Правильный многоугольник. Защита персональной информации. Градусная мера внутреннего угла n-угольника

Теорема 1 . Около любого правильного многоугольника можно описать окружность.

Пусть ABCDEF (рис. 419) - правильный многоугольник; надо доказать, что около него можно описать окружность.

Мы знаем, что всегда можно провести окружность через три точки, не лежащие на одной прямой; значит, всегда можно провести окружность, которая пройдёт через три любые вершины правильного многоугольника, например через вершины Е, D и С. Пусть точка О - центр этой окружности.

Докажем, что эта окружность пройдёт и через четвёртую вершину многоугольника, например через вершину В.

Отрезки ОЕ, OD и ОС равны между собой, и каждый равен радиусу окружности. Проведём ещё отрезок ОВ; про этот отрезок сразу нельзя сказать, что он также равен радиусу окружности, это надо доказать. Рассмотрим треугольники OED и ODC, они равнобедренные и равные, следовательно, ∠1 = ∠2 = ∠3 = ∠4.

Если внутренний угол данного многоугольника равен α , то ∠1 = ∠2 = ∠3 = ∠4 = α / 2 ; но если ∠4= α / 2 , то и ∠5 = α / 2 , т.е. ∠4 = ∠5.

Отсюда заключаем, что (Delta)ОСD = (Delta)ОСВ и, значит, ОВ = ОС, т. е. отрезок ОВ равен радиусу проведённой окружности. Из этого следует, что окружность пройдёт и через вершину В правильного многоугольника.

Таким же приёмом докажем,что построенная окружность пройдёт и через все остальные вершины многоугольника. Значит, эта окружность будет описанной около данного правильного многоугольника. Теорема доказана.


Теорема 2 . В любой правильный многоугольник можно вписать окружность.

Пусть ABCDEF - правильный многоугольник (рис. 420), надо доказать, что в него можно вписать окружность.

Из предыдущей теоремы известно, что около правильного многоугольника можно описать окружность. Пусть точка О - центр этой окружности.

Соединим точку Oс вершинами многоугольника. Полученные треугольники OED, ODC и т д. равны между собой, значит, равны и их высоты, проведённые из точки О, т. е. OK = OL = ОМ = ON = OP = OQ.

Поэтому окружность, описанная из точки О как из центра радиусом, равным отрезку ОК, пройдёт через точки К, L, M, N, Р и Q, и высоты треугольников будут радиусами окружности. Стороны многоугольника перпендикулярны к радиусам в этих точках, поэтому они являются касательными к этой окружности. А это значит, что построенная окружность вписана в данный правильный многоугольник.

Такое же построение можно выполнить для любого правильного многоугольника, следовательно, вписать окружность можно в любой правильный многоугольник.

Следствие. Окружности, описанная около правильного многоугольника и вписанная в него, имеют общий центр.

Определения .

1. Центром правильного многоугольника называется общий центр окружностей, описанной около этого многоугольника и вписанной в него.

2. Перпендикуляр, опущенный из центра правильного многоугольника на его сторону, называется апофемой правильного многоугольника.

Выражение сторон правильных многоугольников через радиус описанной окружности

С помощью тригонометрических функций можно выразить сторону любого правильного многоугольника через радиус описанной около него окружности.

Пусть АВ - сторона правильного n -угольника, вписанного в круг радиуса ОА = R (рис).

Проведём апофему OD правильного многоугольника и рассмотрим прямоугольный треугольник AOD. В этом треугольнике

∠AOD = 1 / 2 ∠AOB = 1 / 2 360° / n = 180° / n

AD = AO sin ∠AOD = R sin 180° / n ;

но AB = 2AD и потому АВ = 2R sin 180° / n .

Длина стороны правильного n -угольника, вписанного в круг, обозначается обычно а n , поэтому полученную формулу можно записать так:

а n = 2R sin 180° / n .

