Произвольная окружность. Окружность. Форма и положение

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

  • В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x о;y о) имеет вид:
(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Это замкнутая плоская линия, всякая точки которой равноудалена от одной и той же точки (O ), называемой центром .

Прямые (OA , OB , OС. . .), соединяющие центр с точками окружности - это радиусы .

Из этого получаем:

1. Все радиусы одной окружности равны.

2. Два круга с одинаковыми радиусами будут равны.

3. Диаметр равен двум радиусам.

4. Точка , лежащая внутри круга, ближе к центру, а точка, лежащая вне круга, дальше от центра, чем точки окружности.

5. Диаметр , перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам.

6. Дуги , заключенные между параллельными хордами , равны.

При работе с окружностями применяют следующие теоремы:

1. Теорема . Прямая и окружность не могут иметь более двух общих точек.

Из этой теоремы получаем два логично вытекающих следствия:

Никакая часть окружности не может совместиться с прямой, потому что в противном случае окружность с прямой имела бы более двух общих точек.

Линия, никакая часть которой не может совместиться с прямой, называется кривой .

Из предыдущего следует, что окружность есть кривая линия .

2. Теорема . Через всякие три точки, не лежащие на одной прямой, можно провести окружность и только одну.

Как следствие данной теоремы получаем:

Три перпендикуляра к сторонам треугольника вписанного в окружность проведенные через их середины, пересекаются в одной точке, которая является центром окружности.

Решим задачу. Требуется найти центр предложенной окружности .

Отметим на предложенной три любые точки A, B и С, начертим через них две хорды , например, AB и СB, и из середины этих хорд укажем перпендикуляры MN и PQ. Искомый центр, будучи одинаково удален от A, B и С, должен лежать и на MN, и на PQ, следовательно, он находится на пересечении этих перпендикуляров, т.е. в точке O.

Окружностью называется кривая замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки; эта точка называется центром окружности.

Часть плоскости, ограниченная окружностью, называется кругом .

Отрезок прямой, соединяющий точку окружности с её центром, называется радиусом (рис. 84).

Так как все точки окружности находятся от центра на одном и том же расстоянии, то все радиусы одной и той же окружности равны между собой. Радиус обыкновенно обозначается буквой R или r .

Точка, взятая внутри окружности, находится от её центра на расстоянии, меньшем радиуса. В этом легко убедиться, если через данную точку провести радиус (рис. 85).

Точка, взятая вне окружности, находится от её центра на расстоянии, большем радиуса. В этом легко убедиться, если соединить данную точку с центром окружности (рис. 85).

Отрезок прямой, соединяющий две точки окружности, называется хордой.

Хорда, проходящая через центр, называется диаметром (рис. 84). Диаметр обыкновенно обозначается буквой D. Диаметр равен двум радиусам:

Так как все радиусы одного и того же круга равны между собой, то и все диаметры данного круга равны между собой.

Теорема . Хорда, не проходящая через центр круга, меньше диаметра, проведённого в том же круге.

В самом деле, если проведём какую-нибудь хорду, например АВ, и соединим её концы с центром О (рис. 86), то увидим, что хорда АВ меньше ломаной линии АО + ОВ, т. е. АВ r, а так как 2r = D, то АВ

Если круг перегнуть по диаметру (рис. 87), то обе части круга и окружности совместятся. Диаметр делит круг и окружность на две равные части.

Два круга (две окружности) называются равными, если их можно наложить друг на друга так, чтобы они совместились.

Поэтому два круга (две окружности) с равными радиусами равны.

2. Дуга окружности.

Часть окружности называется дугой.

Слово «дуга» иногда заменяется знаком \(\breve{ }\). Дуга обозначается двумя или тремя буквами, из которых две ставятся на концах дуги, а третья - у какой-нибудь точки дуги. На чертеже 88 обозначены две дуги: \(\breve{ACB}\) и \(\breve{ADB}\).

В том случае, когда дуга меньше полуокружности, она обычно обозначается двумя буквами. Так, дугу АDВ можно обозначить \(\breve{AB}\) (рис. 88). О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Если передвинуть дугу АС (рис. 89, а) так, чтобы она скользила поданной окружности, и если при этом она совпадает с дугой МN, то \(\breve{AC}\) = \(\breve{NM}\).

