Найти максимальное и минимальное значения целевой функции. Расчет максимума и минимума целевой функции графоаналитическим методом. Определение оптимального параметрического ряда изделий для удовлетворения заданного спроса. Строим область допустимых решени

Метод проекций является основой теории построения чертежных изображений в инженерной графике. Чаще всего он используется, когда необходимо найти изображение тела в виде его проекции на плоскости либо получить данные о его положении в пространстве.

Инструкция

  • В многомерном пространстве любое изображение объекта на плоскости можно получить с помощью проецирования. Однако не стоит судить о геометрической форме тела либо о форме простейших образов в геометрии на основе одной проекции точки. Наиболее полную информацию об изображении геометрического тела дает несколько проекций точек. Для чего используют проекции точек тела минимум в двух плоскостях.
  • Например, необходимо построить проекцию точки А. Для этого расположите две плоскости перпендикулярно друг другу. Одну -горизонтально, называя ее горизонтальной плоскостью и обозначая все проекции элементов с индексом 1. Вторую - вертикально. Назовите ее, соответственно, фронтальной плоскостью , а проекциям элементов присвойте индекс 2. Обе эти плоскости считайте бесконечными и непрозрачными. Линией их пересечений становится ось координат ОХ.
  • Затем примите как факт, что пространство между плоскостями проекции условно делится на четверти. Вы находитесь в первой четверти и видите только те линии и точки, которые находятся в этой области двугранного угла.
  • Суть процесса проецирования состоит в проведении луча через заданную точку, пока луч не встретится с плоскостью проекций. Данный метод получил название метода ортогонального проецирования. Согласно нему, опустите из точки А перпендикуляр на горизонтальную и фронтальную плоскость. Основанием этого перпендикуляра как раз и будет горизонтальная проекция точки А1 либо фронтальная проекция точки А2. Таким образом, вы получите положение этой точки в пространстве заданных плоскостей проекций.

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее - ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента - это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x 1 ; y 1 ; z 1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x 2 ; y 2 ; z 2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x 1 ; y 1 ; z 1) + λ*(A; B; C).

Где λ - действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) - (-2 - λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 - 0) 2 + (-3,5 + 2) 2 + (4,5 - 3) 2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.

Лабораторная работа № 1. Решение задач линейного программирования

Цель работы Получение навыка решения задач линейного программирования графическим, симплексным методом и средствамиExcel.

Задача линейного программирования заключается в изучении способов отыскания максимального или минимального значений линейной функции при наличии линейных ограничений. Целевой функцией называется функция, максимальное или минимальное значение которой находится. Совокупность значений переменных, при которых достигается максимальное или минимальное значения, называется оптимальным решением (оптимальным планом), всякая другая совокупность значений, удовлетворяющая ограничениям, называется допустимым решением (допустимым планом).

Геометрический метод решения задачи линейного программирования рассмотрим на примере.

Пример . Найти максимальное значение целевой функцииL =2x 1 +2x 2 при заданных ограничениях

Решение. Построим область решений системы ограничений, меняя знаки неравенств на знаки точных равенств:

l 1: 3x 1 -2x 2 +6=0,

l 2: 3x 1 +x 2 -3=0,

l 3:x 1 -3=0.

D С

2 0 1 3 х 1

(l 1) (l 3)

Прямая l 1 делит плоскостьх Оу на две полуплоскости, из которых нужно выбрать одну, удовлетворяющую первому неравенству в системе (3). Для этого возьмем т.О (0; 0) и подставим в неравенство. Если оно верно, то нужно заштриховать ту полуплоскость от прямой, в которой находится т.О (0; 0). Аналогично поступают с прямымиl 2 иl 3 . Областью решений неравенств (3) является многоугольникАВС D . Для каждой точки плоскости функцияL принимает фиксированное значениеL =L 1 . Множество всех токах точек есть прямаяL =c 1 x 1 +c 2 x 2 (в нашем случаеL =2x 1 +2x 2), перпендикулярная векторуС (с 1 ;с 2) (С (2; 2)), выходящему из начала координат. Если эту прямую передвигать в положительном направлении векторас , то целевая функцияL будет возрастать, в противоположном случае будет убывать. Таким образом, в нашем случае, прямая при выходе из многоугольникаАВС D решений пройдет через т.В (3; 7,5), а потому в т.В целевая функция принимает максимальное значение, т.е.L max =2ּ3+2ּ7,5=21. Аналогично определяется, что минимальное значение функция принимает в т.D (1; 0) иL min =2ּ1+2ּ0=2.

