Тригонометрические функции список. Тригонометрические функции

    Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике . Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (). Данные функции часто появляются при решении и функциональных уравнений.

    К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс , котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция .

    Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом \(r = 1\). На окружности обозначена точка \(M\left({x,y} \right)\). Угол между радиус-вектором \(OM\) и положительным направлением оси \(Ox\) равен \(\alpha\).

    Синусом угла \(\alpha\) называется отношение ординаты \(y\) точки \(M\left({x,y} \right)\) к радиусу \(r\):
    \(\sin \alpha = y/r\).
    Поскольку \(r = 1\), то синус равен ординате точки \(M\left({x,y} \right)\).

    Косинусом угла \(\alpha\) называется отношение абсциссы \(x\) точки \(M\left({x,y} \right)\) к радиусу \(r\):
    \(\cos \alpha = x/r\)

    Тангенсом угла \(\alpha\) называется отношение ординаты \(y\) точки \(M\left({x,y} \right)\) к ee абсциссе \(x\):
    \(\tan \alpha = y/x,\;\;x \ne 0\)

    Котангенсом угла \(\alpha\) называется отношение абсциссы \(x\) точки \(M\left({x,y} \right)\) к ее ординате \(y\):
    \(\cot \alpha = x/y,\;\;y \ne 0\)

    Секанс угла \(\alpha\) − это отношение радиуса \(r\) к абсциссе \(x\) точки \(M\left({x,y} \right)\):
    \(\sec \alpha = r/x = 1/x,\;\;x \ne 0\)

    Косеканс угла \(\alpha\) − это отношение радиуса \(r\) к ординате \(y\) точки \(M\left({x,y} \right)\):
    \(\csc \alpha = r/y = 1/y,\;\;y \ne 0\)

    В единичном круге проекции \(x\), \(y\) точки \(M\left({x,y} \right)\) и радиус \(r\) образуют прямоугольный треугольник, в котором \(x,y\) являются катетами, а \(r\) − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
    Синусом угла \(\alpha\) называется отношение противолежащего катета к гипотенузе.
    Косинусом угла \(\alpha\) называется отношение прилежащего катета к гипотенузе.
    Тангенсом угла \(\alpha\) называется противолежащего катета к прилежащему.
    Котангенсом угла \(\alpha\) называется прилежащего катета к противолежащему.
    Секанс угла \(\alpha\) представляет собой отношение гипотенузы к прилежащему катету.
    Косеканс угла \(\alpha\) представляет собой отношение гипотенузы к противолежащему катету.

    График функции синус
    \(y = \sin x\), область определения: \(x \in \mathbb{R}\), область значений: \(-1 \le \sin x \le 1\)

    График функции косинус
    \(y = \cos x\), область определения: \(x \in \mathbb{R}\), область значений: \(-1 \le \cos x \le 1\)


Каждой тригонометрической функции для данного угла (или числа) α соответствует определенное значение этой функции. Из определений синуса, косинуса, тангенса и котангенса ясно, что значением синуса угла α является ордината точки, в которую переходит начальная точка единичной окружности после ее поворота на угол α , значением косинуса – абсцисса этой точки, значением тангенса – отношение ординаты к абсциссе, а значением котангенса – отношение абсциссы к ординате.

Достаточно часто при решении задач возникает необходимость в нахождении значений синусов, косинусов, тангенсов и котангенсов указанных углов. Для некоторых углов, например в 0, 30, 45, 60, 90, … градусов, есть возможность найти точные значения тригонометрических функций, для других углов нахождение точных значений оказывается проблематичным и приходится довольствоваться приближенными значениями.

В этой статье мы разберемся, какими принципами следует руководствоваться при вычислении значения синуса, косинуса, тангенса или котангенса. Перечислим их по порядку.