Следствия:

1. Длина стороны правильного шестиугольника, вписанного в круг радиуса R, выражается формулой а 6 = R , так как

а 6 = 2R sin 180° / 6 = 2R sin 30° = 2R 1 / 2 = R.

2. Длина стороны правильного четырёхугольника (квадрата), вписанного в круг радиуса R, выражается формулой а 4 = R √ 2 , так как

а 4 = 2R sin 180° / 4 = 2R sin 45° = 2R √ 2 / 2 = R√2

3. Длина стороны правильного треугольника, вписанного в круг радиуса R, выражается формулой а 3 = R √ 3 , так как.

а 3 = 2R sin 180° / 3 = 2R sin 60° = 2R √ 3 / 2 = R√3

Площадь правильного многоугольника

Пусть дан правильный n -угольник (рис). Требуется определить его площадь. Обозначим сторону многоугольника через а и центр через О. Соединим отрезками центр с концами какой-либо стороны многоугольника, получим треугольник, в котором проведём апофему многоугольника.

Площадь этого треугольника равна ah / 2 . Чтобы определить площадь всего многоугольника нужно площадь одного треугольника умножить на число треугольников, т. е. на n . Получим: S = ah / 2 n = ahn / 2 , но аn равняется периметру многоугольника. Обозначим его через Р.

Окончательно получаем: S = Ph / 2 . где S - площадь правильного многоугольника, Р - его периметр, h - апофема.

Площадь правильного многоугольника равна половине произведения его периметра на апофему.

Другие материалы

Многоугольник называется правильным, если равны все его стороны и все углы. Среди треугольников правильным будет равносторонний треугольник и только он. Квадрат (и только квадрат) является правильным четырехугольником. Покажем, что существуют правильные многоугольники с любым числом сторон , где . Для этого приведем два способа построения таких многоугольников.

Способ 1. Возьмем произвольную окружность и разделим ее на равных частей. Такое построение далеко не при всяком осуществимо циркулем и линейкой, но мы будем здесь считать, что такое построение сделано. Примем точки деления в их последовательном положении на окружности за вершины -угольника, вписанного в эту окружность. Докажем, что построенный -угольник - правильный. Действительно, стороны нашего многоугольника (рис. 312) суть хорды, стягиваемые равными дугами, и потому они равны между собой.

Все углы опираются на равные дуги и потому также равны. Итак, многоугольник правильный.

Способ 2. Снова разделим окружность на равных частей и проведем в точках деления касательные к окружности; ограничим каждую из касательных точками ее пересечения с касательными, проведенными в соседних точках деления. Получим правильный многоугольник, описанный около окружности (рис. 313). В самом деле, углы его все равны, так как каждый из них, как угол между касательными, измеряется полуразностью дуг, из которых меньшая всегда равна части окружности, а большая - полной окружности минус часть. Равенство сторон видно хотя бы из равенства треугольников, образованных парами полукасательных и хордами (например, треугольники и т. д.). Все они равнобедренные, имеют равные углы при вершинах и равные основания.

Два правильных -угольника с одинаковым числом сторон подобны.

Действительно, стороны их заведомо находятся в постоянной отношении, равном отношению любой пары сторон. Кроме того, по теореме о сумме углов -угольника всякий правильный -угольник имеет одни и те же углы, равные 1. Условия признака п. 224 выполнены, и -угольники подобны.

Итак, для всякого правильные -угольники подобны. Отсюда непосредственно получаем ряд следствий:

1. Два правильных -угольника с равными сторонами равны.

2. Вокруг всякого правильного -угольника можно описать окружность.

Доказательство. Возьмем какой-либо правильный многоугольник с тем же числом сторон, что данный, построенный по первому способу, т. е. вписанный в окружность. Преобразуем его подобно так, чтобы он стал равен данному. Тогда окружность, описанная вокруг него, подобно преобразуется в окружность, описанную вокруг многоугольника, равного данному.

3. В каждый правильный многоугольник можно вписать окружность.

