Точка пересечения диагоналей вписанного четырехугольника. Правила для многоугольников которые можно вписать в окружность и описать окружность вокруг них. Формулы длины стороны правильного n-угольника

Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

Площадь

S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали

С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

Согласно второй теореме Птолемея ,

p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство

p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

(p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

Если M и N являются средними точками диагоналей AC и BD , то

M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

где E и F - точки пересечения противоположных сторон.

Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

Формулы углов

a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

Для угла θ между диагоналями выполняется

tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

Формула Парамешвара

Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

Другие свойства

  • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
  • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

Четырёхугольники Брахмагупты

Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

Свойства ортодиагональных вписанных четырёхугольников

Площадь и радиус описанной окружности

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D -

или, через стороны четырёхугольника

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

Литература

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. .
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
  • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
  • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6

Примерами описанных четырёхугольников могут служить дельтоиды , которые включают ромбы , которые, в свою очередь, включают квадраты . Дельтоиды - это в точности те описанные четырёхугольники, которые также являются ортодиагональными . Если четырёхугольник является описанным и вписанным четырёхугольником , он называется бицентральным .

Свойства

В описанном четырёхугольнике четыре биссектрисы пересекаются в центре окружности. И наоборот, выпуклый четырёхугольник, в котором четыре биссектрисы пересекаются в одной точке, должен быть описанным, и точка пересечения биссектрис является центром вписанной окружности .

Если противоположные стороны в выпуклом четырёхугольнике ABCD (не являющийся трапецией) пересекаются в точках E и F , то они являются касательными к окружности тогда и только тогда, когда

B E + B F = D E + D F {\displaystyle \displaystyle BE+BF=DE+DF} A E − E C = A F − F C . {\displaystyle \displaystyle AE-EC=AF-FC.}

Второе равенство почти то же, что и равенство в теореме Уркхарта . Разница только в знаках - в теореме Уркхарта суммы, а здесь разности (см. рисунок справа).

Другое необходимое и достаточное условие - выпуклый четырёхугольник ABCD является описанным в том и только в том случае, когда вписанные в треугольники ABC и ADC окружности касаются друг друга .

Описание по углам, образованным диагональю BD со сторонами четырёхугольника ABCD , принадлежит Иосифеску (Iosifescu). Он в 1954 доказал, что выпуклый четырёхугольник имеет вписанную окружность тогда и только тогда, когда

tan ⁡ ∠ A B D 2 ⋅ tan ⁡ ∠ B D C 2 = tan ⁡ ∠ A D B 2 ⋅ tan ⁡ ∠ D B C 2 . {\displaystyle \tan {\frac {\angle ABD}{2}}\cdot \tan {\frac {\angle BDC}{2}}=\tan {\frac {\angle ADB}{2}}\cdot \tan {\frac {\angle DBC}{2}}.} R a R c = R b R d {\displaystyle R_{a}R_{c}=R_{b}R_{d}} ,

где R a , R b , R c , R d являются радиусами окружностей, внешне касательным сторонам a , b , c , d соответственно и продолжениям смежных сторон с каждой стороны .

Некоторые другие описания известны для четырёх треугольников, образованных диагоналями.

Специальные отрезки

Восемь отрезков касательных описанного четырёхугольника являются отрезками между вершинами и точками касания на сторонах. В каждой вершине имеется два равных касательных отрезка.

Точки касания образуют вписанный четырёхугольник.

Площадь

Нетригонометрические формулы

K = 1 2 p 2 q 2 − (a c − b d) 2 {\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(ac-bd)^{2}}}} ,

дающая площадь в терминах диагоналей p , q и сторон a , b , c , d касательного четырёхугольника.

Площадь можно представить также в терминах касательных отрезков (см. выше). Если их обозначить через e , f , g , h , то касательный четырёхугольник имеет площадь

K = (e + f + g + h) (e f g + f g h + g h e + h e f) . {\displaystyle K={\sqrt {(e+f+g+h)(efg+fgh+ghe+hef)}}.}

Более того, площадь касательного четырёхугольника можно выразить в терминах сторон a, b, c, d и соответствующих длин касательных отрезков e, f, g, h

K = a b c d − (e g − f h) 2 . {\displaystyle K={\sqrt {abcd-(eg-fh)^{2}}}.}

Поскольку eg = fh в том и только в том случае, когда он также является вписанным, получаем, что максимальная площадь a b c d {\displaystyle {\sqrt {abcd}}} может достигаться только на четырёхугольниках, которые являются и описанными, и вписанными одновременно.

Тригонометрические формулы

K = a b c d sin ⁡ A + C 2 = a b c d sin ⁡ B + D 2 . {\displaystyle K={\sqrt {abcd}}\sin {\frac {A+C}{2}}={\sqrt {abcd}}\sin {\frac {B+D}{2}}.}

Для заданного произведения сторон площадь будет максимальной, когда четырёхугольник является также вписанным . В этом случае K = a b c d {\displaystyle K={\sqrt {abcd}}} , поскольку противоположные углы являются дополнительными . Это можно доказать и другим способом, используя математический анализ .