  • Приближенное значение указанной тригонометрической функции можно найти по определению. А для углов 0, ±90, ±180 и т.д. градусов определение тригонометрических функций позволяет указать точные значения синуса, косинуса, тангенса и котангенса.
  • Соотношения между сторонами и углами в прямоугольном треугольнике позволяют найти значения синуса, косинуса, тангенса и котангенса для «основных» углов 30 , 45 , 60 градусов.
  • Если угол выходит за пределы от 0 до 90 градусов, то сначала следует воспользоваться формулами приведения , что позволит перейти к вычислению значения тригонометрических функций с аргументом от 0 до 90 градусов.
  • Если известно значение одной из тригонометрических функций для данного угла α , то мы всегда можем вычислить значение любой другой тригонометрической функции этого же угла. Это нам позволяют сделать основные тригонометрические тождества .
  • Иногда возможно вычислить значение данной тригонометрической функции для данного угла, отталкиваясь от значений функций для основных углов и используя подходящие формулы тригонометрии . Например, по известному значению синуса 30 градусов и формуле половинного угла для синуса можно найти значение синуса 15 градусов.
  • Наконец, всегда можно найти приближенное значение данной тригонометрической функции для данного угла, обратившись к нужной из таблиц синусов, косинусов, тангенсов и котангенсов .

Теперь рассмотрим каждый из перечисленных принципов вычисления значений синусов, косинусов, тангенсов и котангенсов подробно.

Навигация по странице.

Нахождение значений синуса, косинуса, тангенса и котангенса по определению

Отталкиваясь от определения синуса и косинуса, можно найти значения синуса и косинуса данного угла α . Для этого нужно взять единичную окружность, повернуть начальную точку А(1, 0) на угол α , после чего она перейдет в точку А 1 . Тогда координаты точки А 1 дадут соответственно косинус и синус данного угла α . После этого можно вычислить тангенс и котангенс угла α , вычислив отношения ординаты к абсциссе и абсциссы к ординате соответственно.

По определению мы можем вычислить точные значения синуса, косинуса, тангенса и котангенса углов 0, ±90, ±180, ±270, ±360, … градусов (0, ±π/2, ±π, ±3π/2, ±2π, … радианов). Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π/2+2π·z рад), 180+360·z градусов (π+2π·z рад) и 270+360·z градусов (3π/2+2π·z рад), где z – любое . Изобразим на рисунках, где будет располагаться точка А 1 , получающаяся при повороте начальной точки А на эти углы (при необходимости изучите материал статьи угол поворота).

Для каждой из этих групп углов найдем значения синуса, косинуса, тангенса и котангенса, используя определения.

Что касается остальных углов, отличных от 0, ±90, ±180, ±270, ±360, … градусов, то по определению мы можем найти лишь приближенные значения синуса, косинуса, тангенса и котангенса. Для примера найдем синус, косинус, тангенс и котангенс угла −52 градуса.

Выполним построения.

По чертежу находим, что абсцисса точки А 1 приближенно равна 0,62 , а ордината приближенно равна −0,78 . Таким образом, и . Остается вычислить значения тангенса и котангенса, имеем и .

Понятно, что чем точнее будут выполнены построения, тем точнее будут найдены приближенные значения синуса, косинуса, тангенса и котангенса данного угла. Также понятно, что нахождение значений тригонометрических функций по определению не удобно на практике, так как неудобно выполнять описанные построения.

Линии синусов, косинусов, тангенсов и котангенсов

Вкратце стоит остановиться на так называемых линиях синусов, косинусов, тангенсов и котангенсов . Линиями синусов, косинусов, тангенсов и котангенсов называют линии, изображаемые совместно с единичной окружностью, имеющие начало отсчета и единицу измерения, равную единице во введенной прямоугольной системе координат, на них наглядно представляются все возможные значения синусов, косинусов, тангенсов и котангенсов. Изобразим их на чертеже ниже.

Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов

Для углов 30 , 45 и 60 градусов известны точные значения синуса, косинуса, тангенса и котангенса. Они могут быть получены по определениям синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике с использованием теоремы Пифагора .

