Как построить линейный тренд статистика. Методы определения параметров уравнения тренда. Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

Уравнение вида y’ + Р(х)у = Q(x), где Р(х) и Q(x) – известные функции от х, линейные относительно функции у и её производной y’, называется линейным дифференциальным уравнением первого порядка.

Если q(x)=0, уравнение называется линейным однородным уравнением. q(x)=0 – линейное неоднородное уравнение.

Линейное уравнение приводится к двум уравнениям с разделяющимися переменными при помощи подстановки у = u*v, где u = u(х) и v = v(x) – некоторые вспомогательные непрерывные функции.

Итак, у = u*v, у’ = u’*v + u * v’ (1),

тогда исходное уравнение перепишем в виде: u’*v + u * v’ + Р(х)*v = Q(x) (2).

Так как неизвестная функция у ищется в виде произведения двух функций, то одна из них может быть выбрана произвольно, другая – определяться уравнением (2).

Выберем так, чтобы v’ + Р(х)*v = 0 (3). Для этого достаточно, чтобы v(x) была частным решением уравнения (3) (при С = 0). Найдём это решение:

V*P(x) ; = -;ln |v| = -;v = (4)

Подставляя функцию (4) в уравнение (2), получим второе уравнение с разделяющимися переменными, из которого находим функцию u(x):

u’ * = Q(x) ; du = Q(x) *; u =+ C (5)

Окончательно получаем:

y(x) = u(x)*v(x) = *(+C)

Уравнение Бернулли: y ’ + y = x * y 3

Данное уравнение имеет вид: y’ + Р(х)*у = y’’ * Q(x), где Р(х) и Q(x) – непрерывные функции.

Если n = 0, то уравнение Бернулли становится линейным дифф.уравнением. Если n = 1, уравнение преобразуется в уравнение с разделяющимися переменными.

В общем случае, когда n ≠ 0, 1, ур. Бернулли сводится к линейному дифф.уравнению с помощью подстановки: z = y 1- n

Новое дифф.уравнение для ф-ции z(x) имеет вид: z" + (1-n)P(x)z = (1-n)Q(x) и может быть решено теми же способами, что и линейные дифф.уравнения 1-ого порядка.

20. Дифференциальные уравнения высших порядков.

Рассмотрим уравнение, не содержащие функцию в явном виде:

Порядок этого уравнения понижается на единицу с помощью подстановки:

Действительно, тогда:

И мы получили уравнение, в котором порядок понижен на единицу:

Дифф. уравнения порядка выше второго имеют вид и , где - действительные числа, а функция f(x) непрерывна на интервале интегрирования X .

Аналитически решить такие уравнения далеко не всегда возможно и обычно используют приближенные методы. Однако в некоторых случаях возможно отыскать общее решение.

Теорема.

Общим решением y 0 линейного однородного дифференциального уравнения на интервале X с непрерывными коэффициентами на X является линейная комбинация n линейно независимых частных решений ЛОДУ с произвольными постоянными коэффициентами , то есть .

Теорема.

Общее решение y линейного неоднородного дифференциального

уравнения на интервале X с непрерывными на том же

промежутке X коэффициентами и функцией f(x) представляет собой сумму ,

где y 0 - общее решение соответствующего ЛОДУ , а - какое-нибудь частное решение исходного ЛНДУ.

Таким образом, общее решение линейного неоднородного дифференциального уравнения с постоянными

коэффициентами ищем в виде , где - какое-нибудь

его частное решение, а – общее решение соответствующего однородного дифференциального

уравнения .

21. Испытания и события. Виды событий. Примеры.

Испытание – создание определённого комплекса условий для совершения событий. Пример: бросание игральной кости

Событие – появление\непоявление того или иного исхода испытания; результат испытания. Пример: выпадение числа 2

Случайное событие – событие, которое может произойти или не произойти при данном испытании. Пример: выпадение числа, большего чем 5

Достоверное – событие, которое неизбежно происходит при данном испытании. Пример: выпадение числа, большего или равного 1

Возможное – событие, которое может произойти при данном испытании. Пример: выпадение числа 6

Невозможное – событие, которое не может произойти при данном испытании. Пример: выпадение числа 7

Пусть А – некоторое событие. Под событием, противоположным ему, будем понимать событие, состоящее в ненаступлении события А. Обозначение: Ᾱ. Пример: А – выпадение числа 2, Ᾱ - выпадение любого другого числа

События А и В несовместны, если наступление одного из них исключает наступление другого в одном и том же испытании. Пример: выпадение при одном броске чисел 1 и 3.

События А и В называются совместными, если они могут появиться в одном испытании. Пример: выпадение при одном броске числа, большего, чем 2, и числа 4.

22. Полная группа событий. Примеры.

Полная группа событий – события A, B, C, D, …, L, которые принято считать единственно возможными, если в результате каждого испытания хотя бы одно из них обязательно наступит. Пример: выпадение на игральной кости числа 1, числа 2, 3, 4, 5, 6.

23. Частота события. Статистическое определение вероятности.

Пусть проведено n испытаний, причём событие А наступило m раз. Такое отношение m:n является частотой наступления события А.

Опр. Вероятность случайного события – связанное с данным событием постоянное число, вокруг которого колеблется частота наступления этого события в длинных сериях испытаний.

Вероятность вычисляется до опыта, а частота – после него.

24. Классическое определение вероятности. Свойства вероятности события.

Вероятностью события х называется отношение числа исходов, благоприятствующих событию А, к общему числу всех равновозможных попарно несовместных и единственно возможных исходов опыта. Р(А) =

Свойства вероятности события:

Для любого события А 0<=m<=n

Поделив каждый член на n, получим для вероятности любого события А: 0<=Р(А) <=1

Если m=0, то событие невозможно: Р(А)=0

Если m=n, то событие достоверно: Р(А)=1

Если m

25. Геометрическое определение вероятности. Примеры.

Классическое определение вероятности требует рассмотрение конечного числа элементарных исходов, причем равновозможных. Но на практике часто встречаются испытания, число возможных исходов которых бесконечно.

Опр . Если точка случайным образом появляется одномерной\ двумерно\ или 3х мерной области меры S (мера – ее длина, площадь или объём) то вероятность ее появления в части этой области меры S равна

где S – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а Si – мера, выражающая количество благоприятствующих событию A исходов.

Пример 1. Круг радиусом R помещен меньший круг радиусом г. Найти вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в малый круг.

Пример 2. Пусть отрезок длиной l включается в отрезок длиной L. Най ти вероятность события А «наудачу брошенная точка попала на отрезок длиной l».

Пример 3 . В круге произвольно выбирается точка. Какова вероятность того, что ее расстояние до центра круга больше половины?

Пример 4. Два лица и условились встретиться в определённом месте между двумя и тремя часами дня. Пришедший первым ждет другого в течение 10 минут, после чего уходит. Чему равна вероятность встречи этих лиц, если каждый из них может прийти в любое время в течение указанного часа независимо от другого?

26. Элементы комбинаторики: Размещение, перестановка, сочетания.

1) Перестановкой называется установленный в конечном множестве порядок.

Число всех различных перестановок вычисляется по формуле

2) Размещением из n элементов по m называется всякое упорядоченное подмножество основного множества, содержащее m элементов.

3) Сочетанием из n элементов по m называется всякое неупорядоченное подмножество основного множества, содержащее элементов.

Характеристика уравнения Бернулли

Определение 1

Дифференциальное уравнение первого порядка, имеющее стандартный вид $y"+P\left(x\right)\cdot y=Q\left(x\right)\cdot y^{n}$, где $P\left(x\right)$ и $Q\left(x\right)$ - непрерывные функции, а $n$ - некоторое число, называется дифференциальным уравнением Якоба Бернулли.

При этом на число $n$ накладываются ограничения:

  • $n\ne 0$, так как при $n = 0$ дифференциальное уравнение представляет собой линейное неоднородное, и какой-то иной специальный метод решения в этом случае не нужен;
  • $n\ne 1$, так как если мы имеем в качестве $n$ единицу, дифференциальное уравнение представляет собой линейное однородное, метод решения которого также известен.

Кроме того, не рассматривается специально тривиальное решение дифференциального уравнения Бернулли $y=0$.

Не следует путать дифференциальное уравнение математика Якоба Бернулли с законом Бернулли, названным в честь дяди его племянника, известного как Даниил Бернулли.

Замечание 1

Даниил Бернулли - физик, наиболее известная найденная им закономерность состоит в описании взаимосвязи скорости потока жидкости и давления. Закон Бернулли также применим и для ламинарных течений газа. В целом он применяется в гидравлике и гидродинамике.

Решение уравнения Бернулли сведением к линейному неоднородному

Основной метод решения дифференциального уравнения Бернулли состоит в том, что посредством преобразований оно приводится к линейному неоднородному. Эти преобразования следующие:

  1. Умножаем уравнение на число $y^{-n} $ и получаем $y^{-n} \cdot y"+P\left(x\right)\cdot y^{1-n} =Q\left(x\right)$.
  2. Применяем замену $z=y^{1-n} $ и дифференцируем это равенство как сложную степенную функцию; получаем $z"=\left(1-n\right)\cdot y^{-n} \cdot y"$, откуда $\frac{z"}{1-n} =y^{-n} \cdot y"$.
  3. Подставляем значения $y^{1-n} $ и $y^{-n} \cdot y"$ в данное дифференциальное уравнение и получаем $\frac{z"}{1-n} +P\left(x\right)\cdot z=Q\left(x\right)$ или $z"+\left(1-n\right)\cdot P\left(x\right)\cdot z=\left(1-n\right)\cdot Q\left(x\right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем следующим образом:

  1. Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  2. Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  3. Записываем общее решение линейного неоднородного дифференциального уравнения в виде $z=u\left(x,C\right)\cdot v\left(x\right)$.
  4. Возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $, и при необходимости выполняем упрощающие преобразования.

Пример:

Найти общее решение дифференциального уравнения $\frac{dy}{dx} +\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$. Записать частное решение, удовлетворяющее начальному условию $y=1$ при $x=1$.

В данном случае имеем дифференциальное уравнение Бернулли, представленное в стандартном виде.

При этом $n=2$, $P\left(x\right)=\frac{1}{x} $, $Q\left(x\right)=4-x^{2} $.

Представляем его в форме относительно замены $z$:

$z"+\left(1-2\right)\cdot \frac{1}{x} \cdot z=\left(1-2\right)\cdot \left(4-x^{2} \right)$ или $z"-\frac{1}{x} \cdot z=-\left(4-x^{2} \right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем описанным выше методом.

Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $.

Имеем $I_{1} =\int \left(1-2\right)\cdot \frac{1}{x} \cdot dx =-\ln \left|x\right|$.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$.

Выбираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $.

Записываем выражение в виде $u\left(x,C\right)=I_{2} +C$, то есть $u\left(x,C\right)=\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Окончательно записываем общее решение линейного неоднородного дифференциального уравнения относительно функции $z$ в виде $z=u\left(x,C\right)\cdot v\left(x\right)$, то есть $z=\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Теперь возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $:

$y^{1-2} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$ или $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Это и есть общее решение данного дифференциального уравнения Бернулли, записанное в неявной форме.

Для поиска частного решения используем данное начальное условие $y=1$ при $x=1$:

Следовательно, частное решение имеет вид: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+\frac{x}{2} $.

Решение дифференциального уравнения Бернулли методом подстановки

Второе возможное решение уравнения Бернулли состоит в методе подстановки.

Пример:

Найти общее решение дифференциального уравнения $y"+\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$ методом подстановки.

Применяем подстановку $y=u\cdot v$.

После дифференцирования получаем:

Функцию $v\left(x\right)$ находим из уравнения $v"+\frac{v}{x} =0$, для этого переносим второе слагаемое в правую часть.

Получаем:

$\frac{dv}{dx} =-\frac{v}{x} $;

разделяем переменные $\frac{dv}{v} =-\frac{dx}{x} $;

интегрируем $\ln \left|v\right|=-\ln \left|x\right|$, откуда $v=\frac{1}{x} $.

Функцию $u\left(x\right)$ находим из уравнения $u"\cdot \frac{1}{x} =u^{2} \cdot \frac{1}{x^{2} } \cdot \left(4-x^{2} \right)$, в котором учтено $v=\frac{1}{x} $ и $v"+\frac{v}{x} =0$.

После простых преобразований получаем: $u"=u^{2} \cdot \frac{1}{x} \cdot \left(4-x^{2} \right)$.

Разделяем переменные: $\frac{du}{u^{2} } =\frac{1}{x} \cdot \left(4-x^{2} \right)\cdot dx$.

Интегрируем: $-\frac{1}{u} =4\cdot \ln \left|x\right|-\frac{x^{2} }{2} +C$ или $\frac{1}{u} =\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Возвращаемся к старой переменной. Учитываем, что $y=u\cdot v$ или $y=u\cdot \frac{1}{x} $, откуда $u=x\cdot y$.

Получаем общее решение данного дифференциального уравнения: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Для наглядной иллюстрации тенденций изменения цены применяется линия тренда. Элемент технического анализа представляет собой геометрическое изображение средних значений анализируемого показателя.

Рассмотрим, как добавить линию тренда на график в Excel.

Добавление линии тренда на график

Для примера возьмем средние цены на нефть с 2000 года из открытых источников. Данные для анализа внесем в таблицу:



Линия тренда в Excel – это график аппроксимирующей функции. Для чего он нужен – для составления прогнозов на основе статистических данных. С этой целью необходимо продлить линию и определить ее значения.

Если R2 = 1, то ошибка аппроксимации равняется нулю. В нашем примере выбор линейной аппроксимации дал низкую достоверность и плохой результат. Прогноз будет неточным.

Внимание!!! Линию тренда нельзя добавить следующим типам графиков и диаграмм:

  • лепестковый;
  • круговой;
  • поверхностный;
  • кольцевой;
  • объемный;
  • с накоплением.


Уравнение линии тренда в Excel

В предложенном выше примере была выбрана линейная аппроксимация только для иллюстрации алгоритма. Как показала величина достоверности, выбор был не совсем удачным.

Следует выбирать тот тип отображения, который наиболее точно проиллюстрирует тенденцию изменений вводимых пользователем данных. Разберемся с вариантами.

Линейная аппроксимация

Ее геометрическое изображение – прямая. Следовательно, линейная аппроксимация применяется для иллюстрации показателя, который растет или уменьшается с постоянной скоростью.

Рассмотрим условное количество заключенных менеджером контрактов на протяжении 10 месяцев:

На основании данных в таблице Excel построим точечную диаграмму (она поможет проиллюстрировать линейный тип):


Выделяем диаграмму – «добавить линию тренда». В параметрах выбираем линейный тип. Добавляем величину достоверности аппроксимации и уравнение линии тренда в Excel (достаточно просто поставить галочки внизу окна «Параметры»).


Получаем результат:


Обратите внимание! При линейном типе аппроксимации точки данных расположены максимально близко к прямой. Данный вид использует следующее уравнение:

y = 4,503x + 6,1333

  • где 4,503 – показатель наклона;
  • 6,1333 – смещения;
  • y – последовательность значений,
  • х – номер периода.

Прямая линия на графике отображает стабильный рост качества работы менеджера. Величина достоверности аппроксимации равняется 0,9929, что указывает на хорошее совпадение расчетной прямой с исходными данными. Прогнозы должны получиться точными.

Чтобы спрогнозировать количество заключенных контрактов, например, в 11 периоде, нужно подставить в уравнение число 11 вместо х. В ходе расчетов узнаем, что в 11 периоде этот менеджер заключит 55-56 контрактов.

Экспоненциальная линия тренда

Данный тип будет полезен, если вводимые значения меняются с непрерывно возрастающей скоростью. Экспоненциальная аппроксимация не применяется при наличии нулевых или отрицательных характеристик.

Построим экспоненциальную линию тренда в Excel. Возьмем для примера условные значения полезного отпуска электроэнергии в регионе Х:

Строим график. Добавляем экспоненциальную линию.


Уравнение имеет следующий вид:

y = 7,6403е^-0,084x

  • где 7,6403 и -0,084 – константы;
  • е – основание натурального логарифма.

Показатель величины достоверности аппроксимации составил 0,938 – кривая соответствует данным, ошибка минимальна, прогнозы будут точными.

Логарифмическая линия тренда в Excel

Используется при следующих изменениях показателя: сначала быстрый рост или убывание, потом – относительная стабильность. Оптимизированная кривая хорошо адаптируется к подобному «поведению» величины. Логарифмический тренд подходит для прогнозирования продаж нового товара, который только вводится на рынок.

На начальном этапе задача производителя – увеличение клиентской базы. Когда у товара будет свой покупатель, его нужно удержать, обслужить.

Построим график и добавим логарифмическую линию тренда для прогноза продаж условного продукта:


R2 близок по значению к 1 (0,9633), что указывает на минимальную ошибку аппроксимации. Спрогнозируем объемы продаж в последующие периоды. Для этого нужно в уравнение вместо х подставлять номер периода.

Например:

Период 14 15 16 17 18 19 20
Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47

Для расчета прогнозных цифр использовалась формула вида: =272,14*LN(B18)+287,21. Где В18 – номер периода.

Полиномиальная линия тренда в Excel

Данной кривой свойственны переменные возрастание и убывание. Для полиномов (многочленов) определяется степень (по количеству максимальных и минимальных величин). К примеру, один экстремум (минимум и максимум) – это вторая степень, два экстремума – третья степень, три – четвертая.

Полиномиальный тренд в Excel применяется для анализа большого набора данных о нестабильной величине. Посмотрим на примере первого набора значений (цены на нефть).


Чтобы получить такую величину достоверности аппроксимации (0,9256), пришлось поставить 6 степень.

Зато такой тренд позволяет составлять более-менее точные прогнозы.

ПРИМЕР . Статистическое изучение динамики численности населения.

    С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.

    С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.

    Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.

Метод аналитического выравнивания а) Линейное уравнение тренда имеет вид y = bt + a 1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала. Система уравнений МНК для линейного тренда имеет вид: a 0 n + a 1 ∑t = ∑y a 0 ∑t + a 1 ∑t 2 = ∑y t

Для наших данных система уравнений примет вид: 10a 0 + 0a 1 = 10400 0a 0 + 330a 1 = -4038 Из первого уравнения выражаем а 0 и подставим во второе уравнение Получаем a 0 = -12.236, a 1 = 1040 Уравнение тренда: y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации. Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

б) выравнивание по параболе Уравнение тренда имеет вид y = at 2 + bt + c 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК: a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

Для наших данных система уравнений имеет вид 10a 0 + 0a 1 + 330a 2 = 10400 0a 0 + 330a 1 + 0a 2 = -4038 330a 0 + 0a 1 + 19338a 2 = 353824 Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5 Уравнение тренда: y = 1.258t 2 -12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда. Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз. Определим среднеквадратическую ошибку прогнозируемого показателя. m = 1 - количество влияющих факторов в уравнении тренда. Uy = y n+L ± K где L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 . По таблице Стьюдента находим Tтабл T табл (n-m-1;α/2) = (8;0.025) = 2.306 Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел. 1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02 Интервальный прогноз: t = 9+1 = 10: (930.76;1073.02)