Ещё одна формула площади описанного четырёхугольника ABCD , использующая два противоположных угла

K = (O A ⋅ O C + O B ⋅ O D) sin ⁡ A + C 2 {\displaystyle K=\left(OA\cdot OC+OB\cdot OD\right)\sin {\frac {A+C}{2}}} ,

где O является центром вписанной окружности.

Фактически площадь можно выразить в терминах лишь двух смежных сторон и двух противоположных углов

K = a b sin ⁡ B 2 csc ⁡ D 2 sin ⁡ B + D 2 . {\displaystyle K=ab\sin {\frac {B}{2}}\csc {\frac {D}{2}}\sin {\frac {B+D}{2}}.} K = 1 2 | (a c − b d) tan ⁡ θ | , {\displaystyle K={\tfrac {1}{2}}|(ac-bd)\tan {\theta }|,}

где θ угол (любой) между диагоналями. Формула неприменима к случаю дельтоидов, поскольку в этом случае θ равен 90° и тангенс не определён.

Неравенства

Как упомянуто было вскользь выше, площадь касательного многоугольника со сторонами a , b , c , d удовлетворяет неравенству

K ≤ a b c d {\displaystyle K\leq {\sqrt {abcd}}}

и равенство достигается тогда и только тогда, когда четырёхугольник является бицентральным .

Согласно Т. А. Ивановой (1976), полупериметр s описанного четырёхугольника удовлетворяет неравенству

s ≥ 4 r {\displaystyle s\geq 4r} ,

где r - радиус вписанной окружности. Неравенство превращается в равенство тогда и только тогда, когда четырёхугольник является квадратом . Это означает, что для площади K = rs , выполняется неравенство

K ≥ 4 r 2 {\displaystyle K\geq 4r^{2}}

с переходом в равенство в том и только в том случае, когда четырёхугольник - квадрат.

Свойства частей четырёхугольника

Четыре отрезка прямых между центром вписанной окружности и точками касания делят четырёхугольник на четыре прямоугольных дельтоида .

Если прямая делит описанный четырёхугольник на два многоугольника с равными площадями и равными периметрами , то эта линия проходит через инцентр .

Радиус вписанной окружности

Радиус вписанной окружности описанного четырёхугольника со сторонами a , b , c , d задаётся формулой

r = K s = K a + c = K b + d {\displaystyle r={\frac {K}{s}}={\frac {K}{a+c}}={\frac {K}{b+d}}} ,

где K - площадь четырёхугольника, а s - полупериметр. Для описанных четырёхугольников с заданным полупериметром радиус вписанной окружности максимален, когда четырёхугольник является одновременно и вписанным .

В терминах отрезков касательных радиус вписанной окружности .

r = e f g + f g h + g h e + h e f e + f + g + h . {\displaystyle \displaystyle r={\sqrt {\frac {efg+fgh+ghe+hef}{e+f+g+h}}}.}

Радиус вписанной окружности модно выразить также в терминах расстояния от инцентра O до вершин описанного четырёхугольника ABCD . Если u = AO , v = BO , x = CO и y = DO , то

r = 2 (σ − u v x) (σ − v x y) (σ − x y u) (σ − y u v) u v x y (u v + x y) (u x + v y) (u y + v x) {\displaystyle r=2{\sqrt {\frac {(\sigma -uvx)(\sigma -vxy)(\sigma -xyu)(\sigma -yuv)}{uvxy(uv+xy)(ux+vy)(uy+vx)}}}} ,

где σ = 1 2 (u v x + v x y + x y u + y u v) {\displaystyle \sigma ={\tfrac {1}{2}}(uvx+vxy+xyu+yuv)} .

Формулы для углов

Если e , f , g и h отрезки касательных от вершин A , B , C и D соответственно к точкам касания окружности четырёхугольником ABCD , то углы четырёхугольника можно вычислить по формулам

sin ⁡ A 2 = e f g + f g h + g h e + h e f (e + f) (e + g) (e + h) , {\displaystyle \sin {\frac {A}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(e+f)(e+g)(e+h)}}},} sin ⁡ B 2 = e f g + f g h + g h e + h e f (f + e) (f + g) (f + h) , {\displaystyle \sin {\frac {B}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(f+e)(f+g)(f+h)}}},} sin ⁡ C 2 = e f g + f g h + g h e + h e f (g + e) (g + f) (g + h) , {\displaystyle \sin {\frac {C}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(g+e)(g+f)(g+h)}}},} sin ⁡ D 2 = e f g + f g h + g h e + h e f (h + e) (h + f) (h + g) . {\displaystyle \sin {\frac {D}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(h+e)(h+f)(h+g)}}}.}

Угол между хордами KM и LN задаётся формулой (см. рисунок)

sin ⁡ φ = (e + f + g + h) (e f g + f g h + g h e + h e f) (e + f) (f + g) (g + h) (h + e) . {\displaystyle \sin {\varphi }={\sqrt {\frac {(e+f+g+h)(efg+fgh+ghe+hef)}{(e+f)(f+g)(g+h)(h+e)}}}.}