Доказательство аналогично. Полезно, однако, провести рассуждения и несколько иначе. Мы уже знаем, что вокруг данного многоугольника можно описать окружность. Возьмем ее центр. Стороны многоугольника служат ее хордами; будучи равны между собой, они должны одинаково отстоять от центра. Поэтому окружность с тем же центром и радиусом, равным расстоянию от центра до сторон многоугольника, будет касаться всех сторон многоугольника, т. е. будет вписанной окружностью.

Итак, вписанная и описанная окружности правильного многоугольника имеют общий центр. Он называется центром данного правильного многоугольника. Радиус описанной окружности называется радиусом многоугольника, радиус вписанной окружности его апофемой. Ясно, что апофема всегда меньше радиуса.

Правильные многоугольники

В учебнике «Геометрия 7-11» А.В.Погорелова (18) тема «Правильные многоугольники» изучается в §13 «Многоугольники» п. 115.

Определение «правильного многоугольника» рассматривается в начале пункта: «Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны». Затем даются определения «вписанного» и «описанного» многоугольника и рассматривается теорема: «Правильный выпуклый многоугольник является вписанным в окружность и описанным около окружности».

В учебнике «Геометрия 7-9» Л.С.Атанасяна (4) тема «Правильные многоугольники» рассматривается в п. 105 §1 «Правильные многоугольники» главы 12.

Определение «правильного многоугольника» дается в начале пункта:

«Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны». Затем выводят формулу для вычисления угла б n правильного n-угольника:

В учебнике «Геометрия 7-9» И.М.Смирновой, В.А.Смирнова «правильный многоугольник» изучается в п.6 «Ломаные и многоугольники».

В начале пункта вводятся определение «ломаной»: «Фигура, образованная отрезками, расположенными так, что конец первого является началом второго, конец второго - началом третьего и т.д., называется ломаной линией или просто ломаной».

Затем даются определения простой, замкнутой и многоугольника: «Ломаная называется простой, если она не имеет точек самопересечения». «Если начало первого отрезка ломаной совпадает с концом последнего, то ломаная называется замкнутой». «Фигура, образованная простой замкнутой ломаной и ограниченной его частью плоскости, называется многоугольником».

После чего рассматривается определение «правильного многоугольника»: «Многоугольник называется правильным, если у него все стороны и все углы равны».

Рассмотрим методику изучения темы «Правильные многоугольники» на примере учебника геометрии А.В.Погорелова.

В начале пункта вводится определение «правильного многоугольника»: «Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны», затем вводятся определения «вписанного» и «описанного» многоугольников: «Многоугольник называется вписанным в окружность, если все его вершины лежат на некоторой окружности»; «Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности».

Перед изучением теоремы 13.3 с целью подготовки класса к доказательству можно задать учащимся вопросы на повторение:

Какая прямая называется касательной к окружности?

Каково может быть взаимное расположение прямой и окружности? В классе проводится беседа, которая состоит из двух частей: сначала

речь идет об окружности, описанной около многоугольника, а затем об окружности, вписанной в многоугольник.

Ответы учащихся сопровождаются последовательным показом серии рисунков.

Какой треугольник называется вписанным в окружность или какая окружность называется описанной около треугольника (рис.1)?

Можно ли около произвольного треугольника описать окружность?

Как найти центр окружности, описанной около треугольника? (Рис.2) Что является радиусом? (Рис.3)

Всегда ли можно описать окружность около многоугольника? (Нет. Пример: ромб, если он не квадрат. Рис.4)

Можно ли описать окружность около правильного многоугольника? (Рис.5)



Формулируется первая часть теоремы 13.3. Делается предположение, что около правильного многоугольника можно описать окружность. Стоит заметить, что этот факт будет доказан позднее.

Аналогичная работа проводится относительно возможности вписать окружность в многоугольник. Классу те же 5 вопросов относительно окружности, вписанной в многоугольник. При этом по аналогии с первой частью беседы используется серия рисунков, аналогичных предыдущим.