На чертеже 89, б дуги АС и АВ не равны между собой. Начинаются обе дуги в точке А, но одна дуга \(\breve{AB}\) составляет только часть другой дуги \(\breve{AC}\).

Поэтому \(\breve{AC}\) > \(\breve{AB}\); \(\breve{AB}\)

Построение окружности по трем точкам

Задача. Через три точки, не лежащие на одной прямой, провести окружность.

Пусть нам даны три точки А, В и С, не лежащие на одной прямой (черт.311).

Соединим эти точки отрезками АВ и ВС. Чтобы найти точки равноудалённые от точек А и В разделим отрезок АВ пополам и через середину (точку М) проведём прямую перпендикулярную к АВ. Каждая точка этого перпендикуляра одинаково удалена от точек А и В.

Чтобы найти точки, равноудалённые от точек В и С, разделим отрезок ВС пополам и через его середину (точку N) проведем прямую, перпендикулярную ВС. Каждая точка этого перпендикуляа одинаково удалена от точек В и С.

Точка О пересечения этих перпендикуляров будет находиться на одинаковом расстоянии от данных точек А, В и С (АО = ВО = СО). Если мы, приняв точку О за центр круга, радиусом, равным АО, проведём окружность, то она пройдёт через все данные точки А, В и С.

Точка О является единственной точкой, которая может служить центром окружности, проходящей через три точки А, В и С, не лежащие на одной прямой, так как два перпендикуляра к отрезкам АВ и ВС могут пересечься только в одной точке. Значит, задача имеет единственное решение.

Примечание . Если три точки А, В и С будут лежать на одной прямой, то задача не будет иметь решения, так как перпендикуляры к отрезкам АВ и ВС будут параллельны и не будет существовать точки, одинаково удаленной от точек А, В, С, т. е. точки, которая могла бы служить центром искомой окружности.

Если соединить отрезком точки А и С и середину этого отрезка (точку К) соединить с центром окружности О, то ОК будет перпендикулярна к АС (черт. 311), так как в равнобедренном треугольнике АОС ОК является медианой, поэтому ОК⊥АС.

Следствие. Три перпендикуляра к сторонам треугольника, проведённые через их середины пересекаются в одной точке.

Школьная пора для большинства взрослых людей ассоциируется с беззаботным детством. Конечно, многие неохотно посещают школу, но только там они могут получить базовые знания, которые впоследствии пригодятся им в жизни. Одним из таких является вопрос о том, и круг. Спутать данные понятия достаточно просто, ведь слова являются однокоренными. Но разница между ними не настолько большая, как может показаться неопытному ребенку. Дети данную тему любят по причине ее простоты.

Что такое окружность?

Окружность - это замкнутая линия, каждая точка которой равно удалена от центральной. Самым ярким примером окружности является обруч, который представляет собой замкнутое тело. Собственно, и говорить особо об окружности не приходится. В вопросе о том, что такое окружность и круг, значительно интереснее вторая его часть.

Что такое круг?

Представьте, что вы решили разукрасить нарисованную выше окружность. Для этого можно выбрать любые краски: синие, желтые или зеленые - кому что ближе по душе. И вот вы начали заполнять пустоту чем-то. После того как это было закончено, у нас получилась фигура, которая называется кругом. По сути, круг - это часть поверхности, очерченная окружностью.

У круга есть несколько важных параметров, часть из которых также характерна и для окружности. Первый - это радиус. Им называется расстояние между центральной точкой круга (ну или окружности) и самой окружностью, что создает границы кругу. Вторая важная характеристика, которая неоднократно используется в школьных задачах - это диаметр (то есть расстояние между противоположными точками окружности).

Ну и наконец, третья характеристика, присущая кругу - это площадь. Данное свойство специфичное только для него, окружность не имеет площади в силу того, что у нее нет ничего внутри, а центр, в отличие от круга, скорее воображаемый, чем настоящий. В самом же круге можно установить четкий центр, через который провести ряд линий, которые делят его на сектора.

Примеры круга в реальной жизни

На самом деле возможных предметов, которые можно назвать разновидностью круга, достаточно. Например, если посмотреть на колесо машины прямо, то вот вам пример готового круга. Да, он необязательно должен быть заполнен однотонно, вполне возможны различные узоры внутри него. Второй пример круга - это солнце. Конечно, на него посмотреть будет тяжело, но оно на небе выглядит, как маленький кружочек.