Диагонали

Если e , f , g и h являются отрезками касательных от A , B , C и D до точек касания вписанной окружности четырёхугольником ABCD , то длины диагоналей p = AC и q = BD равны

p = e + g f + h ((e + g) (f + h) + 4 f h) , {\displaystyle \displaystyle p={\sqrt {{\frac {e+g}{f+h}}{\Big (}(e+g)(f+h)+4fh{\Big)}}},} q = f + h e + g ((e + g) (f + h) + 4 e g) . {\displaystyle \displaystyle q={\sqrt {{\frac {f+h}{e+g}}{\Big (}(e+g)(f+h)+4eg{\Big)}}}.}

Хорды точек касания

Если e , f , g и h являются отрезками от вершин до точек касания, то длины хорд до противоположных точек касания равны

k = 2 (e f g + f g h + g h e + h e f) (e + f) (g + h) (e + g) (f + h) , {\displaystyle \displaystyle k={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+f)(g+h)(e+g)(f+h)}}},} l = 2 (e f g + f g h + g h e + h e f) (e + h) (f + g) (e + g) (f + h) , {\displaystyle \displaystyle l={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+h)(f+g)(e+g)(f+h)}}},}

где хорда k соединяет стороны с длинами a = e + f и c = g + h , а хорда l соединяет стороны длиной b = f + g и d = h + e . Квадрат отношения хорд удовлетворяет соотношению

k 2 l 2 = b d a c . {\displaystyle {\frac {k^{2}}{l^{2}}}={\frac {bd}{ac}}.}

Две хорды

Хорда между сторонами AB и CD в описанном четырёхугольнике ABCD длиннее, чем хорда между сторонами BC и DA тогда и только тогда, когда средняя линия между сторонами AB и CD короче, чем средняя линия между сторонами BC и DA .

Если описанный четырёхугольник ABCD имеет точки касания M на AB и N на CD и хорда MN пересекает диагональ BD в точке P , то отношение отрезков касательных B M D N {\displaystyle {\tfrac {BM}{DN}}} равно отношению B P D P {\displaystyle {\tfrac {BP}{DP}}} отрезков диагонали BD .

Коллинеарные точки

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно в описанном четырёхугольнике ABCD O , а пары противоположных сторон пересекаются в точках E и F и M 3 - середина отрезка EF , тогда точки M 3 , M 1 , O , и M 2 лежат на одной прямой Прямая, соединяющая эти точки, называется прямой Ньютона четырёхугольника.

E и F , а продолжения противоположных сторон четырёхугольника, образованного точками касания, пересекаются в точках T и S , то четыре точки E , F , T и S лежат на одной прямой

AB , BC , CD , DA в точках M , K , N и L соответственно, и если T M , T K , T N , T L являются изотомически сопряжёнными точками этих точек (то есть AТ M = BM и т.д.), то точка Нагеля определяется как пересечение прямых T N T M и T K T L . Обе эти прямые делят периметр четырёхугольника на две равные части. Однако важнее то, что точка Нагеля Q , "центроид площади" G и центр вписанной окружности O лежат на одной прямой, и при этом QG = 2GO . Эта прямая называется прямой Нагеля описанного четырёхугольника .

В описанном четырёхугольнике ABCD с центром вписанной окружности O P , пусть H M , H K , H N , H L являются ортоцентрами треугольников AOB , BOC , COD и DOA соответственно. Тогда точки P , H M , H K , H N и H L лежат на одной прямой.

Конкурентные и перпендикулярные прямые

Две диагонали четырёхугольника и две хорды, соединяющие противоположные точки касания (противоположные вершины вписанного четырёхугольника), конкурентны (т.е. пересекаются в одной точке). Для того, чтобы показать это, можно воспользоваться частным случаем теоремы Брианшона , которая утверждает, что шестиугольник, все стороны которого касаются коническое сечение , имеет три диагонали, пересекающиеся в одной точке. Из описанного четырёхугольника легко получить шестиугольник с двумя углами по 180° путём вставки двух новых вершина противоположных точках касания. Все шесть сторон полученного шестиугольника являются касательными вписанной окружности, так что его диагонали пересекаются в одной точке. Но две диагонали шестиугольника совпадают с диагоналями четырёхугольника, а третья диагональ проходит через противоположные точки касания. Повторив те же рассуждения для двух других точек касания, получим требуемый результат.

Если вписанная окружность касается сторон AB , BC , CD и DA в точках M , K , N , L соответственно, то прямые MK , LN и AC конкурентны.

Если продолжения противоположных сторон описанного четырёхугольника пересекаются в точках E и F , а диагонали пересекаются в точке P , то прямая EF перпендикулярна продолжению OP , где O - центр вписанной окружности .

Свойства вписанной окружности

Отношения двух противоположных сторон описанного четырёхугольника можно выразить через расстояния от центра вписанной окружности O до соответствующих сторон

A B C D = O A ⋅ O B O C ⋅ O D , B C D A = O B ⋅ O C O D ⋅ O A . {\displaystyle {\frac {AB}{CD}}={\frac {OA\cdot OB}{OC\cdot OD}},\quad \quad {\frac {BC}{DA}}={\frac {OB\cdot OC}{OD\cdot OA}}.}

Произведение двух смежных сторон описанного четырёхугольника ABCD с центром вписанной окружности O удовлетворяет соотношению

A B ⋅ B C = O B 2 + O A ⋅ O B ⋅ O C O D . {\displaystyle AB\cdot BC=OB^{2}+{\frac {OA\cdot OB\cdot OC}{OD}}.}

Если O - центр вписанной окружности четырёхугольника ABCD , то

O A ⋅ O C + O B ⋅ O D = A B ⋅ B C ⋅ C D ⋅ D A . {\displaystyle OA\cdot OC+OB\cdot OD={\sqrt {AB\cdot BC\cdot CD\cdot DA}}.}

Центр вписанной окружности O совпадает с "центроидом вершин" четырёхугольника в том и только в том случае, когда

O A ⋅ O C = O B ⋅ O D . {\displaystyle OA\cdot OC=OB\cdot OD.}

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно, то

O M 1 O M 2 = O A ⋅ O C O B ⋅ O D = e + g f + h , {\displaystyle {\frac {OM_{1}}{OM_{2}}}={\frac {OA\cdot OC}{OB\cdot OD}}={\frac {e+g}{f+h}},}

где e , f , g и h - отрезки касательных в вершинах A , B , C и D соответственно. Комбинируя первое равенство с последним, получим, что "центроид вершин" описанного четырёхугольника совпадает с центом вписанной окружности тогда и только тогда, когда центр вписанной окружности лежит посередине между средними точками диагоналей.

1 r 1 + 1 r 3 = 1 r 2 + 1 r 4 . {\displaystyle {\frac {1}{r_{1}}}+{\frac {1}{r_{3}}}={\frac {1}{r_{2}}}+{\frac {1}{r_{4}}}.}

Это свойство было доказано пятью годами ранее Вайнштейном . В решении его задачи похожее свойство было дано Васильевым и Сендеровым. Если через h M , h K , h N и h L обозначить высоты тех же треугольников (опущенных из пересечения диагоналей P ), то четырёхугольник является описанным тогда и только тогда, когда

1 h M + 1 h N = 1 h K + 1 h L . {\displaystyle {\frac {1}{h_{M}}}+{\frac {1}{h_{N}}}={\frac {1}{h_{K}}}+{\frac {1}{h_{L}}}.}

Ещё одно похожее свойство относится к радиусам вневписанных окружностей r M , r K , r N и r L для тех же четырёх треугольников (четыре вневписанные окружности касаются каждой из сторон четырёхугольника и продолжений диагоналей). Четырёхугольник является описанным в том и только в том случае, когда

1 r M + 1 r N = 1 r K + 1 r L . {\displaystyle {\frac {1}{r_{M}}}+{\frac {1}{r_{N}}}={\frac {1}{r_{K}}}+{\frac {1}{r_{L}}}.}

Если R M , R K , R N и R L - радиусы описанных окружностей треугольников APB , BPC , CPD и DPA соответственно, то треугольник ABCD является описанным тогда и только тогда, когда

R M + R N = R K + R L . {\displaystyle R_{M}+R_{N}=R_{K}+R_{L}.}

В 1996 Вайнштейн, похоже, был первым, кто доказал ещё одно замечательное свойство описанных четырёхугольников, которое позднее появилось в нескольких журналах и сайтах . Свойство утверждает, что если выпуклый четырёхугольников разделён на четыре неперекрывающихся треугольника его диагоналями, центры вписанных окружностей этих треугольников лежат на одной окружности тогда и только тогда, когда четырёхугольник является описанным. Фактически центры вписанных окружностей образуют ортодиагональный вписанный четырёхугоольник . Здесь вписанные окружности можно заменить на вневписанные (касающиеся стороны и продолжения диагоналей четырёхугольника). Тогда выпуклый четырёхугольник является описанным тогда и только тогда, когда центры вневписанных окружностей являются вершинами вписанного четырёхугольника .

Выпуклый четырёхугольник ABCD , в котором диагонали пересекаются в точке P , является описанным тогда и только тогда, когда четыре центра вневписанных окружностей треугольников APB , BPC , CPD и DPA лежат на одной окружности (здесь вневписанные окружности пересекают стороны четырёхугольника, в отличие от аналогичного утверждения выше, где вневписанные окружности лежат вне четырёхугольника). Если R m , R n , R k и R l - радиусы вневписанных окружностей APB , BPC , CPD и DPA соответственно, противоположных вершинам B и D , то ещё одним необходимым и достаточным условием того, что четырёхугольник является описанным, будет

1 R m + 1 R n = 1 R k + 1 R l . {\displaystyle {\frac {1}{R_{m}}}+{\frac {1}{R_{n}}}={\frac {1}{R_{k}}}+{\frac {1}{R_{l}}}.} m △ (A P B) + n △ (C P D) = k △ (B P C) + l △ (D P A) {\displaystyle {\frac {m}{\triangle (APB)}}+{\frac {n}{\triangle (CPD)}}={\frac {k}{\triangle (BPC)}}+{\frac {l}{\triangle (DPA)}}}

здесь m, k, n, l – длины сторон AB, BC, CD и DA, а ∆(APB ) - площадь треугольника APB .

Обозначим отрезки, на которые точка P делит диагональ AC как AP = p a и PC = p c . Аналогичным образом P делить диагональ BD на отрезки BP = p b и PD = p d . Тогда четырёхугольник является описанным тогда и только тогда, когда выполняется одно из равенств:

(m + p a − p b) (n + p c − p d) (m − p a + p b) (n − p c + p d) = (k + p c − p b) (l + p a − p d) (k − p c + p b) (l − p a + p d) . {\displaystyle {\frac {(m+p_{a}-p_{b})(n+p_{c}-p_{d})}{(m-p_{a}+p_{b})(n-p_{c}+p_{d})}}={\frac {(k+p_{c}-p_{b})(l+p_{a}-p_{d})}{(k-p_{c}+p_{b})(l-p_{a}+p_{d})}}.}

Условия для описанного четырёхугольника быть другим типом четырёхугольника .

Описанный четырёхугольник является бицентричным (т.е. описанным и вписанным одновременно) тогда и только тогда, когда радиус вписанной окружности наибольший среди всех описанных четырёхугольников, имеющих ту же самую последовательность длин сторон в том и только в том случае, когда любое из нижеследующих условий выполняется:

  • Площадь равна половине произведения диагоналей
  • Диагонали перпендикулярны
  • Два отрезка, соединяющие противоположные точки касания, имеют равные длины
  • Одна пара противоположных отрезков от вершины до точки касания имеют одинаковые длины
  • C.V. Durell, A. Robson. Advanced Trigonometry // Dover reprint. - 2003.
  • Victor Bryant, John Duncan. Wheels within wheels // Mathematical Gazette. - 2010. - Вып. 94, November .
  • Albrecht Hess. On a circle containing the incenters of tangential quadrilaterals // Forum Geometricorum. - 2014. - Т. 14 .
  • Wu Wei Chao, Plamen Simeonov. When quadrilaterals have inscribed circles (solution to problem 10698) // American Mathematical Monthly . - 2000. - Т. 107 , вып. 7 . - DOI :10.2307/2589133 .
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .

Larry Hoehn. A new formula concerning the diagonals and sides of a quadrilateral. - 2011. - Т. 11 Т. 10 .

  • Martin Josefsson. When is a Tangential Quadrilateral a Kite? // Forum Geometricorum. - 2011a. - Т. 11 .
  • Martin Josefsson. More Characterizations of Tangential Quadrilaterals // Forum Geometricorum. - 2011b. - Т. 11 .
  • Martin Josefsson. The Area of a Bicentric Quadrilateral // Forum Geometricorum. - 2011c. - Т. 11 .
  • Martin Josefsson. Similar Metric Characterizations of Tangential and Extangential Quadrilaterals // Forum Geometricorum. - 2012. - Т. 12 .
  • Martin Josefsson. Characterizations of Orthodiagonal Quadrilaterals. - 2012b. - Т. 12 .
  • Nicusor Minculete. Characterizations of a Tangential Quadrilateral // Forum Geometricorum. - 2009. - Т. 9 .
  • Alexei Myakishev. On Two Remarkable Lines Related to a Quadrilateral // Forum Geometricorum. - 2006. - Т. 6 .
  • A.W. Siddons, R.T. Hughes. Trigonometry. - Cambridge Univ. Press, 1929.
  • И. Вайнштейн, Н. Васильев, В. Сендеров. (Решение задачи) M1495 // Квант. - 1995. - Вып. 6 .
  • Michael De Villiers. Equiangular cyclic and equilateral circumscribed polygons // Mathematical Gazette. - 2011. - Вып. 95, March .
  • Четырёхугольник вписан в окружность (задачи). Продолжаем рассматривать задания входящие в состав ЕГЭ по математике. В этой статье мы решим несколько задач с использованием свойств вписанного угла. Теория была подробно уже изложена, . В указанной статье решение заданий по сути сводилось к применению свойства вписанного угла сразу же, то есть это были задания практически в одно действие. Здесь нужно чуть подумать, ход решения не всегда с ходу очевиден.

    Применяются: теорема о сумме углов треугольника, свойства вписанного угла, свойство четырёхугольника вписанного в окружность. О последнем подробнее.

    *Это свойство было уже представлено, но в другой интерпретации. Итак:


    Свойства:

    Вписанный четырехугольник - это четырехугольник, все вершины которого лежат на одной окружности.

    Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусам.

    То есть, если мы такой четырёхугольник, то сумма его противоположных углов равна 180 градусам.

    Рассмотрим задачи:

    27870. В окружности с центром O AC и BD - диаметры. Центральный угол AOD равен 110 0 . Найдите вписанный угол ACB . Ответ дайте в градусах.

    Треугольник B ОC равнобедренный, так как ОС=ОВ (это радиусы). Известно, что сумма углов треугольника равна 180 градусам. Рассмотрим ∠BOC и ∠AOD:

    Следовательно

    Углы при основании равнобедренного треугольника равны, то есть

    Другой способ:

    Угол АОВ является центральным углом для вписанного угла АСВ. По свойству вписанного в окружность угла

    Сумма смежных углов равна 180 0 , значит

    Таким образом

    Ответ: 35

    27871. Угол А четырехугольника ABCD, вписанного в окружность, равен 58 0 . Найдите угол C этого четырехугольника. Ответ дайте в градусах.

    Здесь достаточно вспомнить свойство такого четырёхугольника. Известно, что сумма его противоположных углов такого равна 180 градусам, значит угол С будет равен

    Второй способ:

    Построим ОВ и OD.

    По свойству вписанного угла градусная величина дуги BCD равна

    2∙58 0 = 116 0

    Следовательно градусная величина дуги BAD будет равна

    360 0 – 116 0 = 244 0

    По свойству вписанного угла угол С будет в два раза меньше, то есть 122 0 .

    Ответ: 122

    27872. Стороны четырехугольника ABCD AB , BC , CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95 0 , 49 0 , 71 0 , 145 0 . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

    Построим радиусы АО, OD, OC:

    Градусная величина дуги AD равна 145 0 , градусная величина дуги СD равна 71 0 , значит градусная величина дуги АDС равна 145 0 + 71 0 = 216 0 .

    По свойству вписанного угла угол В будет в два раза меньше центрального угла соответствующего дуге АDС, то есть

    Ответ: 108

    27874. Четырехугольник ABCD вписан в окружность. Угол ABC равен 105 0 , угол CAD равен 35 0 . Найдите угол ABD . Ответ дайте в градусах.

    Данная задача может вызвать затруднение. Сразу невозможно явно увидеть ход решения. Вспомним, что известно про вписанный четырёхугольник: сумма его противоположных углов равна 180 градусам. Найдём

    На данный момент мы нашли тот угол, который сразу же возможно определить по известному свойству. Если есть возможность найти какую-либо величину, сделайте это, пригодится. Действуем по принципу «находим то, что можно найти исходя из данных величин».

    Вписанные углы ABD и ACD опираются на одну и туже дугу, это означает, что они равны, то есть

    Ответ: 70

    27875. Четырехугольник ABCD вписан в окружность. Угол ABD равен 75 0 , угол CAD равен 35 0 . Найдите угол ABC . Ответ дайте в градусах.

    Известно, что вписанные углы опирающиеся на одну и ту же дугу, и лежащие от неё по одну сторону равны. Следовательно

    В треугольнике ACD известно два угла, можем найти третий:

    Отмечу, что важно помнить указанные свойства и задачи вы решите без проблем. Конечно, можно выстроить решение не совсем корректно. Например, в задаче 27876 для самостоятельного решения приведено «длинное», или как ещё говорят нерациональное решение. Ничего страшного, если вы именно также решите задачу.

    Главное чтобы вы помнили и применяли теорию, и в конечном итоге РЕШИЛИ задание.

    В данной рубрике продолжим рассматривать задачи, приглашаю вас на блог!

    На этом всё. Успеха вам!

    С уважением, Александр Крутицких

    Комиссия спрашивает у директора простой сельской школы:
    — По какой причине у вас все дети говорят: пришедши, ушедши?
    — А кто их знает, может они так привыкши!

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

    Материал из Википедии - свободной энциклопедии

    • В евклидовой геометрии , вписанный четырехугольник - это четырехугольник, у которого все вершины лежат на одной окружности. Эта окружность называется описанной окружностью четырехугольника, а вершины, как говорят, лежат на одной окружности. Центр этой окружности и ее радиус называются соответственно центром и радиусом описанной окружности. Другие термины для этого четырехугольника: четырехугольник лежит на одной окружности , стороны последнего четырехугольника являются хордами окружности. Обычно предполагается, что выпуклый четырехугольник является выпуклым четырехугольником. Формулы и свойства, приведенные ниже, действительны в выпуклом случае.
    • Говорят, что если около четырёхугольника можно описать окружность , то четырёхугольник вписан в эту окружность , и наоборот.

    Общие критерии вписанности четырехугольника

    • Около выпуклого четырёхугольника \pi радиан), то есть:
    \angle A+\angle C = \angle B + \angle D = 180^\circ

    или в обозначениях рисунка:

    \alpha + \gamma = \beta + \delta = \pi = 180^{\circ}.

    • Можно описать окружность около любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины).
    • Можно описать окружность около любого четырехугольника, у которого один внешний угол, смежный с данным внутренним углом , точно равен другому внутреннему углу, противолежащему данному внутреннему углу . По сути это условие есть условие антипараллельности двух противоположных сторон четырехугольника. На рис. ниже показан внешний и смежный с ним внутренний углы зеленого пятиугольника.
    \displaystyle AX\cdot XC = BX\cdot XD.
    • Пересечение X может быть внутренним или внешним по отношению к кругу. В первом случае получим вписанный четырехугольник является ABCD , а в последнем случае получим вписанный четырехугольник ABDC . При пересечении внутри круга, равенство гласит, что произведение длин сегментов, в котором точка X делит одну диагональ, равна произведению длин сегментов, в котором точка X делит другую диагональ. Это условие известно, как "теорема о пересекающихся хордах". В нашем случае диагонали вписанного четырехугольника являются хордами окружности.
    • Еще один критерий вписанности. Выпуклый четырехугольник ABCD вписан круг тогда и только тогда, когда
    \tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}=\tan{\frac{\beta}{2}}\tan{\frac{\delta}{2}}=1.