Чтобы получить значения тригонометрических функций для углов 30 и 60 градусов рассмотрим прямоугольный треугольник с этими углами, причем его возьмем таким, чтобы длина гипотенузы равнялась единице. Известно, что катет, лежащий напротив угла 30 градусов вдвое меньше гипотенузы, следовательно, его длина равна 1/2 . Длину другого катета находим по теореме Пифагора: .

Так как синус угла – это отношение противолежащего катета к гипотенузе, то и . В свою очередь косинус – это отношение прилежащего катета к гипотенузе, тогда и . Тангенс – это отношение противолежащего катета к прилежащему, а котангенс – это отношение прилежащего катета к противолежащему, следовательно, и , а также и .

Осталось получить значения синуса, косинуса, тангенса и котангенса для угла 45 градусов. Обратимся к прямоугольному треугольнику с углами 45 градусов (он будет равнобедренным) и гипотенузой, равной единице. Тогда по теореме Пифагора несложно проверить, что длины катетов равны . Теперь мы можем вычислить значения синуса, косинуса, тангенса и котангенса как отношение длин соответствующих сторон рассматриваемого прямоугольного треугольника. Имеем и .

Полученные значения синуса, косинуса, тангенса и котангенса углов 30 , 45 и 60 градусов будут очень часто использоваться при решении различных геометрических и тригонометрических задач, так что рекомендуем их запомнить. Для удобства занесем их в таблицу основных значений синуса, косинуса, тангенса и котангенса .

В заключение этого пункта приведем иллюстрацию значений синуса, косинуса, тангенса и котангенса углов 30 , 45 и 60 с использованием единичной окружности и линий синуса, косинуса, тангенса и котангенса.


Сведение к углу из интервала от 0 до 90 градусов

Сразу заметим, что удобно находить значения тригонометрических функций, когда угол находится в интервале от 0 до 90 градусов (от нуля до пи пополам рад). Если же аргумент тригонометрической функции, значение которой нам нужно найти, выходит за пределы от 0 до 9 0 градусов, то мы всегда при помощи формул приведения можем перейти к нахождению значения тригонометрической функции, аргумент которой будет в указанных пределах.

Для примера найдем значение синуса 210 градусов. Представив 210 как 180+30 или как 270−60 , соответствующие формулы приведения сводят нашу задачу от нахождения синуса 210 градусов к нахождению значения синуса 30 градусов , или косинуса 60 градусов .

Давайте на будущее условимся при нахождении значений тригонометрических функций всегда с помощью формул приведения переходить к углам из интервала от 0 до 90 градусов, если конечно угол уже не находится в этих пределах.

Достаточно знать значение одной из тригонометрических функций

Основные тригонометрические тождества устанавливают связи между синусом, косинусом, тангенсом и котангенсом одного и того же угла. Таким образом, с их помощью мы можем по известному значению одной из тригонометрических функций найти значение любой другой функции этого же угла.

Рассмотрим решение примера.

Пример.

Определите, чему равен синус угла пи на восемь, если .

Решение.

Сначала найдем чему равен котангенс этого угла:

Теперь, используя формулу , мы можем вычислить, чему равен квадрат синуса угла пи на восемь, а следовательно, и искомое значение синуса. Имеем

Осталось лишь найти значение синуса. Так как угол пи на восемь является углом первой координатной четверти, то синус этого угла положителен (при необходимости смотрите раздел теории знаки синуса, косинуса, тангенса и котангенса по четвертям). Таким образом, .

Определения

Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

Рассмотрим два радиуса этой окружности: неподвижный (где точка) и подвижный (где точка). Пусть подвижный радиус образует с неподвижным угол.

Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом, называется синусом угла : .

Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом, называется косинусом угла : .

Таким образом, точка, являющаяся концом подвижного радиуса, образующего угол, имеет координаты.

Тангенсом угла называется отношение синуса этого угла к его косинусу: , .

