Чему равна относительная атомная масса. Как рассчитать атомную массу. Примеры решения задач

Одним из фундаментальных свойств атомов, является их масса. Абсолютная (истинная) масса атома – величина чрезвычайно малая. Взвесить атомы на весах невозможно, поскольку таких точных весов не существует. Их массы были определены с помощью расчетов.

Например, масса одного атома водорода равна 0,000 000 000 000 000 000 000 001 663 грамма! Масса атома урана – одного из самых тяжелых атомов, составляет приблизительно 0,000 000 000 000 000 000 000 4 грамма.

Точное значение массы атома урана – 3,952 ∙ 10−22 г, а атома водорода, самого легкого среди всех атомов, – 1,673 ∙ 10−24 г.

Производить расчеты с малыми числами неудобно. Поэтому вместо абсолютных масс атомов используют их относительные массы.

Относительная атомная масса

О массе любого атома можно судить, сравнивая ее с массой другого атома (находить отношение их масс). С момента определения относительных атомных масс элементов использовались различные атомы в качестве сравнения. Своеобразными эталонами для сравнения в свое время были атомы водорода и кислорода.

Единая шкала относительных атомных масс и новая единица атомной массы, принята Международным съездом физиков (1960) и унифицирована Международным съездом химиков (1961).

По сегодняшний день эталоном для сравнения является 1/12 часть массы атома углерода. Данное значение называют атомной единицей массы, сокращенно а.е.м

Атомная единица массы (а.е.м.) – масса 1/12 части атома углерода

Сравним, во сколько раз отличается абсолютная масса атома водорода и урана от 1 а.е.м., для этого разделим эти числа одно на другое:

Полученные при расчетах значения и являются относительными атомными массами элементов – относительно 1/12 массы атома углерода.

Так, относительная атомная масса водорода приблизительно равна 1, а урана – 238. Обратите внимание, что относительная атомная масса не имеет единиц измерения, так как при делении единицы измерения абсолютных масс (граммы) сокращаются.

Относительные атомные массы всех элементов указаны в Периодической Системе химических элементов Д.И. Менделеева. Символ, при помощи которого обозначают относительную атомную массу – Аr (буква r – сокращение от слова relative, что означает относительный).

Значения относительных атомных масс элементов используются во многих расчетах. Как правило, значения, приведенные в Периодической Системе, округляются до целых чисел. Обратите внимание, что элементы в Периодической Системе размещены в порядке увеличения относительных атомных масс.

Например, при помощи Периодической Системы определим относительные атомные массы ряда элементов:

Ar(O) = 16; Ar(Na) = 23; Ar(P) = 31.
Относительную атомную массу хлора принято записывать равной 35,5!
Ar(Сl) = 35,5

  • Относительные атомные массы пропорциональны абсолютным массам атомов
  • Эталоном для определения относительной атомной массы является 1/12 часть массы атома углерода
  • 1 а.е.м. = 1,662 ∙ 10−24 г
  • Относительную атомную массу обозначают Ar
  • Для расчетов значения относительных атомных масс округляют до целых, исключение – хлор, для которого Ar = 35,5
  • Относительная атомная масса не имеет единиц измерения

Атомной массой называется сумма масс всех протонов, нейтронов и электронов, из которых состоит тот или иной атом или молекула. По сравнению с протонами и нейтронами масса электронов очень мала, поэтому она не учитывается в расчетах. Хотя это и некорректно с формальной точки зрения, нередко данный термин используется для обозначения средней атомной массы всех изотопов элемента. На самом деле это относительная атомная масса, называемая также атомным весом элемента. Атомный вес – это среднее значение атомных масс всех изотопов элемента, встречающихся в природе. Химики должны различать эти два типа атомной массы при выполнении своей работы – неправильное значение атомной массы может, к примеру, привести к неправильному результату для выхода продукта реакции.

Шаги

Нахождение атомной массы по периодической таблице элементов

    Изучите как записывается атомная масса. Атомная масса, то есть масса данного атома или молекулы, может быть выражена в стандартных единицах системы СИ – граммах, килограммах и так далее. Однако в связи с тем, что атомные массы, выраженные в этих единицах, чрезвычайно малы, их часто записывают в унифицированных атомных единицах массы, или сокращенно а.е.м. – атомные единицы массы. Одна атомная единица массы равна 1/12 массы стандартного изотопа углерод-12.

  1. Найдите атомную массу в периодической таблице Менделеева. В большинстве стандартных таблиц Менделеева содержатся атомные массы (атомные веса) каждого элемента. Как правило, они приведены в виде числа в нижней части ячейки с элементом, под буквами, обозначающими химический элемент. Обычно это не целое число, а десятичная дробь.

    Помните о том, что в периодической таблице приведены средние атомные массы элементов. Как было отмечено ранее, относительные атомные массы, указанные для каждого элемента в периодической системе, являются средними значениями масс всех изотопов атома. Это среднее значение ценно для многих практических целей: к примеру, оно используется при расчете молярной массы молекул, состоящих из нескольких атомов. Однако когда вы имеете дело с отдельными атомами, этого значения, как правило, бывает недостаточно.

    • Поскольку средняя атомная масса представляет собой усредненное значение для нескольких изотопов, величина, указанная в таблице Менделеева не является точным значением атомной массы любого единичного атома.
    • Атомные массы отдельных атомов необходимо рассчитывать с учетом точного числа протонов и нейтронов в единичном атоме.