    Частные критерии вписанности четырехугольника

    Вписанный простой (без самопересечений) четырёхугольник является выпуклым . Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° (\pi радиан). Можно описать окружность около:

    • любого антипараллелограмма
    • любого прямоугольника (частный случай квадрат)
    • любой равнобедренной трапеции
    • любого четырехугольника, у которого два противоположных угла прямые.

    Свойства

    Формулы с диагоналями

    ef=ac+bd; \frac{e}{f} = \frac{a\cdot d+b\cdot c}{a\cdot b+c\cdot d}.

    В последней формуле пары смежных сторон числителя a и d , b и c опираются своими концами на диагональ длиной e . Аналогичное утверждение имеет место для знаменателя.

    • Формулы для длин диагоналей (следствия ):
    e = \sqrt{\frac{(ac+bd)(ad+bc)}{ab+cd}} и f = \sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}

    Формулы с углами

    Для вписанного четырехугольника с последовательностью сторон a , b , c , d , с полупериметром p и углом A между сторонами a и d , тригонометрические функции угла A даются формулами

    \cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}, \sin A = \frac{2\sqrt{(p-a)(p-b)(p-c)(p-d)}}{(ad+bc)}, \tan \frac{A}{2} = \sqrt{\frac{(p-a)(p-d)}{(p-b)(p-c)}}.

    Угол θ между диагоналями есть :p.26

    \tan \frac{\theta}{2} = \sqrt{\frac{(p-b)(p-d)}{(p-a)(p-c)}}.

    • Если противоположные стороны a и c пересекаются под углом φ , то он равен
    \cos{\frac{\varphi}{2}}=\sqrt{\frac{(p-b)(p-d)(b+d)^2}{(ab+cd)(ad+bc)}},

    где p есть полупериметр . :p.31

    Радиус окружности, описанной около четырёхугольника

    Формула Парамешвара (Parameshvara)

    Если четырехугольник с последовательными сторонами a , b , c , d и полупериметром p вписан окружность, то ее радиус равен по формуле Парамешвара :p. 84

    R= \frac{1}{4} \sqrt{\frac{(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}.

    Она была получена индийским математиком Парамешваром в 15 веке (ок. 1380–1460 гг.)

    • Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля , вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF .

    Критерий того, что четырехугольник, составленный из двух треугольников, вписан в некоторую окружность

    f^2 = \frac{(ac+bd)(ad+bc)}{(ab+cd)}.
    • Последнее условие дает выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырех его сторон (a , b , c , d ). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см.выше).

    Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

    • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
    • Следствие. Около антипараллелограмма , у которого две противоположные стороны антипараллельны, всегда можно описать окружность.

    Площадь вписанного в окружность четырёхугольника

    Варианты формулы Брахмагупты

    S=\sqrt{(p-a)(p-b)(p-c)(p-d)}, где p - полупериметр четырёхугольника. S= \frac{1}{4} \sqrt{- \begin{vmatrix}

    a & b & c & -d \\ b & a & -d & c \\ c & -d & a & b \\ -d & c & b & a \end{vmatrix}}

    Другие формулы площади

    S = \tfrac{1}{2}(ab+cd)\sin{B} S = \tfrac{1}{2}(ac+bd)\sin{\theta},

    где θ любой из углов между диагоналями. При условии, что угол A не является прямым, площадь также может быть выражена как :p.26

    S = \tfrac{1}{4}(a^2-b^2-c^2+d^2)\tan{A}. \displaystyle S=2R^2\sin{A}\sin{B}\sin{\theta},

    где R есть радиус описанной окружности . Как прямое следствие имеем неравенство

    S\le 2R^2,

    где равенство возможно тогда и только тогда, когда этот четырехугольник является квадратом.

    Четырехугольники Брахмагупты

    Четырехугольник Брахмагупты является четырехугольником, вписанным в окружность, с целыми значениями длин сторон, целыми значениями его диагоналей и с целым значением его площади. Все возможные четырехугольники Брахмагупты со сторонами a , b , c , d , с диагоналями e , f , с площадью S , и радиусом описанной окружности R могут быть получены путем освобождения от знаменателей следующих выражений, включающих рациональные параметры t , u , и v :

    a= b=(1+u^2)(v-t)(1+tv) c=t(1+u^2)(1+v^2) d=(1+v^2)(u-t)(1+tu) e=u(1+t^2)(1+v^2) f=v(1+t^2)(1+u^2) S=uv 4R=(1+u^2)(1+v^2)(1+t^2).

    Примеры

    • Частными четырёхугольниками, вписанными в окружность, являются: прямоугольник , квадрат , равнобедренная или равнобочная трапеция , антипараллелограмм .

    Четырехугольники, вписанные в окружность с перпендикулярными диагоналями (вписанные ортодиагональные четырехугольники)

    Свойства четырехугольников, вписанных в окружность с перпендикулярными диагоналями

    Радиус описанной окружности и площадь

    У четырехугольника, вписанного в окружность с перпендикулярными диагоналями, предположим, что пересечение диагоналей делит одну диагональ на отрезки длины p 1 и p 2 , а другую диагональ делит на отрезки длины q 1 и q 2 . Тогда (Первое равенство является Предложением 11 у Архимеда " Книга лемм )

    D^2=p_1^2+p_2^2+q_1^2+q_2^2=a^2+c^2=b^2+d^2,

    где D - диаметр cокружности . Это справедливо, потому что диагонали перпендикулярны хорды окружности . Из этих уравнений следует, что радиус описанной окружности R может быть записан в виде

    R=\tfrac{1}{2}\sqrt{p_1^2+p_2^2+q_1^2+q_2^2}

    или в терминах сторон четырехугольника в виде

    R=\tfrac{1}{2}\sqrt{a^2+c^2}=\tfrac{1}{2}\sqrt{b^2+d^2}.

    Отсюда также следует, что

    a^2+b^2+c^2+d^2=8R^2.

    • Для вписанных ортодиагональных четырехугольников справедлива теорема Брахмагупты :

    Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

    Замечание . В этой теореме под антимедиатрисой понимают отрезок FE четырехугольника на рисунке справа (по аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника). Он перпендикулярен одной стороне и одновременно проходит через середину противоположной ей стороны четырехугольника.

    Напишите отзыв о статье "Четырехугольники, вписанные в окружность"

    Примечания

    1. Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates , Highperception, с. 179, ISBN 1906338000 , OCLC
    2. . Вписанные четырёхугольники.
    3. Siddons, A. W. & Hughes, R. T. (1929), Trigonometry , Cambridge University Press, с. 202, OCLC
    4. Durell, C. V. & Robson, A. (2003), , Courier Dover, ISBN 978-0-486-43229-8 ,
    5. Alsina, Claudi & Nelsen, Roger B. (2007), "", Forum Geometricorum Т. 7: 147–9,
    6. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ., 2007 (orig. 1929).
    7. Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette Т. 84 (499): 69–70
    8. .
    9. Altshiller-Court, Nathan (2007), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, сс. 131, 137–8, ISBN 978-0-486-45805-2 , OCLC
    10. Honsberger, Ross (1995), , Episodes in Nineteenth and Twentieth Century Euclidean Geometry , vol. 37, New Mathematical Library, Cambridge University Press, сс. 35–39, ISBN 978-0-88385-639-0
    11. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
    12. Bradley, Christopher (2011), ,
    13. .
    14. Coxeter, Harold Scott MacDonald & Greitzer, Samuel L. (1967), , Geometry Revisited , Mathematical Association of America, сс. 57, 60, ISBN 978-0-88385-619-2
    15. .
    16. Andreescu, Titu & Enescu, Bogdan (2004), , Mathematical Olympiad Treasures , Springer, сс. 44–46, 50, ISBN 978-0-8176-4305-8
    17. .
    18. Buchholz, R. H. & MacDougall, J. A. (1999), "", Bulletin of the Australian Mathematical Society Т. 59 (2): 263–9, DOI 10.1017/S0004972700032883
    19. .
    20. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ. Co., 2007
    21. , с. 74.
    22. .
    23. .
    24. .
    25. Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal Т. 34 (4): 315–6
    26. Prasolov, Viktor, ,
    27. Alsina, Claudi & Nelsen, Roger (2009), , , Mathematical Association of America, с. 64, ISBN 978-0-88385-342-9 ,
    28. Sastry, K.R.S. (2002). «» (PDF). Forum Geometricorum 2 : 167–173.
    29. Posamentier, Alfred S. & Salkind, Charles T. (1970), , Challenging Problems in Geometry (2nd ed.), Courier Dover, сс. 104–5, ISBN 978-0-486-69154-1
    30. .
    31. .
    32. .

    См. также

    Теорема 1 . Сумма противоположных углов вписанного четырёхугольника равна 180° .

    Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°.

    ∠А, как вписанный в окружность О, измеряется 1 / 2 \(\breve{BCD}\).

    ∠С, как вписанный в ту же окружность, измеряется 1 / 2 \(\breve{BAD}\).

    Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т.е. имеют 360°.

    Отсюда ∠А + ∠С = 360°: 2 = 180°.

    Аналогично доказывается, что и ∠В + ∠D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов Аи С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180°.

    Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

    Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно

    ∠А + ∠С = 180° и ∠В + ∠D = 180°(рис. 412).

    Докажем, что около такого четырёхугольника можно описать окружность.

    Доказательство . Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

    Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

    Допустим, что вершина окажется внутри круга и займёт положение D’ (рис. 413). Тогда в четырёхугольнике ABCD’ будем иметь:

    ∠В + ∠D’ = 2d .

    Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

    ∠B + ∠Е = 2d .

    Из этих двух равенств следует:

    ∠D’ = 2d - ∠B;

    ∠E = 2d - ∠B;

    но этого быть не может, так как ∠D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

    Так же доказывается, что вершина D не может занять положение D" вне круга (рис. 414).

    Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

    Следствия.

    1. Вокруг всякого прямоугольника можно описать окружность.

    2. Вокруг равнобедренной трапеции можно описать окружность.

    В обоих случаях сумма противоположных углов равна 180°.


    Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (рис. 415), т. е. стороны его АВ, ВС, CD и DA - касательные к этой окружности.

    Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки, имеем:

    Сложим почленно эти равенства. Получим:

    АР + ВР + DN + CN = АК + ВМ +DK + СМ,

    т. е. АВ + CD = AD + ВС, что и требовалось доказать.

    Другие материалы