Учитель обращает внимание учащихся на возможность вписать окружность в правильный многоугольник. Формулируется и доказывается теорема 13.3: «Правильный выпуклый многоугольник является вписанным в окружность и описанным около окружности».

Доказательство теоремы ведется по учебнику. Полезно подчеркнуть, что центры вписанной и описанной окружностей в правильном многоугольнике совпадают и данная точка называется центром многоугольника.

После доказательства теоремы предлагаются задачи:

1. Сторона правильного вписанного в окружность треугольника равна а. Найдите сторону квадрата, вписанного в эту окружность.

Дано: Окружность (0;R),

ДАВС - правильный, вписанный,

КМРЕ - вписанный квадрат.

ДАВС - правильный, вписанный: R = KMPE - вписанный квадрат в окружность (0;R).

Пусть х =КМ - сторона квадрата, тогда

Ответ: KM = .

2. В окружность, радиус которой 4 дм, вписан правильный треугольник, на стороне которого построен квадрат. Найдите радиус окружности, описанной около квадрата.

Дано: окружность (0;R),

ДАВС - правильный, вписанный,

Oкр. 1 (O;R 1),

ABDE - вписанный квадрат в Oкр. 1

Найти: R 1 .

1. ДАВС - правильный, вписанный:

ABDE - вписанный квадрат в Oкр. 1:

Ответ: дм.

3. Сторона правильного многоугольника равна а, а радиус описанной окружности R. Найдите радиус вписанной окружности. Дано: Окр.(0;R),

A 1 A 2 ...A n - правильный, вписанный,

A 1 A 2 =а, радиус=R,

ОС - радиус вписанной окружности.

ОС 2 = ОВ 2 - ВС 2

Ответ: ОС=.

4. Сторона правильного многоугольника равна а, а радиус вписанной окружности г. Найдите радиус описанной окружности.

Дано: окружность(0;г),

A 1 A 2 ...A n - пpaвильный., описанный,

А 1 А 2 =а, радиус=г,

Окружность (0;R).

Решение. OB - радиус описанной окружности.

ДОСВ - прямоугольный (ZC = 90°)

ОВ 2 =ОС 2 +СВ 2

Ответ: R = .

Затем учащимся можно предложить систему задач:

1. В правильном шестиугольнике А 1 А 2 А 3 А 4 А 5 А 6 сторона равна 8. Отрезок ВС соединяет середины сторон А 3 А 4 и А 5 А б. Найдите длину отрезка, соединяющего середину стороны А 1 А 2 с серединой отрезка ВС.

2. Сторона правильного шестиугольника ABCDEF равна 32. Найдите радиус окружности, вписанной в треугольник МРК, если М, Р и К -середины сторон АВ, CD. EF соответственно.

Выразите сторону b правильного описанного многоугольника через радиус R окружности и сторону а правильного вписанного многоугольника с тем же числом сторон.

Периметры двух правильных n-угольников относятся как а:b. Как относятся радиусы их вписанных и описанных окружностей?

Сколько сторон имеет правильный многоугольник, каждый из внутренних углов которого равен: 1) 135; 2) 150?

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

Правильным многоугольником называется выпуклый многоугольник с равными сторонами и равными углами.

а - сторона восьмиугольника,

R - радиус описанной окружности,

r - радиус вписанной окружности.

Сумма внутренних углов правильного n-угольника

180(n-2) .

Градусная мера внутреннего угла n-угольника

180(n-2) : n.

Сторона правильного n-ка

Радиус вписанной в правильный многоугольник окружности

Площадь правильного n-ка

УПРАЖНЕНИЯ

1. а) Сумма внутренних углов шестиугольника равна:
1) 360 ° ; 2) 180 ° ; 3) 720 ° ; 4) 540 ° .
б) Сумма внутренних углов восьмиугольника равна:
1) 360 ° ; 2) 180 ° ; 3) 720 ° ; 4) 1080 ° .
Решение:
а) По формуле сумма углов шестиугольника равна: 180(6-2)=180*4=720 ° .
Ответ: 720 ° .


2. а) Сторона правильного многоугольника равна 5 см, внутренний угол равен 144 °
а) Сторона правильного многоугольника равна 7 см, внутренний угол равен 150 ° . Найдите периметр многоугольника.
Решение:
а) 1) Найдем количество сторон многоугольника:
144=180(n - 2):n;
144n=180n-360;
36n=360;
n=10.
2) Найдем периметр десятиугольника: Р=5*10=50 см.
Ответ: 50 см.


3. а) Периметр правильного пятиугольника равен 30 см. Найдите диаметр окружности, описанной вокруг пятиугольника.
б) Диаметр окружности равен 10 см. Найдите периметр вписанного в нее пятиугольника.
Решение:
а) 1) Найдем сторону пятиугольника: 30:5=6 см.
2) Найдем радиус описанной окружности:
a=2R*sin(180 ° :n);
6=2R*sin (180 ° :5);
R=3:sin 36 ° =3:0,588=5,1 см
Ответ: 5,1 см.


4. а) Сумма внутренних углов правильного многоугольника равна 2520 °
б) Сумма внутренних углов правильного многоугольника равна 1800 ° . Найдите количество сторон многоугольника.
Решение:
а) Найдем количество сторон многоугольника:
2520 ° = 180 ° (n-2);
2520 ° +360 ° =180 ° n;
2880 ° =180 ° n;
n=16.
Ответ: 16 сторон.


5. а) Радиус окружности, описанной около правильного двенадцатиугольника равен 5 см. Найдите площадь многоугольника.
б) Радиус окружности, описанной около правильного восьмиугольника равен 6 см. Найдите площадь многоугольника.
Решение:
а) Найдем площадь двенадцатиугольника:
S=0.5* R 2 *n*sin(360 ° :n)=0,5*25*12*sin30 ° =75 см 2 .
Ответ: 75 см 2 .


6. Найдите площадь шестиугольника, если известна площадь закрашенной части:

Решение:
а) 1) Найдем длину стороны АВ шестиугольника. Рассмотрим треугольник АВС - равнобедренный (АВ=ВС).
∠АВС=180 ° (6-2):6=120 ° .

Площадь треугольника АВС равна 0,5*АВ*ВС*sin120 ° и равна по условию 48.

2) В правильном шестиугольнике сторона равна радиусу описанной окружности, следовательно R=AB.
3) Найдем площадь шестиугольника:

Ответ: 288 см 2 .

7. а) Найдите число сторон правильного многоугольника, если его внешний угол при вершине равен 18 ° .
б) Найдите число сторон правильного многоугольника, если его внешний угол при вершине равен 45 ° .
Решение:
а) Сумма внешних углов правильного многоугольника равна 360 ° .
Найдем количество сторон: 360 ° :18 ° =20.
Ответ: 20 сторон.


8. Вычислите площадь кольца, если хорда АВ равна:
а) 8 см; б) 10 см.

Решение:
а)

1) ОВ - радиус внешней окружности, ОН - радиус внутренней окружности. Площадь кольца можно найти по формуле: S кольца = S внешней окружности - S внутренней окружности.

S= π *OB 2 - π *OH 2 = π (OB 2 -OH 2 ).

2) Рассмотрим треугольник АВО - равнобедренный (ОА=ОВ как радиусы). ОН является в треугольнике АВО высотой и медианой, следовательно, АН=НВ=8:2= 4 см.

3) Рассмотрим треугольник ОНВ - прямоугольный: НВ 2 =ОВ 2 -ОН 2 , следовательно

ОВ 2 -ОН 2 =16.

4) Найдем площадь кольца:

S= π (OB 2 -OH 2 )=16 π см 2 .

Ответ: 16 π см 2 .



9. а) Найдите периметр правильного шестиугольника, если АС=9 см.
б) Найдите площадь правильного шестиугольника, если FA=6 см.

Решение:
а) 1) Найдем угол АВС: 180 ° (6-4):6=120 ° .
2) Рассмотрим треугольник АВС - равнобедренный (АВ=ВС как стороны правильного шестиугольника).
ВАС= ВСА=(180 ° -120 ° ):2=30 ° .
По теореме синусов: АС: sin ABC = AB: sin BCA;
AB=AC*sin30 ° :sin120;

3) Найдем периметр правильного шестиугольника:

Р=6*АВ;


10. Докажите, что в правильном восьмиугольнике площадь закрашенной части равна:
а) четверти площади восьмиугольника; б) половине площади восьмиугольника:

Решение:
а)

1) Проведем биссектрисы углов восьмиугольника, они пересекутся в точке О. Площадь восьмиугольника равна сумме площадей восьми получившихся равных треугольников, т.е. S (ABCDEFKM) =8* S (OEF).

2) Четырехугольник ABEF - параллелограмм (АВ//EF и АВ=EF). Диагонали параллелограмма равны: AE=BF (как диаметры описанной около восьмиугольника окружности), следовательно, ABEF - прямоугольник. Диагонали прямоугольника делят его на четыре равновеликих треугольника.

3) Найдем площадь четырехугольника AFKM:

S (ABEF)= 4* S (OEF).

2*S (AFKM)=S (ABCDEFKM) - S (ABEF) =8* S (OEF)-4* S (OEF)=4* S (OEF).

S (AFKM)=2* S (OEF).

4) Найдем отношение площади восьмиугольника к площади закрашенной части:

S (ABCDEFKM) : S (AFKM) = 8* S (OEF) : (2* S (OEF))=4.

Что и требовалось доказать.



11. Найдите отношение площади сектора ВАС к площади закрашенной фигуры, если ВА=АС и площадь сектора ВАС равна четверти площади круга:

Решение:
а)

1) АВ=АС=2R. Угол ВАС - прямой, т.к. площадь сектора ВАС равна четверти площади круга .

2) Рассмотрим Четырехугольник АО 2 МО 1 . Он является ромбом, т.к. все стороны равны радиусу, а т.к. Один их углов равен 90°, то АО 2 МО 1 - квадрат.

S треугольника = 0,5R 2 см 2 .
S сегмента = (0,25 π - 0,5)R 2 см 2 .
S закрашенной части = 2* S сегмента = 2*(0,25 π - 0,5)R 2 = (0,5 π -1 )R 2 с м 2 .
4) Найдем площадь сектора ВАС:
S сектора = π *(2R) 2 *90:360= π R 2 с м 2 .
5) Найдем отношение площади сектора ВАС к площади закрашенной части:
π R 2 :(0,5 π -1 )R 2 = 2 π : (π-2).
Ответ: 2 π : (π-2).


ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Чему равна сумма внешних углов пятиугольника?

2. Чему равна площадь восьмиугольника, если площадь закрашенной области равна 20.

3. Периметр правильного четырехугольника равен 20 см. Найдите длину вписанной в него окружности.

4. Сторона АВ правильного многоугольника равна 8 см. О - центр многоугольника, угол АОВ равен 36 ° . Найдите периметр многоугольника.

5. Периметр правильного восьмиугольника равен 80 см. Найдите его меньшую диагональ.

6. В правильный треугольник вписана окружность и вокруг него описана окружность. Найдите площадь кольца, образованного окружностями, если сторона треугольника равна 8 см.

7. Найдите угол между двумя меньшими диагоналями, выходящими из одной вершины правильного семиугольника.

8. Около окружности описан правильный треугольник, и в нее же вписан правильный шестиугольник. Найдите отношение площадей треугольника и шестиугольника.

9. Выпуклый многоугольник имеет 48 сторон. Найдите число его диагоналей.

10. ABCD - квадрат. Из вершин В и С проведены окружности радиуса АВ. Найдите отношение площади закрашенной фигуры к площади квадрата: