Значения автокорреляционной функции. Коэффициент автокорреляции и его оценка. Описание сложных сигналов с дискретной структурой


Курсовая работа

Автокорреляционная функция. Примеры расчётов

Введение

Периодическая зависимость играть роль общего типа компонентов временного ряда. Не сложно заметить, что каждое наблюдение очень похоже на пограничное; к тому же имеется повторяющаяся периодическая составляющая, что означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад.

В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) - м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.

Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции .

При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.

Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

1. Теоретические сведения

1.1 Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n - постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (n) = E[(x(t) - m) (x (t + n) - m)] -

и автокорреляции

r (n) = E[(x(t) - m) (x (t + n) - m)] / D,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t1), x(t2)).

r (n) = g (n) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

автокорреляционный функция excel расчет

Главным из различных коэффициентов автокорреляции является первый - r1, измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r1 (n -1)0.5,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

1.2 Автокорреляционные функции

Последовательность коэффициентов корреляции rn, где n = 1, 2,…, n, как функция интервала n между наблюдениями называется автокорреляционной функцией.

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rn для «белого шума», при n >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом n. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой .

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам :

· в детерминированных или стохастических моделях динамики не учтен существенный фактор фактически, нарушен принцип омнипотентности

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

1.3 Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2) - e(1))2 +… + (e(n) - e (n -1))2]/,

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие - отрицательной .

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Все данные взяты с сайта http://e3.prime-tass.ru/macro/

Пример 1 . ВВП РФ

Приведем данные о ВВП РФ

первая разность

Исследуем ряд

На диаграммах показаны: исходный ряд (сверху) и автокорреляционная функция до лага 9 (снизу). На нижней диаграмме штриховой линией обозначен уровень «белого шума» - граница статистической значимости коэффициентов корреляции. Видно, что имеется сильная корреляция 1 и 2 порядка, соседних членов ряда, но и удаленных на 1 единицу времени друг от друга. Корреляционные коэффициенты значительно превышают уровень «белого шума». По графику автокорреляции видим наличие четкого тренда.

Ниже даны значения автокорреляционной функции и уровня белого шума

Ошибка АКФ

Если нас интересует внутренняя динамика ряда необходимо найти первую разность его членов, т.е. для каждого квартала найти изменение значения по сравнению с предыдущим кварталом. Для первой разности построим автокорреляционную функцию.

Статистика Дарбина-Ватсона (DW) =1,813

Статистика Дарбина-Уотсона показывает, что автокорреляции 1-го порядка нет. По графику можно видеть, что первые разности возрастают, т. к. тренд восходящий. Видна автокорреляция 2 и 4-го порядков, что говорит о полугодовой и годовой сезонности. Значения функции и границы для «белого шума» представлены ниже

Ошибка АКФ

Пример 2 . Импорт

значение

разность

Построим автокорреляционную функцию

Ошибка АКФ

Видим, что есть автокорреляция 1-го и 2-го порядков. График показывает наличие тренда. Положительная автокорреляция объясняется неправильно выбранной спецификацией, т. к. линейный тренд тут непригоден, он скорее экспоненциальный. Поэтому сделаем ряд стационарным, взяв первую разность.

Ошибка АКФ

Видим наличие автокорреляции 4-го порядка, что соответствует корреляции данных, отдаленных на год. Автокорреляцию первого порядка не имеем.

Статистика Дарбина-Ватсона (DW) =2,023

Пример 3 . Экспорт

Приведем данные

значение

разность

Для исходного ряда имеем:

Ошибка АКФ

Очевидно наличие четкого тренда, значимыми являются коэффициенты автокорреляции 1-го и 2-го порядков. Для первой разности

Ошибка АКФ

Автокорреляции уже не видим, остатки распределены как «белый шум».

Заключение

Еще одна полезная технология исследования периодичности состоит в обследовании частной автокорреляционной функции (ЧАКФ), которая представляет собой углубление взгляда обычной автокорреляционной функции.

В частной автокорреляционной функции ликвидируется зависимость между промежуточными наблюдениями. Иными словами, частная автокорреляция на данном лаге похожа на обычную автокорреляцию, исключая то, что при вычислении из нее убирается влияние автокорреляций с меньшими лагами. На лаге 1 (когда нет промежуточных элементов внутри лага), частная автокорреляция равна обычной автокорреляции. Частная автокорреляция дает более «чистую» картину периодических зависимостей.