Алгоритм симплексного метода решения задачи линейного программирования состоит в следующем.

1. Общая задача линейного программирования сводится к канонической задаче (в ограничениях стоят знаки равенства) введением стольких вспомогательных переменных, сколько неравенств содержит система ограничений.

2. Функция цели выражается через базисные и вспомогательные переменные.

3. Составляется первая симплекс-таблица. В базис записываются переменные, относительно которых разрешена система ограничений (лучше всего за базисные принять вспомогательные переменные). В первой строке таблицы перечисляются все переменные, и отводится столбец для свободных членов. В последнюю строку таблицы записывают коэффициенты функции цели с противоположными знаками

4. Каждая симплекс-таблица дает решение задачи линейного программирования: свободные переменные равны нулю, базисные переменные равны соответственно свободным членам.

5. Критерием оптимальности является отсутствие отрицательных элементов в последней строке таблицы для решения задачи на максимум и положительных элементов на минимум.

6. Для улучшения решения необходимо от одной симплекс-таблица перейти к другой. Для этого в предыдущей таблице находят ключевой столбец, соответствующий наименьшему отрицательному элементу в последней строке таблицы в задаче на максимум и наибольший положительный коэффициент в задаче на минимум. Затем находят ключевую строку, соответствующую минимальному отношению свободных членов к соответствующим положительным элементам ключевого столбца. На пересечении ключевого столбца и ключевой строки находится ключевой элемент.

7. Заполнение следующей симплекс-таблицы начинаем с заполнения базиса: из базиса выводится переменная, соответствующая ключевой строке, и на ее место вводится переменная, соответствующая ключевому столбцу. Элементы бывшей ключевой строки получаются делением прежнего элемента на ключевой. Элементы бывшего ключевого столбца становятся нулями, кроме ключевого элемента, который равен единицы. Все остальные элементы вычисляются по правилу прямоугольника:

8. Преобразование симплекс-таблиц производят до тех пор, пока не получат оптимального плана.

Пример . Найти максимальное значение функции
, если переменные
удовлетворяют системе ограничений:

Решение. 1. Вводим новые переменные
, с помощью которых неравенства системы преобразуем в уравнения:

У коэффициентов целевой функции меняем знак или записываем ее в виде
. Заполняем первую симплексную таблицу, в нулевой строке записываемх 1 ,х 2 и(свободные коэффициенты). В нулевом столбце –х 3 ,х 4 ,х 5 иF . Заполняем эту таблицу по полученной системе уравнений и преобразованной целевой функции.

Проверяем критерий оптимальности на нахождение максимального значения: в последней строке все коэффициенты должны быть положительными. Этот критерий не выполняется, переходим к составлению второй таблицы.

2. Находим разрешающий элемент первой таблицы следующим образом. Среди элементов последней строки выбираем наибольший по модулю отрицательный коэффициент (это -3) и второй столбец принимаем как разрешающий. Если же все коэффициенты столбца неположительные, то
.

Для определения разрешающей строки свободные коэффициенты делим на соответствующие элементы разрешающего столбца и выбираем минимальное отношение, при этом отрицательные коэффициенты не берем. Имеем
, вторая строка является разрешающей. Пересечение разрешающей строки и столбца дает разрешающий элемент – это 3.

3. Заполняем вторую симплексную таблицу. Переменные на пересечении которых получаем разрешающий элемент, меняем местами, т.е. и. Разрешающий элемент заменяем ему обратным, т.е. на. Элементы разрешающей строки и столбца (кроме разрешающего элемента) делим на разрешающий элемент. При этом у коэффициентов разрешающего столбца меняем знак.

Остальные элементы второй таблицы получаем по правилу прямоугольника из элементов первой таблицы. Для заполняемой клетки и клетки с разрешающим элементом составляем прямоугольник. Затем из элемента для заполняемой клетки вычитаем произведение элементов двух других вершин, деленное на разрешающий элемент. Покажем расчеты по этому правилу для заполнения первой строки второй таблицы:

.

Заполнение таблиц по таким правилам продолжаем до тех пор, пока не будет выполнен критерий. Имеем для нашей задачи еще две таблицы.

х 1

х 4

х 3

х 2

х 3

х 1

х 2

х 2

х 5

х 5

4. Результат выполнения этого алгоритма записывают следующим образом. В заключительной таблице элемент, стоящий на пересечении строки
и столбцаb , дает максимальное значение целевой функции. В нашем случае
. Значения переменных по строкам равны свободным коэффициентам. Для нашей задачи имеем
.

Существуют и другие способы составления и заполнения симплексных таблиц. Например, для этапа 1 в нулевой строке таблицы записывают все переменные и свободные коэффициенты. После нахождения разрешающего элемента по тем же правилам в следующей таблице заменяем переменную в нулевом столбце, а в строке нет. Все элементы разрешающей строки делим на разрешающий элемент, и записываем в новой таблице. Для остальных элементов разрешающего столбца записываем нули. Далее выполняем указанный алгоритм с учетом этих правил.

При решении задачи линейного программирования на минимум в последней строке выбирают наибольший положительный коэффициент, и выполняют указанный алгоритм до тех пор, пока в последней строке не будет положительных коэффициентов.

Решение задач линейного программирования средствами Excelвыполняется следующим образом.

Для решения задач линейного программирования используется надстройка Поиск решения. Сначала необходимо убедиться, что эта надстройка присутствует на вкладке Данные в группе Анализ (для 2003 года смотреть Сервис). Если команда Поиск решения или группа Анализ отсутствует, необходимо загрузить эту надстройку.

Для этого щелкните Файл Microsoft Office (2010), далее щелкните кнопку Параметры Excel. В появившемся окне Параметры Excel выберите слева поле Надстройки. В правой части окна должно быть установлено значения поля Управление равным Надстройки Excel, нажмите кнопку «Перейти», которая находится рядом с этим полем. В окне Надстройки установите флажок рядом с пунктом Поиск решения и нажмите кнопку ОК. Далее можно работать с установленной надстройкой Поиск Решения.

До вызова Поиск Решения необходимо подготовить данные для решения задачи линейного программирования (из математической модели) на рабочем листе:

1) Определить ячейки, в которые будет помещен результат решения для этого, в первом строке вводим переменные и целевую функцию. Вторую строку не заполняем (изменяемые ячейки) в этих ячейках будет получен оптимальный результат. В следующую строку вести данные для целевой функции, а в следующие строки системы ограничений (коэффициенты при неизвестных). Правую часть ограничений (свободные коэффициенты) вводим, оставляя свободную ячейку после записи коэффициентов системы ограничений.

2) Ввести зависимость от изменяемых ячеек для целевой функции и зависимости от изменяемых ячеек для левых частей системы ограничений в оставленные свободные ячейки. Для введения формул зависимостей удобно пользоваться математической функцией СУММПРОИЗВ.

Далее необходимо воспользоваться надстройкой Поиск решения. На вкладке Данные в группе Анализ выберите команду Поиск решения. Появится диалоговое окно Поиск решения, которое необходимо заполнить следующим образом:

1) Указать ячейку, содержащую целевую функцию в поле «Оптимизировать целевую функцию» (эта ячейка должна содержать формулу для целевой функции). Выбираем вариант оптимизации значения целевой ячейки (максимизация, минимизация):

2) В поле «Изменяя ячейки переменных» вводим изменяемые ячейки. В следующем поле «В соответствии с ограничениями» вводим заданные ограничения с помощью кнопки «Добавить». В появившемся окне вводим ячейки, содержащие формулы системы ограничений, выбираем знак ограничения и значение ограничения (свободный коэффициент):

3) Ставим флажок в поле «Сделать переменные без ограничений неотрицательными». Выбрать метод решения «Поиск решения линейных задач симплекс-методом». После нажатия кнопки «Найти решение» запускается процесс решения задачи. В итоге появляется диалоговое окно «Результаты поиска решения» и исходная таблица с заполненными ячейками для значений переменных и оптимальным значением целевой функции.

Пример. Решить, используя надстройку «Поиск решения» Excel задачу линейного программирования: найти максимальное значение функции
при ограничениях

,

;

,
.

Решение. Для решения нашей задачи на рабочем листе Excel выполним указанный алгоритм. Вводим исходные данные в виде таблицы

Вводим зависимости для целевой функции и системы ограничений. Для этого в ячейку С2 вводим формулу =СУММПРОИЗВ(A2:B2;A3:B3). В ячейки С4 и С5 соответственно формулы: =СУММПРОИЗВ(A2:B2;A4:B4) и =СУММПРОИЗВ(A2:B2;A5:B5). В результате получаем таблицу.

Запускаем команду «Поиск решения» и заполняем появившееся окно Поиск решения следующим образом. В поле «Оптимизировать целевую функцию» вводим ячейку С2. Выбираем оптимизации значения целевой ячейки «Максимум».

В поле «Изменяя ячейки переменных» вводим изменяемые ячейки A2:B2. В поле «В соответствии с ограничениями» вводим заданные ограничения с помощью кнопки «Добавить». Ссылки на ячейку $C$4:$C$5 Ссылки на ограничения =$D$4:$D$5 между ними знак <= затем кнопку «ОК».

Ставим флажок в поле «Сделать переменные без ограничений неотрицательными». Выбрать метод решения «Поиск решения линейных задач симплекс-методом».

Нажатием кнопки «Найти решение» запускается процесс решения задачи. В итоге появляется диалоговое окно «Результаты поиска решения» и исходная таблица с заполненными ячейками для значений переменных и оптимальным значением целевой функции.

В диалоговом окне «Результаты поиска решения» сохраняем результат x1=0,75, x2=0,75 , F=1,5-равный максимальному значению целевой функции.

Задания для самостоятельной работы

Задание 1. Графическим, симплексным методами и средствами Excel найти максимальное и минимальное значение функцииF (x ) при заданной системе ограничений.

1. F (x )=10x 1 +5x 2 2. F (x )=3x 1 -2x 2


3. F (x )=3x 1 +5x 2 4. F (x )=3x 1 +3x 2


5. F (x )=4x 1 -3x 2 6. F (x )=2x 1 -x 2


7. F (x )=-2x 1 +4x 2 8. F (x )=4x 1 -3x 2


9. F (x )=5x 1 +10x 2 10. F (x )=2x 1 +x 2


11. F (x )=x 1 +x 2 12. F (x )=3x 1 +x 2


13. F (x )=4x 1 +5x 2 14. F (x )=3x 1 +2x 2


15. F (x )=-x 1 -x 2 16. F (x )=-3x 1 -5x 2


17. F (x )=2x 1 +3x 2 18. F (x )=4x 1 +3x 2


19. F (x )=-3x 1 -2x 2 20. F (x )=-3x 1 +4x 2


21. F (x )=5x 1 -2x 2 22. F (x )=-2x 1 +3x 3


23. F (x )=2x 1 +3x 2 24. F (x )=4x 1 +3x 2


25. F (x )=-3x 1 -2x 2 26. F (x )=-3x 1 +4x 2


27. F (x )=-2x 1 +4x 2 28. F (x )=4x 1 -3x 2


29. F (x )=-x 1 -x 2 30. F (x )=-3x 1 -5x 2


Контрольные вопросы.

1. Какие задачи называются задачами линейного программирования?

2. Приведите примеры задач линейного программирования.

3. Как решается задача линейного программирования графическим методом?

4. Опишите алгоритм симплекс-метода решения задач линейного программирования.

5. Опишите алгоритм решения задач линейного программирования средствами Excel.

Если в задаче линейного программирования имеется только две переменные, то ее можно решить графическим методом.

Рассмотрим задачу линейного программирования с двумя переменными и :
(1.1) ;
(1.2)
Здесь , есть произвольные числа. Задача может быть как на нахождение максимума (max), так и на нахождение минимума (min). В системе ограничений могут присутствовать как знаки , так и знаки .

Построение области допустимых решений

Графический метод решения задачи (1) следующий.
Вначале мы проводим оси координат и и выбираем масштаб. Каждое из неравенств системы ограничений (1.2) определяет полуплоскость, ограниченную соответствующей прямой.

Так, первое неравенство
(1.2.1)
определяет полуплоскость, ограниченную прямой . С одной стороны от этой прямой , а с другой стороны . На самой прямой . Чтобы узнать, с какой стороны выполняется неравенство (1.2.1), мы выбираем произвольную точку, не лежащую на прямой. Далее подставляем координаты этой точки в (1.2.1). Если неравенство выполняется, то полуплоскость содержит выбранную точку. Если неравенство не выполняется, то полуплоскость расположена с другой стороны (не содержит выбранную точку). Заштриховываем полуплоскость, для которой выполняется неравенство (1.2.1).

Тоже самое выполняем для остальных неравенств системы (1.2). Так мы получим заштрихованных полуплоскостей. Точки области допустимых решений удовлетворяют всем неравенствам (1.2). Поэтому, графически, область допустимых решений (ОДР) является пересечением всех построенных полуплоскостей. Заштриховываем ОДР. Она представляет собой выпуклый многоугольник, грани которого принадлежат построенным прямым. Также ОДР может быть неограниченной выпуклой фигурой, отрезком, лучом или прямой.

Может возникнуть и такой случай, что полуплоскости не содержат общих точек. Тогда областью допустимых решений является пустое множество. Такая задача решений не имеет.

Можно упростить метод. Можно не заштриховывать каждую полуплоскость, а вначале построить все прямые
(2)
Далее выбрать произвольную точку, не принадлежащую ни одной из этих прямых. Подставить координаты этой точки в систему неравенств (1.2). Если все неравенства выполняются, то область допустимых решений ограничена построенными прямыми и включает в себя выбранную точку. Заштриховываем область допустимых решений по границам прямых так, чтобы оно включало в себя выбранную точку.

Если хотя бы одно неравенство не выполняется, то выбираем другую точку. И так далее, пока не будет найдены одна точка, координаты которой удовлетворяют системе (1.2).

Нахождение экстремума целевой функции

Итак, мы имеем заштрихованную область допустимых решений (ОДР). Она ограничена ломаной, состоящей из отрезков и лучей, принадлежащих построенным прямым (2). ОДР всегда является выпуклым множеством. Оно может быть как ограниченным множеством, так и не ограниченным вдоль некоторых направлений.

Теперь мы можем искать экстремум целевой функции
(1.1) .

Для этого выбираем любое число и строим прямую
(3) .
Для удобства дальнейшего изложения считаем, что эта прямая проходит через ОДР. На этой прямой целевая функция постоянна и равна . такая прямая называется линией уровня функции . Эта прямая разбивает плоскость на две полуплоскости. На одной полуплоскости
.
На другой полуплоскости
.
То есть с одной стороны от прямой (3) целевая функция возрастает. И чем дальше мы отодвинем точку от прямой (3), тем больше будет значение . С другой стороны от прямой (3) целевая функция убывает. И чем дальше мы отодвинем точку от прямой (3) в другую сторону, тем меньше будет значение . Если мы проведем прямую, параллельную прямой (3), то новая прямая также будет линией уровня целевой функции, но с другим значением .

Таким образом, чтобы найти максимальное значение целевой функции, надо провести прямую, параллельную прямой (3), максимально удаленную от нее в сторону возрастания значений , и проходящую хотя бы через одну точку ОДР. Чтобы найти минимальное значение целевой функции, надо провести прямую, параллельную прямой (3) и максимально удаленную от нее в сторону убывания значений , и проходящую хотя бы через одну точку ОДР.

Если ОДР неограниченна, то может возникнуть случай, когда такую прямую провести нельзя. То есть как бы мы ни удаляли прямую от линии уровня (3) в сторону возрастания (убывания) , то прямая всегда будет проходить через ОДР. В этом случае может быть сколь угодно большим (малым). Поэтому максимального (минимального) значения нет. Задача решений не имеет.

Рассмотрим случай, когда крайняя прямая, параллельная произвольной прямой вида (3), проходит через одну вершину многоугольника ОДР. Из графика определяем координаты этой вершины. Тогда максимальное (минимальное) значение целевой функции определяется по формуле:
.
Решением задачи является
.

Также может встретиться случай, когда прямая параллельна одной из граней ОДР. Тогда прямая проходит через две вершины многоугольника ОДР. Определяем координаты и этих вершин. Для определения максимального (минимального) значения целевой функции, можно использовать координаты любой из этих вершин:
.
Задача имеет бесконечно много решений. Решением является любая точка, расположенная на отрезке между точками и , включая сами точки и .

Пример решения задачи линейного программирования графическим методом

Условие задачи

Фирма выпускает платья двух моделей А и В. При этом используется ткань трех видов. На изготовление одного платья модели А требуется 2 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. На изготовление одного платья модели В требуется 3 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. Запасы ткани первого вида составляют 21 м, второго вида - 10 м, третьего вида - 16 м. Выпуск одного изделия типа А приносит доход 400 ден. ед., одного изделия типа В - 300 ден. ед.

Составить план производства, обеспечивающий фирме наибольший доход. Задачу решить графическим методом.

Решение

Пусть переменные и означают количество произведенных платьев моделей А и В, соответственно. Тогда количество израсходованной ткани первого вида составит:
(м)
Количество израсходованной ткани второго вида составит:
(м)
Количество израсходованной ткани третьего вида составит:
(м)
Поскольку произведенное количество платьев не может быть отрицательным, то
и .
Доход от произведенных платьев составит:
(ден. ед.)

Тогда экономико-математическая модель задачи имеет вид:


Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 7) и (10,5; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 10) и (10; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (8; 0).



Заштриховываем область, чтобы точка (2; 2) попала в заштрихованную часть. Получаем четырехугольник OABC.


(П1.1) .
При .
При .
Проводим прямую через точки (0; 4) и (3; 0).

Далее замечаем, что поскольку коэффициенты при и целевой функции положительны (400 и 300), то она возрастает при увеличении и . Проводим прямую, параллельную прямой (П1.1), максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку четырехугольника OABC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

.
То есть, для получения наибольшего дохода, необходимо изготовить 8 платьев модели А. Доход при этом составит 3200 ден. ед.

Пример 2

Условие задачи

Решить задачу линейного программирования графическим методом.

Решение

Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 6) и (6; 0).

Строим прямую .
Отсюда .
При .
При .
Проводим прямую через точки (3; 0) и (7; 2).

Строим прямую .
Строим прямую (ось абсцисс).

Область допустимых решений (ОДР) ограничена построенными прямыми. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область по границам построенных прямых, чтобы точка (4; 1) попала в заштрихованную часть. Получаем треугольник ABC.

Строим произвольную линию уровня целевой функции, например,
.
При .
При .
Проводим прямую линию уровня через точки (0; 6) и (4; 0).
Поскольку целевая функция увеличивается при увеличении и , то проводим прямую, параллельную линии уровня и максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку треугольника АВC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

Пример отсутствия решения

Условие задачи

Решить графически задачу линейного программирования. Найти максимальное и минимальное значение целевой функции.

Решение

Решаем задачу графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (2,667; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 3) и (6; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (3; 0) и (6; 3).

Прямые и являются осями координат.

Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область, чтобы точка (3; 3) попала в заштрихованную часть. Получаем неограниченную область, ограниченную ломаной ABCDE.

Строим произвольную линию уровня целевой функции, например,
(П3.1) .
При .
При .
Проводим прямую через точки (0; 7) и (7; 0).
Поскольку коэффициенты при и положительны, то возрастает при увеличении и .

Чтобы найти максимум, нужно провести параллельную прямую, максимально удаленную в сторону возрастания , и проходящую хотя бы через одну точку области ABCDE. Однако, поскольку область неограниченна со стороны больших значений и , то такую прямую провести нельзя. Какую бы прямую мы не провели, всегда найдутся точки области, более удаленные в сторону увеличения и . Поэтому максимума не существует. можно сделать сколь угодно большой.

Ищем минимум. Проводим прямую, параллельную прямой (П3.1) и максимально удаленную от нее в сторону убывания , и проходящую хотя бы через одну точку области ABCDE. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Минимальное значение целевой функции:

Ответ

Максимального значения не существует.
Минимальное значение
.