Котангенсом угла называется отношение косинуса этого угла к его синусу: , .

Геометрический смысл тригонометрических функций

Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть, .

Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

Также подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

Свойства тригонометрических функций

Рассмотрим некоторые основные свойства тригонометрических функций. Остальные свойства будут рассмотрены в разделе, посвященном графикам тригонометрических функций.

Область определения и область значений

Как уже было сказано ранее, синус и косинус существуют для любых углов, т.е. областью определения этих функций является множество действительных чисел. По определению тангенс не существует для углов , а котангенс для углов, .

Поскольку синус и косинус являются ординатой и абсциссой точки на тригонометрической окружности, их значения лежат в промежутке. Областью значения тангенса и котангенса является множество действительных чисел (в этом нетрудно убедиться, глядя на оси тангенсов и котангенсов).

Четность/нечетность

Рассмотрим тригонометрические функции двух углов (который соответствует подвижному радиусу) и (который соответствует подвижному радиусу). Поскольку, значит точка имеет координаты. Поэтому, т.е. синус - функция нечетная; , т.е. косинус - функция четная; , т.е. тангенс нечетен; , т.е. котангенс также нечетен.

Промежутки знакопостоянства

Знаки тригонометрических функций для различных координатных четвертей следуют из определения этих функций. Следует отметить, что поскольку тангенс и котангенс являются отношениями синуса и косинуса, они положительны, когда синус и косинус угла имеют одинаковые знаки и отрицательны когда разные.

Периодичность


Периодичность синуса и косинуса основана на том факте, что углы, отличающиеся на целое количество полных оборотов, соответствуют одному и тому же взаимному расположению подвижного и неподвижного лучей. Соответственно и координаты точки пересечения подвижного луча и тригонометрической окружности будут одинаковы для углов, отличающихся на целое количество полных оборотов. Таким образом, периодом синуса и косинуса является и, где.

Очевидно, что также является периодом для тангенса и котангенса. Но существует ли меньший период для этих функций? Докажем, что наименьшим периодом для тангенса и котангенса является.

Рассмотрим два угла и. Оп геометрическому смыслу тангенса и котангенса, . По стороне и прилежащим к ней углам равны треугольники и, значит равны и их стороны, значит и. Аналогичным образом можно доказать, то, где. Таким образом, периодом тангенса и котангенса является.

Тригонометрические функции основных углов

Формулы тригонометрии

Для успешного решения тригонометрических задач необходимо владеть многочисленными тригонометрическими формулами. Тем не менее, нет необходимости заучивать все формулы. Знать наизусть нужно лишь самые основные, а остальные формулы нужно уметь при необходимости вывести.

Основное тригонометрическое тождество и следствия из него

Все тригонометрические функции произвольного угла связаны между собой, т.е. зная одну функции всегда можно найти остальные. Эту связь дают формулы, рассматриваемые в данном разделе.

Теорема 1 (Основное тригонометрическое тождество) . Для любого справедливо тождество

Доказательство состоит в применении теоремы Пифагора для прямоугольного треугольника с катетами, и гипотенузой.

Справедлива и более общая теорема.

Теорема 2 . Для того, чтобы два числа можно было принять за косинус и синус одного и того же вещественного угла, необходимо и достаточно, чтобы сумма их квадратов была равна единице:

Рассмотрим следствия из основного тригонометрического тождества.

Выразим синус через косинус и косинус через синус:

В данный формулах знак плюс или минус перед корнем выбирается в зависимости от четверти, в которой лежит угол.

Подставляя полученные выше формулы в формулы, определяющие тангенс и котангенс, получаем:

Разделив основное тригонометрическое тождество почленно на или получим соотвественно:

Эти соотношения можно переписать в виде:

Следующие формулы дают связь между тангенсом и котангенсом. Поскольку при, а при, то имеет место равенство:

Формулы приведения

С помощью формул приведения можно выразить значения тригонометрических функций произвольных углов через значения функций острого угла. Все формулы приведения могут быть обобщены с помощью следующего правила.

Любая тригонометрическая функция угла, по абсолютной величине равна той же функции угла, если число - четное, и ко-функции угла, если число - нечетное. При этом если функция угла, положительна, когда - острый положительный угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

Формулы суммы и разность углов

Теорема 3 . Для любых вещественных и справедливы следующие формулы:

Доказательство остальных формул основано на формулах приведения и четности/нечетности тригонометрических функций.

Что и требовалось доказать.

Теорема 4 . Для любых вещественных и, таких, что

1. , справедливы следующие формулы

2. , справедливы следующие формулы

Доказательство. По определению тангенса

Последнее преобразование получено делением числителя и знаменателя этой дроби на.

Аналогично для котангенса (числитель и знаменатель в этом случае делятся на):

Что и требовалось доказать.

Следует обратить внимание на тот факт, что правые и левые части последних равенств имеют разные области допустимых значений. Поэтому применение этих формул без ограничений на возможные значения углов может привести к неверным результатам.

Формулы двойного и половинного угла

Формулы двойного угла позволяют выразить тригонометрические функции произвольного угла через функции угла в два раза меньше исходного. Эти формулы являются следствиями формул суммы двух углов, если положить в них углы равными друг другу.

Последнюю формулу можно преобразовать с помощью основного тригонометрического тождества:

Таким образом, для косинуса двойного угла существует три формулы:

Следует отметить, что данная формула справедлива только при

Последняя формула справедлива при, .

Аналогично функциям двойного угла могут быть получены функции тройного угла. Здесь данные формулы приводятся без доказательства:

Формулы половинного угла являются следствиями формул двойного угла и позволяют выразить тригонометрические функции некоторого угла через функции угла в два раза больше исходного.


В этой статье мы покажем, как даются определения синуса, косинуса, тангенса и котангенса угла и числа в тригонометрии . Здесь же мы поговорим об обозначениях, приведем примеры записей, дадим графические иллюстрации. В заключение проведем параллель между определениями синуса, косинуса, тангенса и котангенса в тригонометрии и геометрии.

Навигация по странице.

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin , cos , tg и ctg соответственно.

Например, если АВС – прямоугольный треугольник с прямым углом С , то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB , то есть, sin∠A=BC/AB .

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3 , а гипотенуза AB равна 7 , то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7 .

Угла поворота

В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота . Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞ .

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A 1 , в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности .

Определение.

Синус угла поворота α - это ордината точки A 1 , то есть, sinα=y .

Определение.

Косинусом угла поворота α называют абсциссу точки A 1 , то есть, cosα=x .

Определение.

Тангенс угла поворота α - это отношение ординаты точки A 1 к ее абсциссе, то есть, tgα=y/x .

Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A 1 к ее ординате, то есть, ctgα=x/y .

Синус и косинус определены для любого угла α , так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α . А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α , при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1) , а это имеет место при углах 90°+180°·k , k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α , при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0) , а это имеет место для углов 180°·k , k∈Z (π·k рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k , k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k , k∈Z (π·k рад).

В определениях фигурируют уже известные нам обозначения sin , cos , tg и ctg , они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot , отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30° , записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α . Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π .

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0 до 90 градусов. Это мы обоснуем .

Числа

Определение.

Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.

Например, косинус числа 8·π по определению есть число, равное косинусу угла в 8·π рад. А косинус угла в 8·π рад равен единице, поэтому, косинус числа 8·π равен 1 .

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0 ставится в соответствие начальная точка A(1, 0) ;
  • положительному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t ;
  • отрицательному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t| .

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t . Допустим, что числу t соответствует точка окружности A 1 (x, y) (например, числу &pi/2; отвечает точка A 1 (0, 1) ).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t , то есть, sint=y .

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t , то есть, cost=x .

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t , то есть, tgt=y/x . В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost .

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t , то есть, ctgt=x/y . Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t : ctgt=cost/sint .

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t , совпадает с точкой, полученной в результате поворота начальной точки на угол в t радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3 . Как понять, о синусе числа 3 или о синусе угла поворота в 3 радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

Тригонометрические функции углового и числового аргумента

Согласно данным в предыдущем пункте определениям, каждому углу поворота α соответствуют вполне определенное значение sinα , как и значение cosα . Кроме того, всем углам поворота, отличным от 90°+180°·k , k∈Z (π/2+π·k рад) отвечают значения tgα , а отличным от 180°·k , k∈Z (π·k рад) – значения ctgα . Поэтому sinα , cosα , tgα и ctgα - это функции угла α . Другими словами – это функции углового аргумента.

Аналогично можно говорить и про функции синус, косинус, тангенс и котангенс числового аргумента. Действительно, каждому действительному числу t отвечает вполне определенное значение sint , как и cost . Кроме того, всем числам, отличным от π/2+π·k , k∈Z соответствуют значения tgt , а числам π·k , k∈Z - значения ctgt .

Функции синус, косинус, тангенс и котангенс называют основными тригонометрическими функциями .

Из контекста обычно понятно, с тригонометрическими функциями углового аргумента или числового аргумента мы имеем дело. В противном случае мы можем считать независимую переменную как мерой угла (угловым аргументом), так и числовым аргументом.

Однако, в школе в основном изучаются числовые функции, то есть, функции, аргументы которых, как и соответствующие им значения функции, являются числами. Поэтому, если речь идет именно о функциях, то целесообразно считать тригонометрические функции функциями числовых аргументов.

Связь определений из геометрии и тригонометрии

Если рассматривать угол поворота α величиной от 0 до 90 градусов, то данные в контексте тригонометрии определения синуса, косинуса, тангенса и котангенса угла поворота полностью согласуются с определениями синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике, которые даются в курсе геометрии. Обоснуем это.

Изобразим в прямоугольной декартовой системе координат Oxy единичную окружность. Отметим начальную точку A(1, 0) . Повернем ее на угол α величиной от 0 до 90 градусов, получим точку A 1 (x, y) . Опустим из точки А 1 на ось Ox перпендикуляр A 1 H .

Легко видеть, что в прямоугольном треугольнике угол A 1 OH равен углу поворота α , длина прилежащего к этому углу катета OH равна абсциссе точки A 1 , то есть, |OH|=x , длина противолежащего к углу катета A 1 H равна ординате точки A 1 , то есть, |A 1 H|=y , а длина гипотенузы OA 1 равна единице, так как она является радиусом единичной окружности. Тогда по определению из геометрии синус острого угла α в прямоугольном треугольнике A 1 OH равен отношению противолежащего катета к гипотенузе, то есть, sinα=|A 1 H|/|OA 1 |=y/1=y . А по определению из тригонометрии синус угла поворота α равен ординате точки A 1 , то есть, sinα=y . Отсюда видно, что определение синуса острого угла в прямоугольном треугольнике эквивалентно определению синуса угла поворота α при α от 0 до 90 градусов.

Аналогично можно показать, что и определения косинуса, тангенса и котангенса острого угла α согласуются с определениями косинуса, тангенса и котангенса угла поворота α .

Список литературы.

  1. Геометрия. 7-9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. - 20-е изд. М.: Просвещение, 2010. - 384 с.: ил. - ISBN 978-5-09-023915-8.
  2. Погорелов А. В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. - 2-е изд - М.: Просвещение, 2001. - 224 с.: ил. - ISBN 5-09-010803-X.
  3. Алгебра и элементарные функции : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  4. Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  5. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  6. Мордкович А. Г. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. - 4-е изд., доп. - М.: Мнемозина, 2007. - 424 с.: ил. ISBN 978-5-346-00792-0.
  7. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  8. Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  9. Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter