Экологическая пирамида водоема. Зачем нужны и что отражают правила экологических пирамид. Экологическая структура биогеоценоза

Трофическую структуру экосистемы можно изобразить графически в виде экологической пирамиды, в основании которой лежит первый уровень. Эти пирамиды отражают законы расходования биомассы и энергии в пищевых цепях. Численное значение каждой ступени такой пирамиды может быть выражено числом особей, их биомассой или накопленной в ней энергией.

Пищевые сети, возникающие в экосистеме, имеют структуру, для которой характерно определенное число организмов на каждом трофическом уровне. Замечено, что число организмов прямо пропорционально уменьшается при переходе с одного трофического уровня на другой . Такая закономерность получила название «правило экологической пирамиды». В данном случае рассмотрена пирамида чисел . Она может нарушаться, если мелкие хищники живут благодаря групповой охоте на крупных животных.

Для каждого трофического уровня характерна своя биомасса - суммарная масса организмов какой-либо группы . В пищевых цепях биомасса организмов на разных трофических уровнях различна: биомасса продуцентов (первый трофический уровень) значительно выше, чем биомасса консументов - растительноядных животных (второй трофический уровень). Биомасса каждого из последующих трофических уровней пищевой цепи также прогрессивно уменьшается. Эта закономерность получила название пирамиды биомасс .

Аналогичную закономерность можно выявить при рассмотрении передачи энергии по трофическим уровням, то есть в пирамиде энергии (продукции ) . Количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Растения усваивают в процессе фотосинтеза лишь незначительную часть солнечной энергии. Растительноядные животные, составляющие второй трофический уровень, усваивают лишь некоторую часть (20-60 %) от поглощенного корма. Усвоенная пища идет на поддержание процессов жизнедеятельности организмов животных и рост (например, на построение тканей, запасы в виде отложения жиров).

Организмы третьего трофического уровня (хищные животные) при поедании растительноядных животных вновь теряют большую часть заключенной в пище энергии. Количество энергии на последующих трофических уровнях вновь прогрессивно уменьшается. Результатом этих потерь энергии является небольшое число (три-пять) трофических уровней в пищевой цепи.

Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций. Поэтому в экосистеме не может быть круговорота энергии, аналогично круговороту веществ. Экосистемы являются открытыми системами, нуждающимися в притоке солнечной энергии или готовых запасов органического вещества, т.о. передача энергии в экосистемах происходит согласно известным законам термодинамики:


1. Энергия может переходить из одной формы в другую, но никогда не создаётся вновь и не исчезает.

2. Не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой её части в виде тепла, т.е. нет преобразований энергии со 100% эффективностью.

Подсчитано, что с одного трофического уровня на другой передается лишь около 10% энергии . Эта закономерность получила название "правило десяти процентов".

Таким образом, большая часть энергии в цепи питания при переходе с одного уровня на другой теряется. К следующему звену в цепи питания поступает только та энергия, которая заключена в массе предыдущего поедаемого звена. Потери энергии составляют около 90% при каждом переходе через трофическую цепь. Например, если энергия растительного организма составляет 1000 Дж, то при полном поедании его травоядным животным в теле последнего ассимилируется всего 100 Дж, в теле хищника 10 Дж, а если этот хищник будет съеден другим, то в его теле ассимилируется только 1 Дж энергии, то есть 0,1%.

В результате энергия, накопленная зелеными растениями в цепях питания, стремительно иссякает. Поэтому пищевая цепь не может включать более 4 – 5 звеньев. Потерянная в цепях питания энергия может быть восполнена только за счет поступления новых ее порций. В экосистемах не может быть круговорота энергии, подобно круговороту веществ. Жизнь и функционирование любой экологической системы возможны только при односторонне направленном потоке энергии в виде солнечного излучения или при притоке запасов готового органического вещества.

Таким образом, пирамида чисел отражает число особей в каждом звене пищевой цепи. Пирамида биомасс отражает количество образованного на каждом звене органического вещества – его биомассу. Пирамида энергии показывает количество энергии на каждом трофическом уровне.

Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в 10 раз меньше и соответствует второму трофическому уровню – растительноядным животным, потребителям первого порядка и т.д.

Все три правила пирамиды – продуктивности, биомассы и численности выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ – основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество - природа».

Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

Типы экологических пирамид

  1. пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

  1. пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

  1. пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

  1. уровень - травянистые растения,
  2. уровень - травоядные млекопитающие, например, зайцы
  3. уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана, на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.


Понятие о трофических уровнях

Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Трофическая структура экосистемы

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или ихбиомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс - соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов) , согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи: часть ее идет на построение новых клеток, т.е. на прирост, часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Трофическая структура экосистемы выражается в сложных пищевых связях между составляющими ее видами. Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.



Экологическая пирамида - это графическое изображение потерь энергии в цепях питания.

Цепи питания - это устойчивые цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества, сложившиеся в ходе эволюции живых организмов и биосферы в целом. Они составляют трофическую структуру любого биоценоза, по которой осуществляются перенос энергии и круговороты веществ. Пищевая цепь состоит из ряда трофических уровней, последовательность которых соответствует потоку энергии.

Первичным источником энергии в цепях питания является солнечная энергия. Первый трофический уровень - продуценты (зеленые растения) - используют солнечную энергию в процессе фотосинтеза, создавая первичную продукцию любого биоценоза. При этом только 0,1% солнечной энергии используется в процессе фотосинтеза. Эффективность, с которой зеленые растения ассимилируют солнечную энергию, оценивается величиной первичной продуктивности. Более половины энергии, связанной при фотосинтезе, тут же расходуется растениями в процессе дыхания, остальная часть энергии переносится далее по пищевым цепям.

При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем: количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепях питания растет от одного трофического уровня к другому, а продуктивность падает.

Фитобиомасса используется в качестве источника энергии и материала для создания биомассы организмов второго

трофического уровня потребителей первого порядка - травоядных животных. Обычно продуктивность второго трофического уровня составляет не более 5 - 20% (10%) предыдущего уровня. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения. Объем энергии, необходимой для обеспечения жизнедеятельности организма, растет с повышением уровня морфофункциональной организации. Соответственно, количество биомассы, создаваемой на более высоких трофических уровнях, снижается.

Экосистемы очень разнообразны по относительной скорости создания и расходования как чистой первичной продукции, так и чистой вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные соотношения первичной и вторичной продукции. Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз (около 10 раз) больше, чем общая масса растительноядных животных, а масса каждого последующего звена пищевой цепи, соответственно, пропорционально изменяется.

Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.


Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в10 раз меньше и соответствует второму трофическому уровню - растительноядным животным, потребителям первого порядка и т.д.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую массу организмов каждого трофического уровня. Наличная биомасса продуцентов и консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т.е. насколько сильно выедание образовавшихся запасов. Важную роль при этом имеет скорость воспроизведения основных генераций продуцентов и консументов.

В большинстве наземных экосистем, как уже говорилось, действует также правило биомасс, т.е. суммарная масса растений оказывается больше, чем биомасса всех травоядных, а масса травоядных превышает массу всех хищников.

Следует различать количественно продуктивность, - а именно годовой прирост растительности - и биомассу. Разница между первичной продукцией биоценоза и биомассой определяет масштабы выедания растительной массы. Даже для сообществ с преобладанием травянистых форм, скорость воспроизводства биомассы у которых достаточно велика, животные используют до 70% годового прироста растений.

В тех трофических цепях, где передача энергии осуществляется через связи «хищник - жертва», часто наблюдаются пирамиды численности особей: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано еще и с тем, что хищники, как правило, крупнее своих жертв. Исключение из правил пирамиды численности составляют случаи, когда мелкие хищники живут за счет групповой охоты на крупных животных.

Все три правила пирамиды - продуктивности, биомассы и численности - выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ - основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество - природа».

Связи при которых одни организмы поедают другие организмы или их останки или выделения (экскременты) называются трофическими (трофе - питание, пища, гр.) . При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи . Примерами таких цепей могут служить:

· ягель → олень → волк (экосистема тундры);

· трава → корова → человек (антропогенная экосистема);

· микроскопические водоросли (фитопланктон) → жучки и дафнии (зоопланктон) → плотва → щука → чайки (водная экосистема).

Воздействие на цепи питания с целью их оптимизации и получения большей или лучшей по качеству продукции не всегда бывают удачны. Так широко известен из литературы пример с завозом коров в Австралию. До этого природными пастбищами пользовались преимущественно кенгуру, экскременты которых успешно осваивались и перерабатывались австралийским навозным жуком. Коровьи экскременты австралийским жуком не осваивались, в результате чего началась постепенная деградация пастбищ. Для прекращения этого процесса пришлось завезти в Австралию европейского навозного жука.

Тpофические или пищевые цепи могут быть пpедставлены в фоpме пиpамиды. Численное значение каждой ступени такой пиpамиды может быть выpажена числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.3.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м2 сут-1, количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

Рис.3.7. Пиpамидапеpедачиэнеpгии по пищевой цепи (по Ю.Одуму)

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами. В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды.

В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях рыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Видовой состав организмов обычно изучается на уровне популяции .

Напомним, что популяцией называется совокупность особей одного вида, населяющих одну территорию, имеющих общий генофонд и возможность свободно скрещиваться. В общем случае, та или иная популяция может находиться в пределах некоторой экосистемы, но может pаспpостpаняться и за границы. Hапpимеp, известна и охраняется популяция чеpношапошного сурка хребта Туоpа-Сис, занесенного в Красную Книгу. Данная популяция не ограничивается этим хребтом, но пpостиpается и южнее в пределы Веpхоянскихгоp в Якутии.

Среда, в которой обычно встречается изучаемый вид, называется его местообитанием.

Как правило, экологическую нишу занимает один какой-то вид или его популяция. При совпадающих требованиях к окружающей среде и пищевым pесуpсам, два вида неизменно вступают в конкурентную борьбу, которая обычно заканчивается вытеснением одного из них. Подобная ситуация известна в системной экологии, как принцип Г.Ф. Гаузе , который гласит, что два вида не могут существовать в одной и той же местности, если их экологические потребности идентичны, т.е. если они занимают одну и ту же нишу. Соответственно, система взаимодействующих, диффеpенциpованных по экологическим нишам популяций, дополняющих друг друга в большей мере, нежели конкуpиpующих между собой за использование пpостpанства, времени и pесуpсов, называется сообществом (ценозом).

Белый медведь не может обитать в таежных экосистемах, также как бурый в полярных областях.

Видообразование всегда адаптивно, поэтому по аксиоме Ч.Дарвина каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования. При этом организмы размножаются с интенсивностью, обеспечивающей максимально возможное их число (правило максимального "давления жизни " ).

Например, организмы океанического планктона довольно быстро покрывают пространство в тысячи квадратных километров в виде пленки. В.И.Вернадский подсчитал, что скорость продвижения бактерии Фишера размером 10-12 см3 путем размножения по прямой была бы равна около 397 200 м/час - скорость самолета! Однако чрезмерное размножение организмов ограничивается лимитирующими факторами и коррелирует с количеством пищевых ресурсов среды их обитания.

Когда происходит исчезновение видов, прежде всего составленных крупными особями, в итоге меняется вещественно-энергетическая структура цензов. Если энергетический поток, проходящий через экосистему, не меняется, то включаются механизмы экологического дублирования по принципу : исчезающий или уничтожаемый вид в рамках одного уровня экологической пирамиды заменяет другой функционально-ценотический, аналогичный. Замена вида идет по схеме: мелкий сменяет крупного, эволюционно ниже организованный более высокоорганизованного, более генетически лабильный менее генетически изменчивого. Так как экологическая ниша в биоценозе не может пустовать, то экологическое дублирование происходит обязательно.

Последовательная смена биоценозов, преемственно возникающая на одной и той же территории под воздействием природных факторов или воздействия человека, называется сукцессией (сукцессио - преемственность, лат.) . Например, после лесного пожара горельник в течение многих лет заселяется сначала травами, потом кустарником, затем лиственными деревьями и в конечном итоге хвойным лесом. При этом последовательные сообщества, сменяющие друг друга, называются сериями или стадиями. Конечным результатом сукцессии будет состояние стабилизированнной экосистемы - климакс (климакс - лестница, "зрелая ступень", гр.) .

Сукцессия, начинающаяся на участке, прежде не занятом, называется первичной . К таковым относятся поселения лишайников на камнях, которые впоследствие заменят мхи, травы и кустарники (рис.3.8). Если сообщество развивается на месте уже существовавшего (например, после пожара или раскорчевки, устройства пруда или водохранилища), то говорят о вторичной сукцессии. Конечно, скорость сукцессий будет различной. Для первичных сукцессий могут потребоваться сотни или тысячи лет, а вторичные протекают быстрее.

Все популяции продуцентов, консументов и гетеротрофов тесно взаимодействуют через трофические цепи и таким образом поддерживают структуру и целостность биоценозов, согласовывают потоки энергии и вещества, обуславливают регуляцию окружающей их среды. Вся совокупность тел живых организмов населяющих Землю физико-химически едина, вне зависимости от их систематической принадлежности и называется живым веществом (закон физико-химического единства живого вещества В.И.Вернадского ). Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6*1012 т (в сухом весе). Если ее распределить по всей поверхности планеты, то получится слой всего в полтора сантиметра. По В.И.Вернадскому эта "пленка жизни", составляющая менее 10-6 массы других оболочек Земли, является "одной из самых могущественных геохимических сил нашей планеты".

В результате сложных пищевых взаимоотношений между различными организмами складываются трофические (пищевые) связи или цепи питания. Цепь питания обычно состоит из нескольких звеньев:

продуценты – консументы – редуценты .

Экологическая пирамида – количество растительного вещества, служащего основой для питания, в несколько раз больше общей массы растительноядных животных, а масса каждого из последующих звеньев пищевой цепи меньше предыдущего (рис. 54).

Экологическая пирамида – графические изображения соотношения между продуцентами, консументами и редуцентами в экосистеме.

Рис. 54. Упрощенная схема экологической пирамиды

или пирамиды чисел (по Коробкину, 2006)

Графическую модель пирамиды разработал в 1927 г. американский зоолог Чарльз Элтон . Основанием пирамиды служит первый трофический уровень – уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями – консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне (см. рис. 55). Например, чтобы прокормить одного волка, необходимо, по крайней мере, несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами – насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования1 кг говядины необходимо 70–90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски) (рис. 55).



Рис. 55. Пирамиды биомассы некоторых биоценозов (по Коробкину, 2004):

П – продуценты; РК – растительноядные консументы; ПК – плотоядные консументы;

Ф – фитопланктон; 3 – зоопланктон (крайняя справа пирамида биомассы имеет перевернутый вид)

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость прохождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи (рис. 56).

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

Рис. 56. Пирамида энергии (закон 10 % или 10:1),

(по Цветковой, 1999)

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т. д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние уровни.

Вот почему цепи питания обычно не могут иметь более 3–5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.