Как было отмечено ранее, периодическая составляющая для данного лага n может быть удалена взятием разности соответствующего порядка. Это обозначает, что из каждого i-го элемента ряда вычитается (i-n) - й элемент. В пользу таких преобразований имеются доводы. Во-первых, таким образом можно определить скрытые периодические составляющие ряда. Напомним, что автокорреляции на последовательных лагах зависимы. Поэтому удаление некоторых автокорреляций изменит другие автокорреляции, которые, возможно, подавляли их, и сделает некоторые другие сезонные составляющие более заметными. Во-вторых, удаление периодических составляющих делает ряд стационарным, что необходимо для применения некоторых методов анализа.

Литература

1. В.Е. Гмурман «Теория вероятностей и математическая статистика». Москва: Высшая школа, 1979 г.

2. В.Е Гмурман. «Руководство к решению задач по теории вероятностей и математической статистике». Москва: Высшая школа, 1997 г.

3. В.Н. Калинина, В.Ф. Панкин. «Математическая статистика». Москва: Высшая школа, 1994 г.

4. И.П. Мацкевич, Г.П. Свирид, Г.М. Булдык. «Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика)». Высшая школа, 1998 г.

5. Л.К. Тимофеева, Е.И. Суханова, Г.Г. Сафиуллин. «Сборник задач по теории вероятностей и математической статистике».

6. Тимофеева Л.К., Суханова Е.И. «Математика для экономистов». Сборник задач по теории вероятностей и математической статистике. - М.: У «Учебная литература», 1999 г.

Подобные документы

    Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.

    презентация , добавлен 21.09.2013

    Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.

    курсовая работа , добавлен 20.09.2013

    Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа , добавлен 28.03.2014

    Математика и информатика. Решение системы линейных алгебраических уравнений методом Крамера. Работа в текстовом редакторе MS WORD. Рисование с помощью графического редактора. Определение вероятности. Построение графика функции с помощью MS Excel.

    контрольная работа , добавлен 10.01.2009

    Элементарные функции, их анализ. Линейная функция. Квадратичная функция. Степенная функция. Показательная функция (экспонента). Логарифмическая функция. Тригонометрическая функция: синус, косинус, тангенс, котангенс. Обратная функция: аrcsin x, аrctg x.

    реферат , добавлен 17.02.2008

    Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.

    презентация , добавлен 17.09.2013

    Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.

    презентация , добавлен 17.09.2013

    Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).

    презентация , добавлен 18.09.2013

    Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа , добавлен 01.12.2009

    Определение значения заданной функции в указанной точке при помощи интерполяционной схемы Эйткина. Проверка правильности данного решения с помощью кубического сплайна. Практическая реализация данного задания на языке Pascal и при помощи таблиц Excel.

Автокорреляционная функция - зависимость взаимосвязи между функцией (сигналом) и ее сдвинутой копией от величины временного сдвига.

Для детерминированных сигналов автокорреляционная функция (АКФ ) сигнала f (t) {\displaystyle f(t)} определяется интегралом :

Ψ (τ) = ∫ − ∞ ∞ f (t) f ∗ (t − τ) d t {\displaystyle \Psi (\tau)=\int _{-\infty }^{\infty }f(t)f^{*}(t-\tau)\mathrm {d} t} K (τ) = E { X (t) X ∗ (t − τ) } {\displaystyle K(\tau)=\mathbb {E} \{X(t)X^{*}(t-\tau)\}} ,

где E { } {\displaystyle \mathbb {E} \{\ \}} - математическое ожидание , звездочка означает комплексное сопряжение.

Если исходная функция строго периодическая , то на графике автокорреляционной функции тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности исходной функции, а следовательно, и о её частотных характеристиках. Автокорреляционная функция применяется для анализа сложных колебаний , например, электроэнцефалограммы человека.

Энциклопедичный YouTube

    1 / 3

    Автокорреляционная функция

    Что такое Автокорреляция?

    Частная автокорреляционная функция

    Субтитры

    К сожалению, коэффициенты процесса скользящего среднего плохо интерпретируемы. Что означает 2ε(t- 1) + 3ε(t- 2) совершенно непонятно. И для интерпретации используют так называемую автокорреляционную функцию процесса: ρk или Corr(Yt, Yt- k) - эта функция называется автокорреляционной функцией процесса. По смыслу для стационарного процесса с нормально распределенными игриками ρk показывает, насколько в среднем изменится сегодняшний Y, если Y k-периодов назад, то есть Yt- k, вырос на 1. Давайте на примере того же самого МА (2)-процесса, процесса скользящего среднего порядка 2, посчитаем и проинтерпретируем автокорреляционную функцию на этот раз. Значит, нас интересует ρk, то есть это Corr (корреляция) между Yt и Y k-периодов назад. Сначала мы заметим какие-то общие соображения, как считать автокорреляционную функцию для любого процесса. По определению корреляции: Corr(Yt, Yt- k) это есть Cov(Yt, Yt- k), деленная на корень из произведения дисперсий: Var(Yt) * Var(Yt- k). Однако у нас стационарный процесс. Здесь мы пользуемся тем, что процесс стационарный, а именно – у него дисперсии одинаковые. Var(Yt) = Var (Yt -k). Ну, соответственно, раз эти две дисперсии равны, то корень из них просто равен - одной из них, любой - Cov(Yt, Yt- k) в числителе так и остается, а в знаменателе корень из произведения двух одинаковых чисел дает просто первое из этих чисел. И, соответственно, мы договорились, что вот это - это автоковариационная функция - это γk, а это дисперсия или γ0. Соответственно, мы получили, что ρk, на самом деле, автокорреляционная функция. Это просто отмасштабированная автоковариационная. Я напомню предыдущие результаты. В предыдущем упражнении мы выяснили, что γk = 14ς квадрат, если k = 0, это дисперсия; - 3ς квадрат, если k = 1;- 2ς квадрат, если k = 2 и 0 при больших значениях k, а именно больше либо равным 3. Исходя из общей формулы, мы получаем, что ρ0 - это и есть γ0 на γ0, это всегда 1 для любого процесса, поэтому это неинтересный показатель, а вот остальные уже более интересные. ρ1- это есть γ1/γ0, в нашем случае мы получаем- 3/14. ρ2 - это есть γ2/γ0, это есть - 2/14. И, соответственно, ρ3 = ρ4 =... = 0. Соответственно, мы можем проинтерпретировать эти коэффициенты. Что означает ρ1? Он означает, что если нам известно, что Yt-1 (вчерашний Y) вырос на одну единицу, то это приводит к тому, что в среднем Yt падает на 3/14. Это мы можем проинтерпретировать ρ1. Ну и, соответственно, ρ2 мы интерпретируем аналогично. Если известно, что Yt- 2 (то есть позавчерашнее значение Y) оказалось, скажем, больше среднего на 1, то есть по сравнению с каким-то средним значением выросло на одну единицу, то мы можем сделать вывод, что Yt в среднем упадет на 2/14. Это мы интерпретируем вот этот коэффициент. Ну а, соответственно, ρ3, ρ4 и так далее интерпретируется следующим образом, что информация о значении Yt- 3 она уже не несет никакой информации о текущем Yt и, в частности, бесполезна при прогнозировании. А вот предыдущие два значения они нам важны.

Применение в технике

Корреляционные свойства кодовых последовательностей, используемых в широкополосных системах, зависят от типа кодовой последовательности, её длины, частоты следования её символов и от её посимвольной структуры.

Изучение АКФ играет важную роль при выборе кодовых последовательностей с точки зрения наименьшей вероятности установления ложной синхронизации.

Другие применения

Автокорреляционная функция играет важную роль в математическом моделировании и анализе временных рядов, показывая характерные времена для исследуемых процессов (см., например: Турчин П. В. Историческая динамика. М.: УРСС , 2007. ISBN 978-5-382-00104-3). В частности, циклам в поведении динамических систем соответствуют максимумы автокорреляционной функции некоторого характерного параметра.

Скоростное вычисление

Часто приходится вычислять автокорреляционную функцию для временного ряда x i {\displaystyle x_{i}} . Вычисление «в лоб» работает за O (T 2) {\displaystyle O(T^{2})} . Однако есть способ сделать это за .

Суть этого способа состоит в следующем. Можно сделать некое обратное взаимно однозначное преобразование данных, называемое преобразованием Фурье, которое поставит им во взаимно однозначное соответствие набор данных в другом пространстве, называемом пространством частот. У операций над данными в нашем обычном пространстве, таких как сложение, умножение и, главное, автокорреляция, есть взаимно-однозначные соответствия в пространстве частот Фурье. Вместо того, чтобы вычислять автокорреляцию «в лоб» на наших исходных данных, мы произведем соответствующую ей операцию над соответствующими данными в пространстве частот Фурье-спектра, что делается за линейное время O(T) - автокорреляции в пространстве частот соответствует простое умножение. После этого мы по полученным данным восстановим соответствующие им в обычном пространстве. Переход из обычного пространства в пространство частот и обратно делается с помощью быстрого преобразования Фурье за O (T log ⁡ T) {\displaystyle O(T\log T)} , вычисление аналога автокорреляции в пространстве частот - за O(T). Таким образом, мы получили выигрыш по времени при вычислениях. и прямо пропорциональна первым n {\displaystyle n} элементам последовательности

Ψ (τ) ∼ Re ⁡ fft − 1 ⁡ (| fft ⁡ (x →) | 2) {\displaystyle \Psi (\tau)\sim \operatorname {Re} \operatorname {fft} ^{-1}\left(\left|\operatorname {fft} ({\vec {x}})\right|^{2}\right)}

Квадрат комплексного модуля берётся поэлементно: | a → | 2 = { Re 2 ⁡ a i + Im 2 ⁡ a i } {\displaystyle \left|{\vec {a}}\right|^{2}=\left\{\operatorname {Re} ^{2}a_{i}+\operatorname {Im} ^{2}a_{i}\right\}} . Если нет погрешностей вычисления, мнимая часть будет равна нулю. Коэффициент пропорциональности определяется из требования Ψ (0) = 1 {\displaystyle \Psi (0)=1} .

3.2. Найти среднее ряда и среднеквадратическое отклонение s t , нанести их на график:

3.3. Найти коэффициенты автокорреляции для лагов τ = 1;2.

Решение . Расчет выполним по формуле

Для τ = 1 и наших значений формула примет вид:


14
12
10
8
6 s t = 3,69
4
s t = 3,69
2
T
1 2 3 4 5 6 7

Рисунок 4.1 – Нестационарный случайный процесс роста выручки

Все промежуточные расчеты см. в таблице 4.2. Окончательно:

Аналогично для r(2), см. таблицу 4.3:

Таблица 4.2 – Лаг τ = 1

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 3 -3,72 -2,72 10,12 13,84
2 3 4 -2,72 -1,72 4,68 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 5 -0,72 -0,72 0,52 0,52
5 5 7 -0,72 1,28 -0,92 0,52
6 7 14 1,28 8,28 10,60 1,64
7 - - - - - 68,56
26 38 - - 26,23 95,43

3.4. Построить по трем точкам (0,00; 1,00), (1,00; 0,32), (2,00; 0,10) автокорреляционную функцию.

Решение . См. рисунок 4.1.

r

Рисунок 4.1 Автокорреляционная функция для случайного процесса

Примечание: точки 4 и 5 вычислять необязательно.

Таблица 4.3 – Лаг τ = 2

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 4 -3,72 -1,72 6,40 13,84
2 3 5 -2,72 -0,72 1,96 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 7 -0,72 1,28 -0,92 0,52
5 5 14 -0,72 8,28 -5,96 0,52
6 - - - - - 1,64
7 - - - - - 68,56
19 35 - - 2,71 95,43

1. Мнацаканян, А.Г. Методические указания по оформлению учебных текстовых работ (рефератов, контрольных, курсовых, выпускных квалификационных) / А.Г. Мнацаканян, Ю.Я. Настин, Э.С. Круглова. – Калининград, Изд-во КГТУ, 2017. – 22 с.

2. Кремер, Н.Ш. Эконометрика: учебник / Н.Ш. Кремер, Б.А. Путко. – Эконометрика: учебник. – М.: ЮНИТИ-ДАНА, 2012. – 387 с.

3. Настин, Ю,Я. Эконометрика: учеб пос. / Ю. Я. Настин. – Калининград: НОУ ВПО БИЭФ, 2004. – 82 с.

4. Настин, Ю.Я. Эконометрика: метод. указ. и задания по контрольной работе / Ю.Я. Настин. – Калининград: ФГОУ ВПО КГТУ, 2015. – 40 с.

5. Пахнутов, И.А. Введение в эконометрику: учебно-метод пос. / И.А. Пахнутов. – Калининград: ФГОУ ВПО «КГТУ», 2009. – 108 с.

6. Буравлев, А.И. Эконометрика: учебник / А.И. Буравлев. – М.: Бином. Лаборатория знаний, 2012. – 164 с.

7. Уткин, В.Б. Эконометрика: учебник / В.Б. Уткин – изд. 2-е – М.: Дашков и К, 2011. – 564 с.

8. Эконометрика: учебник /под ред. И.И. Елисеевой. –М.: Проспект, 2011.-288 с.

9. Валентинов, В.А. Эконометрика: учебник / В.А. Валентинов – изд. 2-е – М.: Дашков и К, 2010. – 448 с.

10. Магнус, Я.Р. Эконометрика: начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. – 8-е издание, М.: Дело, 2008. – 504 с.

11. http://window.edu.ru/resource/022/45022 Скляров Ю.С. Эконометрика. Краткий курс: Учебное пособие. - СПб.: ГУАП, 2007. - 140 с.

12. http://window.edu.ru/resource/537/74537 Шанченко, Н. И. Эконометрика: лабораторный практикум: учебное пособие / Н. И. Шанченко. - Ульяновск: УлГТУ, 2011. - 117 с.

13. Берндт, Э.Р. Практика эконометрики: классика и современность: Учебник / пер с англ / Э.Р. Берндт. – М.: ЮНИТИ-ДАНА, 2005. – 863 с.

Приложение А

Значения функции Лапласа


Как уже отмечалось ранее, частная автокорреляционная функция была введена с целью определения порядка авторегрессионного процесса. Дело в том, что в процессе скользящего среднего порядок модели достаточно просто определить, так как после него автокорреляционная функция резко стремится к нулю. Однако...
(Эконометрика)
  • Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются, в частности, при описании случайных составляющих анализируемых рядов. Временной ряд yt(t= 1,2,..., п) называется...
    (ЭКОНОМЕТРИКА)
  • Для упрощения анализа положим, что база ЛЧМ-сигнала достаточно велика, и поэтому его энергетический спектр равномерен и расположен лишь в полосе (со0 - со д/2, со0 + сод/2) вокруг несущей частоты со0. Тогда согласно выражению (2.61) АКФ ЛЧМ-сигнала равна Рис. 2.44. График нормированной АКФ ...
    (ТЕОРИЯ ЭЛЕКТРОСВЯЗИ)
  • Выявление структуры временного ряда. Автокорреляционная функция
    При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от значений предыдущих уровней. Степень тесноты связи между последовательностями наблюдений временного ряда (сдвинутых относительно друг друга на L единиц, или, как говорят, с лагом...
    (ЭКОНОМЕТРИКА)
  • Базовые модели временных рядов и автокорреляционный анализ
    1. Простейшим случаем аддитивной модели временного ряда является модель случайных изменений : Модель предполагает, что значения изучаемого показателя изменяются относительно постоянного среднего значения ц (нет восходящего или нисходящего тренда) с постоянной дисперсией и не зависят друг от друга....
    (ОСНОВЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ)
  • Автокорреляционная функция (АКФ) ЛЧМ-сигнала.
    Для упрощения анализа положим, что база ЛЧМ-сигнала достаточно велика, и поэтому его энергетический спектр равномерен и расположен лишь в полосе (со0 - сод/2, со0 + сол/2) вокруг несущей частоты со0. Тогда согласно выражению (2.61) АКФ ЛЧМ-сигнала равна График нормированной АКФ ЛЧМ-импульса R(т)...
    (ОБЩАЯ ТЕОРИЯ СВЯЗИ)
  • Стационарные временные ряды и их характеристики. Автокорреляционная функция
    Важное значение в анализе временных рядов имеют стационар- н ы е Понятие стационарного временного ряда тесно связано с понятием порождающего его стационарного случайного процесса (параграф 7.2). временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются,...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА)