Высотное струйное течение расположение в целом. Общая циркуляция атмосферы. Струйные течения. Пассаты. Муссоны. В минимум погоды входят минимумы

Что мы знаем о голубой атмосфере Земли? Давайте совершим небольшое путешествие в ее глубины.

Когда говорят об атмосфере в целом, ее делят на четыре большие области, на четыре «этажа». Первый — самая нижняя часть атмосферы — тропосфера. Верхняя граница этой области в разных местах различна. У экватора она простирается до высоты 15-18 км, а у полюсов — только до 7-9. Здесь находится четыре пятых всей массы воздуха, и именно здесь формируется погода.

Второй этаж атмосферы носит название стратосферы. Интересно, что она лежит не сразу за тропосферой, а отделена от нее промежуточным слоем воздуха (1-3 км толщиной) — тропопаузой, или субстратосферой. Это, как бы, небольшой переход между этажами. Положение этого перехода не остается постоянным. Он, то понижается, то повышается.

С тропопаузой связаны особые струйные течения в атмосфере. С этим загадочным явлением столкнулись, например, во время американской интервенции в Корее. Бойцы Народной армии наблюдали с земли очень странную картину. Некоторые американские бомбардировщики, летевшие на большой высоте, вдруг останавливались в воздухе, и иногда даже начинали медленно пятиться назад! Напуганные необычным явлением, американские летчики думали, что Народная армия Северной Кореи применяет против них какое-то новое, секретное оружие. Оказалось, что самолеты попадали в «воздушные реки»- своеобразные воздушные потоки, текущие с очень большой скоростью.

Изучение этих необычных потоков показало, что они образуются, как правило, у тропопаузы. Воздушные потоки действительно во многом напоминают большие реки. Ширина их составляет 100 и более километров, а глубина — несколько километров. Необыкновенно высока скорость течения «воздушных рек». Она достигает, порой -350-400 км в час. Чтобы представить себе эту скорость, достаточно вспомнить, что при сильнейших тропических ураганах скорость ветра редко превышает 200-250 км в час. Такой ветер вырывает с корнем могучие деревья, разрушает очень прочные постройки, гонит воду рек вспять. А течение «воздушных рек» еще быстрее!

Не удивительно, что самолеты, попадая в эту «реку», не могут лететь против течения. Страшной силы ветер гасит почти всю их скорость. «Воздушные реки» возникают в различных районах и быстро перемешаются. Они довольно извилисты и тянутся на сотни и тысячи километров. Известны и стратосферные струйные течения, возникающие на высоте 25-30 км.

Замечено, что в наших умеренных широтах «воздушных рек» значительно больше, чем над тропиками и у полюсов. Когда самолет летит по течению такой «воздушной реки», он резко увеличивает скорость. Известен случай, когда рейсовый самолет, летевший из США в Англию, неожиданно прибыл к месту назначения на 3 часа раньше расписания. Выяснилось, что он попал в «воздушную реку» и ее стремительные «волны» прибавили ему дополнительно несколько сотен километров скорости.

Стратосферный этаж поднимается до 80-90 км над земной поверхностью. Здесь стоит неизменно ясная погода, но часто дуют сильнейшие ветры. Исследования последних лет показали, что в стратосфере существует своя зима и свое высотное лето. Здесь обнаружены полярные области, умеренные широты и зона экватора.

Циркуляция атмосферы - система замкнутых течений воздушных масс, проявляющихся в масштабах полушарий или всего земного шара. Подобные течения приводят к переносу вещества и энергии в атмосферекак в широтном, так и в меридиональном направлениях, из-за чего являются важнейшим климатообразующим процессом, влияя на погоду в любом месте планеты.

Основная причина циркуляции атмосферы - солнечная энергия и неравномерность её распределения на поверхности планеты, в результате чего различные участки почвы, воздуха и воды имеют различную температуру и, соответственно, различное атмосферное давление (барический градиент). Кроме Солнца на движение воздуха влияет вращение Земли вокруг своей оси и неоднородность её поверхности, что вызывает трение воздуха о почву и его увлечение.

Воздушные течения по своим масштабам изменяются от десятков и сотен метров (такие движения создают локальные ветра) до сотен и тысяч километров, приводя к формированию в тропосфере циклонов,антициклонов, муссонов и пассатов. В стратосфере происходят преимущественно зональные переносы (что обуславливает существование широтной зональности). Глобальными элементами атмосферной циркуляции являются так называемые циркуляционные ячейки - ячейка Хадли, ячейка Феррела, полярная ячейка.

струйное течение - сильный ветер в виде узкого воздушного потока в верхнейтропосфере или нижней стратосфере, на тропопаузе, для которого характерны большие скорости (обычно на оси более 30 м/с) и градиенты более 5 м/с на 1 км по высоте и более 10 м/с на 100 км по горизонтали.

Высотное струйное течение связано с высотными фронтальными зонами. Имеет эллиптическое по форме вертикальное поперечное сечение. Размеры ВСТ по горизонтали - сотни километров в ширину и тысячи километров в длину, по вертикали - 2-4 км. Скорости ветра в ВСТ изменяются вдоль струи, причем очаги максимальных скоростей на оси ВСТ перемещаются по ветру. Струи перемещаются в виде извивающихся «воздушных рек» и в основном направлены к востоку, но могут иметь меридиональное и ультраполярное направление.

Высотные струйные течения являются звеньями общей зональной циркуляции атмосферы.

Пасса́т (от исп. viento de pasada - ветер, благоприятствующий переезду, передвижению) -ветер, дующий между тропиками круглый год, в Северном полушарии с северо-восточного, в Южном - с юго-восточного направления, отделяясь друг от друга безветренной полосой. На океанах пассаты дуют с наибольшей правильностью; на материках и на прилегающих к последним морях направление их отчасти видоизменяется под влиянием местных условий. ВИндийском океане, вследствие конфигурации берегового материка, пассаты совершенно меняют свой характер и превращаются в муссоны.


Благодаря своему постоянству и силе в эпоху парусного флота пассаты наряду с западными ветрами были основным фактором для построения маршрутов движения судов в сообщении между Европой и Новым Светом.

Муссо́н (от араб. موسم(«mixon») - время года , посредством фр. mousson ) - устойчивые ветра, периодически меняющие свое направление; летом дуют с океана, зимой - с суши; свойственны тропическим областям и некоторым приморским странам умеренного пояса (Дальний Восток). Муссонный климат характеризуется повышенной влажностью в летний период.

Летом муссоны дуют с океана на материки, зимой - с материков на океаны; свойственны тропическим областям и некоторым приморским странам умеренного пояса (например, Дальний Восток) . Наибольшей устойчивостью и скоростью ветра муссоны обладают в некоторых районах тропиков (особенно в экваториальной Африке, странах Южной и Юго-Восточной Азии и в Южном полушарии вплоть до северных частей Мадагаскара и Австралии). В более слабой форме и на ограниченных территориях муссоны обнаруживаются и в субтропических широтах (в частности, на юге Средиземного моря и в Северной Африке, в области Мексиканского залива, на востоке Азии, в Южной Америке, на юге Африки и Австралии).

Струйное течение в атмосфере

(СТ) - сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или более максимумами скорости. Обычно длина СТ составляет тысячи км, ширина - сотни км, толщина - несколько км. Вертикальный около 5-10 м/с на 1 км, а горизонтальный в атмосфере5 м/с на 100 км. Нижний предел скорости в СТ условно считается равным 100 км/ч и выбран с учётом того, что , скорость которого превышает 100 км/ч, оказывает заметное влияние на путевую скорость летательных аппаратов, выполняющих в зоне СТ. Центральная часть СТ, где скорости ветра наибольшие, называют сердцевиной, линия максимального ветра внутри сердцевины - осью СТ. Слева от оси, если смотреть по потоку, расположена циклоническая сторона СТ, справа - антициклоническая. Горизонтальные сдвиги на циклонической стороне СТ гораздо больше, чем на антициклонической, вертикальный сдвиг ветра обычно больше над осью СТ, чем под ней. Чем сильнее СТ, тем больше вертикальный сдвиг ветра в нём. Различают тропосферные и стратосферные СТ.
Тропосферные С. т. формируются в переходной зоне между высокими холодными циклонами и высокими тёплыми антициклонами в верхней тропосфере, образующими высотные фронтальные зоны. Высотные фронтальные зоны (ВФЗ) могут объединяться, образуя планетарную (сравнимую по размерам с размерами Земли) фронтальную зону. Оси тропосферных С. т. располагаются вблизи тропопаузы и в северном полушарии находятся на высоте 6-8 км над Арктикой, 8-12 км - в умеренных широтах, 12-16 км - в субтропиках. С. т. высоких и средних широт связаны с ВФЗ и атмосферными фронтами; они меняют своё положение вместе с ними. Субтропическое западное С. т. сравнительно устойчиво и сильно. Наиболее мощное на Земле субтропическое С. т. наблюдается в зимнее время над западной частью Тихого океана, где создаются большие контрасты температуры в тропосфере между тёплым воздухом над поверхностью океана и холодным воздухом над восточной Азией.
На картах представлены средние скорости ветра на изобарической поверхности 300 гПа (соответствует высоте около 9 км) в северном полушарии зимой и летом. Видно, что зимой во внетропических широтах С. т. образуются над севером Атлантического океана и Европы. Субтропические С. т. почти окаймляют земной шар на широте 25-30(). Они более мощные, чем внетропические С. т. Средние скорости в центре С. т. превышают 150 км/ч, а над Японскими островами - 200 км/ч. Летом в связи с прогревом воздуха во внетропических широтах и уменьшением горизонтального градиента температуры между низкими и высокими широтами С. т. ослабевают. Они чаще образуются над севером Европы. В соответствии с сезонными радиационными условиями субтропические С. т., ослабевая, перемещаются к северу. Над Азией и Северной Америкой они находятся летом на широте 40-45(°). С. т. изображаются и с помощью вертикальных разрезов атмосферы.
Стратосферные С. т. расположены выше тропопаузы. Зимние западные С. т. возникают в зоне больших меридиональных градиентов температуры и давления зимнего стратосферного циклона, расположенных между приполюсной областью и более низкими широтами. Ось этого С. т. находится на высоте 50-60 км на широте около 50(°), скорость ветра меняется от 180 до 360 км/ч. Положение и высота западного стратосферного С. т. может меняться при зимних стратосферных потеплениях, во время которых холодный меняет своё местоположение и интенсивность и замещается теплым антициклоном. В соответствии с радиационными условиями летнее стратосферное С. т. устойчивого восточного направления возникает на обращённой к экватору периферии летнего стратосферного тёплого антициклона. Ось С. т. расположена на высоте 50-60 км, на широте около 45(°); средняя скорость ветра на оси до 180 км/ч. Экваториальное С. т. восточного направления находится летом вблизи экватора (от 0 до 15-20(°) широты) с осью на высоте 20-30 км и максимальными скоростями ветра до 180 км/ч.
При метеорологическом обеспечении полётов летательных аппаратов прогнозируется положение тропосферных С. т., высоты осей С. т. и ветра. Эти данные включаются в авиационные прогностические карты барической топографии, вручаемые экипажам воздушных судов.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Струйное течение в атмосфере" в других словарях:

    В атмосфере узкое воздушное течение в верхней тропосфере и нижней стратосфере со скоростями до 50 100 м/с. Длина струйного течения порядка тысячи км, ширина сотни км, толщина несколько км … Большой Энциклопедический словарь

    струйное течение Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    В атмосфере, узкое воздушное течение в верхней тропосфере и нижней стратосфере со скоростями до 50 100 м/с. Длина струйного течения порядка тысяч километров, ширина сотни километров, толщина несколько километров. * * * СТРУЙНОЕ ТЕЧЕНИЕ СТРУЙНОЕ… … Энциклопедический словарь

    Воздушное течение в верхней тропосфере (См. Тропосфера) и в нижней стратосфере (См. Стратосфера) с почти горизонтальной осью, характеризующееся большими скоростями, относительно малыми поперечными размерами и большими вертикальными и… …

    В атмосфере, узкое возд. течение в верх. тропосфере и ниж. стратосфере со скоростями до 50 100 м/с. Длина С. т. порядка тысяч км, ширина сотни км, толщина неск. км … Естествознание. Энциклопедический словарь

    Форма течения жидкости, при к рой жидкость (газ) течёт в среде (газе, жидкости, плазме) с отличающимися от С. параметрами (скоростью, темп рой, плотностью и т. п.). Струйные течения чрезвычайно распространены и разнообразны (от С., вытекающей из… … Физическая энциклопедия

    Летание на аппаратах легче воздуха (в отличие от авиации (См. Авиация)). До начала 20 х гг. 20 в. термин «В.» обозначал передвижение по воздуху вообще. Зарождение научных основ В. и первые попытки подняться в воздух, используя законы… … Большая советская энциклопедия

Струйные течения различной интенсивности:и повторяемости наблюдаются почти над всеми районами земного шара. По широтным зонам и высоте расположения оси отличают следующие виды струйных течений: внетропические, субтропические, экваториальные и стратосферные. Каждому из них присущи свои характерные особенности, отличающие их друг от друга.

Внетропические струйные течения являются составной частью высотных фронтальных зон, образующихся между высокими теплыми антициклонами и высокими холодными циклонами. Они отличаются большей подвижностью, а интенсивность их подвергается непрерывным изменениям. Высота максимального ветра располагается чаще всего на уровне 8-10 км зимой и 9- 12 км летом. Скорости ветра на оси струи колеблются в широких пределах, в зависимости от величин горизонтальных градиентов температуры в нижележащих слоях воздуха. Наиболее часто максимальные скорости ветра достигают 150-200 км/час, но в отдельных случаях превышают 300 км/час и более. Величина контрастов температуры во фронтальной зоне, в слое 300 над 1000 мб обычно колеблется в пределах 10-15°, но иногда превышает и 20°.

Зимой величины контрастов температуры и скоростей ветра в среднем больше, чем летом.

Субтропические струйные течения образуются на северной периферии субтропических высоких и теплых антициклонов. Они являются менее подвижными, чем внетропические, и подвергаются заметным перемещениям в зависимости от характера и интенсивности междуширотного обмена воздуха; ось струи располагается на уровне 11-13 км. Зимой и особенно летом контрасты температуры до верхней тропосферы с высотой возрастают. При формировании и усилении струйного течения тропопауза претерпевает разрыв. Ось струи обычно располагается между тропопаузой тропической на высотах 16-17 км и тропопаузой средних широт на высотах 9-12 км.

Зимой струя находится большей частью между 25-35° с. ш, летом - севернее на 10-16°, а местами и больше. Средние скорости ветра на оси струи достигают 150-200 км/час. Распределение скоростей ветра вдоль широт различно. Максимальные скорости ветра наблюдаются зимой над восточными окраинами материков и прилегающими частями океанов. В частности, над Японскими островами скорости ветра нередко превышают 300-400 км/час. Субтропическая струя наиболее слабо выражена над восточными районами Атлантического и Тихого океанов. Она здесь усиливается при меридиональных преобразованиях термобарического поля атмосферы, сопровождающихся адвекцией холода в низкие широты.

Экваториальные восточные струйные течения образуются, на южной периферии высоких субтропических антициклонов (в северном полушарии). Западные экваториальные струи обнаружены зимой а 80° з. д. и 11° с. ш. на уровне 200 мб. Средняя скорость их не менее 100 км/час. Летом их интенсивность возрастает, на широтах 10-20°, на том же уровне летом в различных частях северного полушария обнаружены восточные экваториальные струи. Особенно интенсивны они на юге Азии. Слабые восточные струи в экваториальной зоне обнаружены и на

Тихом океане. Наиболее сильная восточная струя находится на юго-западной периферии летнего высокого антициклона над Северной Африкой и Аравией. Здесь на 15-20° с. ш. и 45°.в. средняя скорость ветра на уровне 150 мб превышает 100- 120 км/час.

Стратосферные струйные течения обнаружены зимой на высотах 25-35 км между 50 и 70° с. ш. Вследствие непрерывного лучеиспускания и охлаждения воздуха в слое озона в условиях полярной ночи за полярным кругом формируется высокий и холодный циклон с большими контрастами температуры на периферии. В зоне этих контрастов температуры возникают сильные ветры западного направления. Наибольшее усиление струи происходит в декабре - январе. В марте западные ветры на этих высотах ослабевают и в конце мая переходят на восточные.

Переход ветра на восточные происходит вследствие установления нового режима лучистого теплообмена в слое озона в условиях полярного дня. В результате прогревания воздуха летом, в противоположность зиме, над арктическими районами на высотах 30-40 км возникает мощный антициклон. Стратосферное восточное струйное течение располагается на южной периферии этого антициклона. Максимальные скорости струи заметно меньше зимнего стратосферного западного струйного течения.

Таким образом, формирование западных и восточных струйных течений в стратосфере носит сезонный характер и определяется радиационными условиями, накладывающими определенный отпечаток на термическое поле сезона. Приведенные на рис. 19 и 20 кривые распределения температуры с высотой над различными широтами, как и средние разности температуры между экстремальными сезонами вдоль различных меридианов (см. рис. 22 и 23), объясняют причины формирования запашного стратосферного струйного течения в холодное время года и восточного летом. Кривые распределения температуры с высотой показывают, что зимой наибольшие междуширотные разности температуры приходятся на приземный слой. С высотой разности температуры убывают и вблизи уровня поверхности 200 мб они достигают минимума. Здесь в атмосфере между экватором и полюсом существует положение, близкое к изотер мин. Летом междуширотные разности температуры также убывают с высотой и вблизи уровня поверхности 200 мб достигают минимума. Выше указанных уровней температура с высотой зимой и летом вновь возрастает.

По условиям радиационного режима в нижней стратосфере зона наибольших горизонтальных градиентов, как и струйное течение, должна опоясывает земной шар между 50-70° с. и ю. щ. Однако, согласно данным распределения температуры и давления, сезонные струйные течения в стратосфере зимой располагаются не строго вдоль широт, а в значительной мере повторяют структуру термобарического поля тропосферы, известной по средним месячным картам барической топографии (ОТ 500 1000).

На рис. 63 представлена средняя абсолютная топография поверхности 25 мб для января над Северной Америкой.

Из сопоставления рис. 63 (АТ 25) с рис. 37 (АТ 500) легко установить на обеих картах близкое сходство в конфигурации изогипс (на карте АТ 25 высоты обозначены в футах). Однако густота изогипс, а следовательно, скорости течений значительно больше на поверхности 25 мб, что объясняется возрастанием разности температур между средними и высокими широтами в нижней стратосфере.

В июле картина несколько иная (рис. 64). На той же поверхности 25 мб над высокими широтами находится область высокого давления, на периферии которой образуется восточное струйное течение. Наибольшие скорости струи наблюдаются между 55 и 75° с. щ. Здесь они заметно меньше, чем зимой. Переход западных ветров на восточные происходит в слое между уровнями 18 и 22 км. Поэтому, естественно, что структура поля АТ 25 и АТ 500 совершенно различна. На уровнях поверхностей 500 и 300 мб основное направление переноса западно-восточное, а на уровнях 50 и 25 мб, наоборот, восточно-западное. Несмотря на резкое различие между структурой поля AT в тропосфере и стратосфере, влияние нижних слоев воздуха на формирование

поля АТ 25 весьма существенно. В частности, над тропосферным гребнем над западом Северной Америки (рис. 64) антициклон более интенсивный, а над тропосферной ложбиной достаточно слабый.

Следовательно, на формирование среднего сезонного поля геопотенциала в стратосфере, на уровнях 25-30 им заметное влияние оказывает температурное поле тропосферы, обусловленное притоком тепла от подстилающей поверхности. Более того, ежедневные высотные карты погоды показывают, что крупные барические образования, отчетливо выраженные в тропосфере, обнаруживаются и на высотах 25-30 км. Это указывает на то, что характер циркуляции атмосферы, представляемый по картам AT в средней и верхней тропосфере, с высотой ослабевает медленно и основные воздушные потоки охватывают значительную толщу стратосферы.

На рис. 65-67 представлены карты абсолютной топографии поверхностей 500, 100 и 30 мб за ночь 7 декабря 1957 г. Из их сопоставления можно определить, что черты поля давления и воздушных течений в средней тропосфере хорошо выражены на уровне поверхности 100 мб, а частично даже на уровне 30 мб.


В частности, следы высокого холодного циклона над Балканами и Малой Азией и теплого антициклона над Атлантикой обнаруживаются на уровне 30 мб, т. е. на высотах около 24. км.

Летом в связи с прогреванием воздуха в стратосфере труднее обнаружить общие черты между барическим полем в тропосфере и на уровне 30 мб.

Выше были рассмотрены основные виды известных в настоящее время струйных течений и их особенности. Кроме основных видов, существует деление их по дополнительным признакам, как, например, деление на фронтальные и нефронтальные, континентальные и океанические и т. п.

Деление струйных течений на фронтальные и нефронтальные лишены серьезного основания. Любые струйные течения связаны



с атмосферными фронтами, с тем лишь различием, что в одних случаях фронты легко обнаруживаются у поверхности земли, а в других оказываются размытыми.

Однако и в тех и в других случаях положение атмосферных фронтов всегда можно определить в поле температуры в тропосфере.

Очень часто фронты у поверхности земли размываются в субтропиках, так как зафронтальный холодный воздух здесь быстро прогревается и теряет начальные свойства. Это послужило поводом для отнесения субтропического струйного течения к нефронтальным. В действительности в системе субтропической струи в зоне наибольших контрастов температуры всегда можно найти фронт, если он даже размыт в слоях, близких к поверхности земли. Процесс размывания фронтов в низких широтах можно проследить по ежедневным приземным и высотным картам погоды. Особенно быстро фронты размываются в теплое время года над сушей. Анализ данных наблюдений показал, что вертикальным турбулентным переносом быстро прогреваются лишь нижние слои тропосферного воздуха. С высотой процесс трансформации ослабевает. Поэтому разность температур в верхней тропосфере и вызванное ею струйное течение сохраняются продолжительное время. Фронты, обнаруженные в стратосфере, тоже определяются по контрастам температуры. С зонами расположения этих фронтальных зон и фронтов тесно связаны стратосферные струйные течения.

Деление струйных течений на океанические и континентальные также не оправдано. Основанием для такого деления послужило различие в возрастании скорости течений от уровня градиентного ветра до оси струи над океанами и материками. Было обнаружено, что в системе струйных течений над Северной Атлантикой ветер с высотой усиливается в меньшее число раз, чем над северо-западной Европой. Однако позднее было установлено, что это явление локальное. В частности, вблизи западного побережья Севера Тихого океана возрастание ветра с высотой происходит интенсивнее, чем над прилегающей территорией азиатского материка.

В заключение приведем схемы расположения всех видов струйных течений над северным полушарием зимой и летом (рис. 68 и 69). Они построены на основании анализа распределения струйных течений за последние годы.

Из рис. 68 и 69 видно, что наиболее мощны субтропические струйные течения и наиболее четко выражена их повторяемость на материках. Над восточными частями океанов сильное субтропическое струйное течение появляется спорадически, преимущественно зимой, при циклоническом преобразовании высотных деформационных полей и изоляции (блокирования) высоких циклонов в районе Азорских островов над Атлантикой и северо-западнее Калифорнии - над Тихим океаном. Спорадически возникающие струйные течения на схемах изображены прерывистыми линиями, а зоны внутрисезонных перемещений струй - штриховкой.

На юго-востоке Азии и Северной Америки внетропические струи обычно сливаются с субтропическими и образуют широкую зону ветров с осью струи на уровне 10-13 км на юге и 8- 10 км на севере зоны (рис. 68).


В соответствии с большими контрастами температуры наиболее мощные струи зимой чаще всего наблюдаются над указанными районами, а также над Аравией, Северной Индией и Британскими островами. На схемах в ряде мест приведены данные о преобладающих высотах струй и величины средних максимальных скоростей ветра в них. Наиболее сильные субтропические струйные течения наблюдаются зимой над Японскими островами и востоком Южного Китая, где средние скорости ветра на высотах 10-13 км достигают 260-320 км/час. Большие скорости ветра здесь объясняются значительными горизонтальными контрастами температуры в тропосфере, обусловленными сильно охлажденным материком Азии и примыкающими теплыми водами Тихого океана и интенсивной циклонической деятельностью.

В аналогичных условиях находится юго-восточная часть Северной Америки и, частично, район между Исландией и Британскими

островами, где сильные струйные течения постоянны во все сезоны года.

Преобладающее западное направление течений присуще струям субтропическим и внетропическим. Однако в соответствии с преобразованиями термобарического поля атмосферы, внетропические струйные течения подвергаются значительным междуширотным перемещениям. Разветвления внетропических: струй над Европой и Ланей и другими районами указывают, что они здесь не отличаются таким постоянством, как субтропические струйные течения.

Отметим, что над Европой и Западной Азией зимой обнаруживаются две струи, в то время как над Дальним Востоком и частотно над восточной половиной Северной Америки вследствие слияния образуется лишь одно мощное струйное течение, это объясняется распределением материков и океанов с соответствующими условиями притока тепла и формированием поля температуры тропосферы. Развивающаяся в этих условиях циклоническая деятельность способствует усилению субтропического струйного течения. На схемах изображены также стратосферные и экваториальные струйные течения. Стратосферные западные струйные течения зимой располагаются на высотах 25-30 км.

Летом положение струйных течений заметно изменяется. Как следует из рис 69 зона субтропических струйных течении повсеместно смещается к северу на 10-15° меридиана, а вблизи экваториальной зоны местами возникают восточные экваториальное струйные течения. В частности, над Южной Аравией средняя скорость восточных струй на уровне 13-15 км достигает более 100 км/час. Слабые восточные потоки наблюдаются на 20-25 0 с. ш. на Тихом океане.

Субтропические струйные течения хорошо выражены над Северной Америкой, передней и Средней Азией. Над Японскими островами по сравнению с зимой они значительно слабее. Внетропические тропосферные струи наблюдаются над Европой Северной Америкой и севером Азии.

Наконец, на этой же летней схеме изображено стратосферное восточное струйное течение на уровне 25-30 км. Оно возникает в теплое время года в связи с установлением в нижней стратосфере нового режима лучистого теплообмена в условиях полярного дня.

Воздушные потоки могут спровоцировать разрушительные погодные аномалии

Существуют такие погодные аномалии, которые предсказать заранее невозможно, например, из-за недостатка знаний о некоторых явлениях в атмосфере Земли. Европейская жара в 2003 году, засуха в Калифорнии в 2014-м, суперураган Сэнди в 2012-м – все эти катастрофические события, унёсшие немало человеческих жизней, были спровоцированы феноменом блокировки струйных течений. Но до сих пор учёные не могли найти убедительный способ объяснить происходящее.

Струйные течения впервые были обнаружены метеорологом Чикагского университета Карлом Россби в первой половине двадцатого века. Под этим термином понимаются узкие потоки сильного ветра (в среднем 45-50 метров в секунду) в верхней тропосфере и нижней стратосфере, имеющие довольно сложную структуру в горизонтальном и вертикальном направлениях. Практически одновременно с открытием струйных течений стало известно, что они могут весьма резко "тормозить".

И вот, наконец, геофизик Нобору Накамура (Noboru Nakamura) и его аспирантка Клэр Хуан (Clare Huang) связали события в единое целое. Интересно, что решением задачи стала математическая модель, описывающая своего рода образование автомобильной пробки на высокоскоростном многополосном шоссе.

Одной из проблем в описании процесса "торможения" стал подбор параметров, которые наиболее точно характеризовали бы движение воздушных масс. Авторам новой работы пришлось добавить несколько не использовавшихся ранее параметров, в частности, меандр, то есть степень извилистости струйного течения. (Подобная характеристика обычно используется при описании русла реки.)

Возвращаясь к аналогии с дорожным трафиком, исследователи обнаружили у струйного течения пропускную способность воздушных масс. Очевидно, что, когда пороговое значение этого показателя превышается, скорость потока снижается. Аналогичный эффект возникает при слиянии нескольких воздушных "магистралей".

В пресс-релизе университета учёные отмечают, что их неожиданно простая модель не только объясняет блокировку струйных течений, но и даёт долгожданную возможность её предсказать. Более того, речь идёт как о краткосрочном прогнозировании погоды, так и о моделях долгосрочного поведения воздушных масс в регионах, которые подвержены частым засухам или наводнениям.

"Это один из самых неожиданных моментов просветления в моей карьере учёного – поистине, дар от Бога, – говорит Накамура. – Очень сложно что-то прогнозировать, пока вы не поймёте, почему это происходит. Вот почему наша модель должна быть чрезвычайно полезна".

Немаловажно, что новая модель, в отличие от большинства современных климатических расчётов, оказалась проста с точки зрения вычислений. При этом авторы отмечают, что при её использовании стоит максимально внимательно отнестись к метеорологическим особенностям конкретного региона. В частности, в Тихом океане "воздушные пробки" могут рассасываться десятилетиями.

Более подробно с достижениями чикагских геофизиков можно познакомиться, прочитав их статью, опубликованную в издании Science.

Описание других важных открытий и исследований в области метеорологии и прочих климатических наук можно найти в соответствующем разделе проекта "Вести.Наука" (nauka.vesti.ru).

Интересно, почему отечественные климатологи и метеорологи всячески избегают упоминания волн Россби и Джет Стрима, как одного из определяющих факторов погодной кухни!?

Как видите, весеннее тепло в Центральной России, сопровождалось аномально холодной штормовой погодой в Европе. И объяснение этому, нехарактерное для сезона положение высотных струйных течений. Зато позже атмосферная ситуация изменилась в обратную сторону, в Европу пришло тепло, зато в Центральную Россию пошел заток арктического воздуха, принесший осадки и пониженную температуру. Вот как это выглядело:

Температурная карта конца мая.

Струйное течение в высоких слоях атмосферы. Вы видите, как его волны соответствуют затоку арктических масс.

Струйные течения в средних слоях атмосферы. Хорошо видно зарождение циклонов и антициклонов в изгибах джет стрима - в зависимости от их направления, по часовой или против часовой стрелке.

Будем надеяться, что анонсированная новым главой Минприроды реформа, улучшит качество прогнозов и приведет к более современным методам.

Минприроды предложило ликвидировать Росгидромет

Минприроды выступило с инициативой распустить Федеральную службу по гидрометеорологии и мониторингу окружающей среды (Росгидромет). На ее основе планируется создать отдельную госкомпанию. Об этом сообщил глава ведомства Сергей Донской, передает «Интерфакс».

"В качестве приоритетной мы рассматриваем задачу по реформированию системы Росгидромета и создания на его базе соответствующей государственной компании", - заявил он.

Ранее глава Росгидромета Максим Яковенко сообщил агентству, что служба внесла в правительство РФ предложение о слиянии метеорологических служб России в единую госкорпорацию.

Он напомнил, что Росгидромет управляет разветвленной структурой подведомственных учреждений, которых у ведомства около 50 по всей России, пояснив, что в целом ряде регионов их работа приносит убытки, но в каких-то может приносить прибыль.

Конечно, формально заявленные причины оптимизации имеют место, но мы помним, какой скандал с последующим выходом на пенсию главы Росгидромета последовал за смертельным штормом в Москве, который метеорологи прозевали самым печальным образом.

Климат меняется по всей планете, и служба его мониторинга получает такое же важное значение, как и МЧС, в предупреждении последствий погодных аномалий. Государство не может позволить себе содержать неэффективное ведомство, пользующееся старинными методами предсказания погоды, что негативно сказывается на народном хозяйстве и приводит к серьезным разрушениям и смертям жителей России.