Да, сама звезда Солнце - это не круг, она имеет еще и объем. Но вот само солнце, которое мы видим над нашей головой в летнее время, является типичным кругом. Правда, площадь у него все равно высчитать не получится. Ведь сравнение его с кругом приводится только для наглядности, чтобы было проще понять, что такое окружность и круг.

Отличия окружности от круга

Значит, какой вывод мы можем сделать? Чем отличается окружность от круга, так это тем, что у последнего есть площадь, и в большинстве случаев окружность является границей круга. Хотя бывают и исключения на первый взгляд. Может показаться иногда, что нет окружности в круге, но это не так. В любом случае что-то да есть. Просто окружность может быть очень маленькой, и тогда ее не видно невооруженным глазом.

Также окружностью может быть то, что выделяет круг из фона. Например, на приведеном выше изображении синий круг находится на белом фоне. А вот та черта, по которой мы понимаем, что здесь начинается фигура, и называется в данном случае окружностью. Таким образом, окружность - круга. Вот чем отличается окружность от круга.

Что такое сектор?

Сектор - это участок круга, который образуется двумя проведенными по нему радиусами. Чтобы понять это определение, нужно просто вспомнить пиццу. Когда ее разрезают на равные кусочки, все они и являются секторами круга, который представлен в виде такого вкусного блюда. При этом совершенно необязательно секторы должны быть равны. Они могут быть разной величины. Например, если отрезать половину пиццы, то она также будет сектором этого круга.

Предмет, отображаемый этим понятием, может иметь только круг. тоже можно провести, конечно, но после этого она станет кругом) не имеет площади, поэтому и сектор выделить не получится.

Выводы

Да, тема о круге и окружности (что это такое) очень проста для понимания. Но вообще все то, что касается этих является самым сложным для изучения. Школьнику нужно быть готовым к тому, что круг - фигура капризная. Но, как говорится, тяжело в учении - легко в бою. Да, геометрия - наука сложная. Зато успешное ее освоение позволяет сделать маленький шажок в сторону успеха. Потому что старания при обучении позволяют не только пополнять багаж собственных знаний, но и получать необходимые в жизни навыки. Собственно, на это и нацелена школа. А ответ на вопрос о том, что такое окружность и круг, является вторичным, хоть и важным.

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром и радиусом называется множество точек плоскости, удаленных от на расстояние, не большее . Круг ограничен окружностью, состоящей из точек, удаленных от центра в точности на расстояние . Отрезки, соединяющие центр с точками окружности, имеют длину и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность – на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит ее и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние , то при она не пересекается с кругом, при пересекается с кругом по хорде и называется секущей, при имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают часть всей окружности. Центральный угол (рис. 3) измеряется тем же числом градусов, что и дуга , на которую он опирается; вписанный угол измеряется половиной дуги . Если вершина угла лежит внутри круга, то этот угол в градусной мере равен полусумме дуг и (рис. 4,а). Угол с вершиной вне круга (рис. 4,б), высекающий на окружности дуги и , измеряется полуразностью дуг и . Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4,в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка лежит внутри круга, то произведение длин отрезков проходящих через нее хорд постоянно. На рис. 5,a . Теорема о секущей и касательной (имеются в виду длины отрезков частей этих прямых) утверждает, что если точка лежит вне круга, то произведение секущей на ее внешнюю часть тоже неизменно и равно квадрату касательной (рис. 5,б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или ее дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть ее и приложить к линейке или же отметить на окружности точку и «прокатить» ее вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую-нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг правильные -угольники , то при , стремящемся к бесконечности, в пределе стремятся к . Поэтому естественно ввести следующие, уже строгие, определения: длина окружности - это предел последовательности периметров правильных вписанных в окружность -угольников, а площадь круга - предел последовательности их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на равных частей, точки деления соединяются ломаной и длина дуги полагается равной пределу периметров таких ломаных при , стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа следует формула для длины окружности:

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг и с общим центральным углом из соображений подобия вытекает пропорция , а из нее - пропорция , после перехода к пределу мы получаем независимость (от радиуса дуги) отношения . Это отношение определяется только центральным углом и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в . Тем самым получается формула для длины дуги:

где - радианная мера дуги.

Записанные формулы для и - это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного -угольника:

По определению левая часть стремится к площади круга , а правая - к числу

и , основания его медиан и , середины и отрезков прямых от точки пересечения его высот до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек и называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.