость пружины, формула которой в общем виде очень проста и знакома детям еще со школы.

Особенности работы

Любая пружина представляет собой упругое изделие, которое в процессе эксплуатации подвергается статическим, динамическим и циклическим нагрузкам. Основная особенность этой детали - она деформируется под приложенным извне усилием, а когда воздействие прекращается - восстанавливает свою первоначальную форму и геометрические размеры. В период деформации происходит накопление энергии, при восстановлении - ее передача.

Именно это свойство возвращаться к исходному виду и принесло широкое распространение этим деталям: они отличные амортизаторы, элементы клапанов, предупреждающие превышение давления, комплектующие для измерительных приборов. В этих и других ситуациях, благодаря умению упруго деформироваться, они выполняют важную работу, поэтому от них требуется высокое качество и надежность.

Виды пружин

Видов этих деталей существует много, самыми распространенными являются пружины растяжения и сжатия.

  • Первые из них без нагрузки имеют нулевой шаг, то есть виток соприкасается с витком. В процессе деформации они растягиваются, их длина увеличивается. Прекращение нагрузки сопровождается возвращением в первоначальную форму - опять витком к витку.
  • Вторые - наоборот, изначально навиваются с определенным шагом между витками, под нагрузкой сжимаются. Соприкосновение витков является естественным ограничителем для продолжения воздействия.

Изначально именно для пружины растяжения было найдено соотношение массы подвешенного на ней груза и изменения ее геометрического размера, которое и стало основой для формулы жесткости пружины через массу и длину.

Какие еще бывают виды пружин

Зависимость деформации от прилагаемой внешней силы справедлива и для других видов упругих деталей: кручения, изгиба, тарельчатых, других. Не важно, в какой плоскости к ним прилагаются усилия: в той, где расположена осевая линия, или перпендикулярной к ней, производимая деформация пропорциональна усилию, под воздействием которого она произошла.

Основные характеристики

Независимо от вида пружин, особенности их работы, связанные с постоянно деформацией, требуют наличия таких параметров:

  • Способности сохранять постоянное значение упругости в течение заданного срока.
  • Пластичности.
  • Релаксационной стойкости, благодаря которой деформации не становятся необратимыми.
  • Прочности, то есть способности выдерживать различные виды нагрузок: статические, динамические, ударные.

Каждая из этих характеристик важна, однако при выборе упругой комплектующей для конкретной работы в первую очередь интересуются ее жесткостью как важным показателем того, подойдет ли она для этого дела и насколько долго будет работать.

Что такое жесткость

Жесткость - это характеристика детали, которая показывает, просто или легко будет ее сжать, насколько большую силу нужно для этого приложить. Оказывается, что возникающая под нагрузкой деформация тем больше, чем больше прилагаемая сила (ведь возникающая в противовес ей сила упругости по модулю имеет то же значение). Потому определить степень деформации можно, зная силу упругости (прилагаемое усилие) и наоборот, зная необходимую деформацию, можно вычислить, какое требуется усилие.

Физические основы понятия жесткость/упругость

Сила, воздействуя на пружину, изменяет ее форму. Например, пружины растяжения/сжатия под влиянием внешнего воздействия укорачиваются или удлиняются. Согласно закону Гука (так называется позволяющая рассчитать коэффициент жесткости пружины формула), сила и деформация между собой пропорциональны в пределах упругости конкретного вещества. В противодействие приложенной извне нагрузке возникает сила, такая же по величине и противоположная по знаку, которая направлена на восстановление исходных размеров детали и ее форму.

Природа этой силы упругости - электромагнитная, возникает она как следствие особого взаимодействии между структурными элементами (молекулами и атомами) материала, из которого изготовлена данная деталь. Таким образом, чем жесткость больше, то есть чем труднее упругую деталь растянуть/сжать, тем больше коэффициент упругости. Этот показатель используется, в частности, при выборе определенного материала для изготовления пружин для использования в различных ситуациях.

Как появился первый вариант формулы

Формула для расчета жесткости пружины, которая получила название закона Гука, была установлена экспериментально. В процессе опытов с подвешенными на упругом элементе грузами разной массы замерялась величина его растяжения. Так и выяснилось, что одна и та же испытуемая деталь под разными нагрузками претерпевает различные деформации. Причем подвешивание определенного количества гирек, одинаковых по массе, показало, что каждая добавленная/снятая гирька увеличивает/уменьшает длину упругого элемента на одинаковую величину.

В итоге этих экспериментов появилась такая формула: kx=mg, где k - некий постоянный для данной пружины коэффициент, x - изменение длины пружины, m - ее масса, а g - ускорение свободного падения (примерное значение - 9,8 м/с²).

Так было открыто свойство жесткости, которое, как и формула для определения коэффициента упругости, находит самое широкое применение в любой отрасли промышленности.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = -kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности - величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения - Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости - коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

Например:

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Особенности расчета жесткости соединений пружин

Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.

При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.

При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.

Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила.

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.

Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как Сила Кулона, сила Ампера, сила Лоренца.

Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Локальная система отсчёта - это система отсчёта, которая может считаться инерциальной, но лишь в бесконечно малой окрестности какой-то одной точки пространства-времени, или лишь вдоль какой-то одной незамкнутой мировой линии.

Преобразования Галилея. Принцип относительности в классической механике.

Преобразования Галилея. Рассмотрим две системы отсчета движущиеся друг относительно друга и с постоянной скоростью v 0 .Одну из этих систем обозначим буквой K. Будем считать неподвижной. Тогда вторая система Kбудет двигаться прямолинейно и равномерно. Выберем координатные оси x,y,z системы K и x",y",z" системы K" так что оси x и x" совпадали, а оси y и y" , z и z", были параллельны друг другу. Найдем связь между координатами x,y,z некоторой точки P в системе K и координатами x",y",z" той же точки в системе K". Если начать отсчёт времени с того момента, когда начало координат системы, совпадали, то x=x"+v 0 , кроме того, очевидно, что y=y", z=z". Добавим к этим соотношениям принятое в классической механике предположение, что время в обеих системах течёт одинаковым образом, то есть t=t". Получим совокупность четырёх уравнений: x=x"+v 0 t;y=y";z=z";t=t", названных преобразованиями Галилея.Механический принцип относительности. Положение о том, что все механические явления в различных инерциальных системах отсчёта протекают одинаковым образом, вследствие чего никакими механическими опытами невозможно установить, покоится ли система или движется равномерно и прямолинейно носит названия принцип относительности Галилея.Нарушение классического закона сложения скоростей. Исходя из общего принципа относительности (никаким физическим опытом нельзя отличить одну инерциальною систему от другой), сформулированным Альбертом Эйнштейном, Лоуренс изменил преобразования Галилиея и получил: x"=(x-vt)/(1-v 2 /c 2); y"=y; z"=z; t"=(t-vx/c 2)/(1-v 2 /c 2). Эти преобразования называются преобразованиями Лоуренса.

Упругие силы и деформации

Определение 1

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в начальное состояние, называется силой упругости.

Все тела материального мира подвержены деформациям различного рода. Деформации возникают в силу перемещения и, как следствие, изменения положения частиц тела друг относительно друга. По степени обратимости можно выделить:

  • упругие, или обратимые деформации;
  • пластические (остаточные), или необратимые деформации.

В случаях, когда тело по завершении воздействия сил, приводящих к деформации, восстанавливает свои первоначальные параметры, деформация называется упругой.

Стоит отметить, что при упругой деформации воздействие внешней силы на тело не превышает предела упругости. Таким образом, силы упругости компенсируют внешнее воздействие на тело.

В ином случае деформация является пластической или остаточной. Тело, подвергшееся воздействия такого характера не восстанавливает начальные размеры и форму.

Упругие силы, возникающие в телах, не способны полностью уравновесить силы, вызывающие пластическую деформацию.

В целом, различают ряд простых деформаций:

  • растяжение (сжатие);
  • изгиб;
  • сдвиг;
  • кручение.

Как правило, деформации нередко представляют собой совокупность нескольких представленных типов воздействия, что позволяет свести все деформации к двум наиболее распространенным типам, а именно к растяжению и сдвигу.

Характеристики сил упругости

Модуль силы упругости, действующий на единицу площади, есть физическая величина, названная напряжением (механическим).

Механическое напряжение, в зависимости от направления приложения силы, может быть:

  • нормальным (направленным по нормали к поверхности, $σ$);
  • тангенциальным (направленным по касательной к поверхности, $τ$).

Замечание 1

Степень деформации характеризуется количественной мерой – относительной деформацией.

Так, например, относительное изменение длины стержня можно описать формулой:

$ε=\frac{\Delta l}{l}$,

а относительное продольное растяжение (сжатие):

$ε’=\frac{\Delta d}{d}$, где:

$l$ – длина, а $d$ – диаметр стержня.

Деформации $ε$ и $ε’$ протекают одновременно и имеют противоположные знаки, в силу того, что при растяжении изменение длины тела положительно, а изменение диаметра отрицательно; в случаях с сжатием тела знаки меняются на противоположные. Их взаимосвязь описывается формулой:

Здесь $μ$ – коэффициент Пуассона, зависящий от свойств материала.

Закон Гука

По своей природе, упругие силы относятся к электромагнитным, не фундаментальным силам, и, следовательно, они описываются приближенными формулами.

Так, эмпирически установлено, что для малых деформаций относительное удлинение и напряжение пропорциональны, или

Здесь $E$ – коэффициент пропорциональности, называемый также модулем Юнга. Он принимает такое значение, при котором относительное удлинение равно единице. Модуль Юнга измеряется в ньютонах на квадратный метр (паскалях).

Согласно закону Гука удлинение стержня при упругой деформации пропорционально действующей на стержень силе, или:

$F=\frac{ES}{l}\Delta l=k\Delta l$

Значение $k$ получило название коэффициента упругости.

Деформация твердых тел описывается законом Гука лишь до достижения предела пропорциональности. С повышением напряжения деформация перестает быть линейной, но, вплоть до достижения предела упругости, остаточные деформации не возникают. Таким образом, Закон Гука справедлив исключительно для упругих деформаций.

Пластические деформации

При дальнейшем возрастании воздействующих сил, возникают остаточные деформации.

Определение 2

Значение механического напряжения, при котором происходит возникновение заметной остаточной деформации, названо пределом текучести ($σт$).

Далее степень деформации возрастает без увеличения напряжения вплоть до достижения предела прочности ($σр$), когда происходит разрушение тела. Если графически изобразить возвращение тела в первоначальное состояние, то область между точками $σт$ и $σр$ получит название области текучести (области пластической деформации). В зависимости от размера этой области все материалы делятся на вязкие, у которых область текучести значительна, и хрупкие, у которых область текучести минимальна.

Отметим, что прежде мы рассматривали воздействие сил, приложенных по направлению нормали к поверхности. Если же внешние силы были приложены по касательной, возникает деформация сдвига. При этом в каждой точке тела возникает тангенциальное напряжение, определяемое модулем силы на единицу площади, или:

$τ=\frac{F}{S}$.

Относительный сдвиг в свою очередь может быть вычислен по формуле:

$γ=\frac{1}{G}τ$, где $G$ – модуль сдвига.

Модуль сдвига принимает такое значение тангенциального напряжения, при котором величина сдвига равна единице; измеряется $G$ так же, как и напряжение, в паскалях.

Что такое сила упругости?

Силой упругости называют такую силу, которая возникает через деформации тела и направленная в сторону, противоположную перемещениям частиц тела при деформации.

Для более наглядного примера, чтобы лучше понять, что такое сила упругости, возьмем яркий пример из повседневной жизни. Представьте, что перед вами обычная бельевая веревка, на которую вы повесили мокрое белье. Если на хорошо натянутую горизонтально веревку мы повесим мокрое белье, то увидим, как под весом вещей эта веревка начинает прогибаться и растягиваться.

Вначале мы с вами вешаем на веревку одну мокрую вещь и видим, как она вместе с веревкой прогибается к земле, а потом останавливается. Затем мы вешаем следующую вещь и видим, что повторяется такое же действие и веревка прогибается еще больше.

В этом случае напрашивается вывод, что при увеличении силы, которая воздействует на веревку, будет происходить деформация, пока силы противодействия этой деформации не будут равны весу всех вещей. И только после этого движение вниз прекратится.

Следует отметить, что работа силы упругости заключается в сохранении целостности предметов, на которые мы воздействуем другими предметами. Если силы упругости не способны с этим справиться, то тогда тело деформируется безвозвратно, то есть веревка может просто порваться.

И здесь напрашивается риторический вопрос. В какой момент возникла сила упругости? А возникает она тогда, когда мы только начинаем вешать белье, то есть в момент первоначального воздействия на тело. И когда белье высохло, и мы его снимаем, то сила упругости исчезает.

Разновидности деформаций

Теперь нам уже известно, что сила упругости появляется в результате деформации.

Давайте вспомним, что такое деформация? Деформацией называют изменение объема или формы тела под действием внешних сил.

А причиной возникновения деформации является то, что разчные части тела движутся не одинаково, а по-разному. При одинаковом движении тело постоянно имело бы свою первоначальную форму и размеры, то есть оно бы не деформировалось.

Давайте рассмотрим вопрос о там, какие разновидности деформации мы можем наблюдать.

Виды деформации можно разделить по характеру изменения их формы.

К тому же, деформация делится на два типа. В этом случае деформация может быть упругой или пластической деформацию.

Если, к примеру, взять и растянуть пружину, а потом ее отпустить, то после такой деформации пружина восстановит свои прежние размеры и форму. Это и будет примером упругой деформации.

То есть, если мы видим, что после прекращения действия на тело деформация полностью исчезает, то такая деформация является упругой.

А теперь наведем другой пример. Давайте возьмем кусочек пластилина и сожмем его или слепим какую-нибудь фигурку. Мы с вами видим, что даже после прекращения действия пластилин не изменил форму, то есть остался деформированным. Такая неупругая деформация и является пластической.

При пластической деформации она сохраняется даже тогда, когда на нее перестают действовать внешние силы.

Такой вид деформации используют помимо лепки из глины или пластилина и при технических процессах ковки и штамповки.

Задание: Опишите, какие виды деформации вы видите на изображении?



Сила упругости и закон Гука

От величины деформации, которой подвергается какое-либо тело, зависит и величина силы упругости. Следовательно, деформация и сила упругости находятся в тесной взаимосвязи. Если подверглась изменениям одна величина, то значит, появились изменения и в другой.

Поэтому, если нам известна деформация тела, то мы можем просчитать силу упругости, которая возникла в этом теле. И наоборот, если мы знаем силу упругости, то можем легко определить степень деформации тела.

Когда, например, взять пружину и к ней подвесить одинаковой массы гирьки, то можно увидеть, что с каждым последующим подвешенным грузом, все сильнее растягивается пружина. И замете, что чем больше эта пружина деформируется, тем больше становится сила упругости.

А если учесть то, что гирьки имеют одинаковую массу, то подвешивая их поочередно, можно заметить, что с каждым новым подвешиванием увеличивается длина пружины ровно на такую же величину.

Чтобы найти соотношение между силой упругости и деформацией упругого тела, нужно воспользоваться формулой, которая была открыта известным английским ученым Робертом Гуком.

Ученый установил простую связь между увеличением длины тела и силой упругости, которая была вызвана этим удлинением.



В этой формуле дельта обозначает изменения, которые происходят с величиной.

Закон Гука утверждает, что при малых деформациях сила упругости прямо пропорциональна удлинению тела.

То есть, чем больше появляется деформация, тем большую силу упругости мы можем наблюдать.

Но необходимо также отметить, что закон Гука справедлив лишь там, где присутствует упругая деформация.



Сила упругости в природе

Сила упругости довольно значимую роль играет и в природе. Ведь только благодаря этой силе, ткани растений, животных и человека способны выдерживать огромные нагрузки и при этом не сломаться и не разрушиться.

Вы, наверное, не раз наблюдали такую картину, как под порывом ветра сгибаются растения или под тяжестью снега прогибаются ветки деревьев, а в результате действия силы упругости возвращаются в свою предыдущую форму.

Также, каждый из вас мог наблюдать, как под натиском сильного ураганного ветра, ломались ветки деревьев. А такой итог мы можем наблюдать тогда, когда действие силы ветра превышает силы упругости самого дерева.

Все находящиеся на Земле тела способны выдерживать силу атмосферного давления только благодаря силе упругости. Обитатели глубоких водоемов способны выдерживать еще большую нагрузку. Поэтому можно прийти к закономерному выводу, что только благодаря силе упругости, все живые организмы в природе имеют возможность не только переносить механические нагрузки, но и сохранить свою форму в целостности.

Сидящие на ветках деревьев стайки птиц, весящие на кустах грозди винограда, огромные шапки снега на еловых лапах – это наглядная демонстрация сил упругости в природе.

Знаменитый закон Гука применяется практически во всех сферах нашей жизни. Без него никак нельзя обойтись ни в повседневном быту, ни в архитектуре. Этот закон используют при строительстве домов и автомобилей. Эго даже применяют в торговле.

Но, наверное, не каждый из вас мог себе представить, что сила упругости может быть применена и на арене цирка. Еще в позапрошлом веке в знаменитом цирке Франкони был продемонстрирован номер под названием «Человек- бомба».

Для этого, на арене цирка установили огромных размеров пушку, из которой произвели выстрел человеком. Зрители были шокированы этим номером, так как не подозревали, что выстрел был произведен не пороховыми газами, а с помощью пружины. В стволе пушки поместили мощную упругую пружину и после команды «пли!» из дула пружина выбрасывала на арену артистку. Ну, а грохот, дым и огонь только усиливали эффект этого номера и наводили ужас на зрителей.

Предмети > Физика > Физика 7 класс