    Расчет атомной массы отдельного атома

    1. Найдите атомный номер данного элемента или его изотопа. Атомный номер – это количество протонов в атомах элемента, оно никогда не изменяется. Например, все атомы водорода, причем только они, имеют один протон. Атомный номер натрия равен 11, поскольку в его ядре одиннадцать протонов, тогда как атомный номер кислорода составляет восемь, так как в его ядре восемь протонов. Вы можете найти атомный номер любого элемента в периодической таблице Менделеева – практически во всех ее стандартных вариантах этот номер указан над буквенным обозначением химического элемента. Атомный номер всегда является положительным целым числом.

      • Предположим, нас интересует атом углерода. В атомах углерода всегда шесть протонов, поэтому мы знаем, что его атомный номер равен 6. Кроме того, мы видим, что в периодической системе, в верхней части ячейки с углеродом (C) находится цифра "6", указывающая на то, что атомный номер углерода равен шести.
      • Обратите внимание, что атомный номер элемента не связан однозначно с его относительной атомной массой в периодической системе. Хотя, особенно для элементов в верхней части таблицы, может показаться, что атомная масса элемента вдвое больше его атомного номера, она никогда не рассчитывается умножением атомного номера на два.
    2. Найдите число нейтронов в ядре. Количество нейтронов может быть различным для разных атомов одного и того же элемента. Когда два атома одного элемента с одинаковым количеством протонов имеют разное количество нейтронов, они являются разными изотопами этого элемента. В отличие от количества протонов, которое никогда не меняется, число нейтронов в атомах определенного элемента может зачастую меняться, поэтому средняя атомная масса элемента записывается в виде десятичной дроби со значением, лежащим между двумя соседними целыми числами.

      Сложите количество протонов и нейтронов. Это и будет атомной массой данного атома. Не обращайте внимания на количество электронов, которые окружают ядро – их суммарная масса чрезвычайно мала, поэтому они практически не влияют на ваши расчеты.

    Вычисление относительной атомной массы (атомного веса) элемента

    1. Определите, какие изотопы содержатся в образце. Химики часто определяют соотношение изотопов в конкретном образце с помощью специального прибора под названием масс-спектрометр. Однако при обучении эти данные будут предоставлены вам в условиях заданий, контрольных и так далее в виде значений, взятых из научной литературы.

      • В нашем случае допустим, что мы имеем дело с двумя изотопами: углеродом-12 и углеродом-13.
    2. Определите относительное содержание каждого изотопа в образце. Для каждого элемента различные изотопы встречаются в разных соотношениях. Эти соотношения почти всегда выражают в процентах. Некоторые изотопы встречаются очень часто, тогда как другие очень редки – временами настолько, что их с трудом можно обнаружить. Эти величины можно определить с помощью масс-спектрометрии или найти в справочнике.

      • Допустим, что концентрация углерода-12 равна 99%, а углерода-13 – 1%. Другие изотопы углерода действительно существуют, но в количествах настолько малых, что в данном случае ими можно пренебречь.
    3. Умножьте атомную массу каждого изотопа на его концентрацию в образце. Умножьте атомную массу каждого изотопа на его процентное содержание (выраженное в виде десятичной дроби). Чтобы перевести проценты в десятичную дробь, просто разделите их на 100. Полученные концентрации в сумме всегда должны давать 1.

      • Наш образец содержит углерод-12 и углерод-13. Если углерод-12 составляет 99% образца, а углерод-13 – 1%, то необходимо умножить 12 (атомная масса углерода-12) на 0,99 и 13 (атомная масса углерода-13) на 0,01.
      • В справочниках даются процентные соотношения, основанные на известных количествах всех изотопов того или иного элемента. Большинство учебников по химии содержат эту информацию в виде таблицы в конце книги. Для изучаемого образца относительные концентрации изотопов можно также определить с помощью масс-спектрометра.
    4. Сложите полученные результаты. Просуммируйте результаты умножения, которые вы получили в предыдущем шаге. В результате этой операции вы найдете относительную атомную массу вашего элемента – среднее значение атомных масс изотопов рассматриваемого элемента. Когда рассматривается элемент в целом, а не конкретный изотоп данного элемента, используется именно эта величина.

      • В нашем примере 12 x 0,99 = 11,88 для углерода-12, и 13 x 0,01 = 0,13 для углерода-13. Относительная атомная масса в нашем случае составляет 11,88 + 0,13 = 12,01 .
    • Некоторые изотопы менее стабильны, чем другие: они распадаются на атомы элементов с меньшим количеством протонов и нейтронов в ядре с выделением частиц, входящих в состав атомного ядра. Такие изотопы называют радиоактивными.

ОПРЕДЕЛЕНИЕ

Железо - двадцать шестой элемент Периодической таблицы. Обозначение - Fe от латинского «ferrum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 26.

Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.

К важнейшим рудам железа относятся магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ×3H 2 O и шпатовый железняк FeCO 3 .

Железо - серебристый (рис. 1) пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.

Рис. 1. Железо. Внешний вид.

Атомная и молекулярная масса железа

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) - во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии железо существует в виде одноатомных молекул Fe значения его атомной и молекулярной масс совпадают. Они равны 55,847.

Аллотропия и аллотропные модификации железа

Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 o С и от 1394 o С до температуры плавления. Температура плавления железа равна 1539 ± 5 o С. Между 912 o С и от 1394 o С устойчиво γ-железо.

Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры. При температурах ниже 912 o С и выше 1394 o С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912 - 1394 o С - больше.

Изотопы железа

Известно, что в природе железо может находиться в виде четырех стабильных изотопов 54 Fe, 56 Fe, 57 Fe и 57 Fe. Их массовые числа равны 54, 56, 57 и 58 соответственно. Ядро атома изотопа железа 54 Fe содержит двадцать шесть протонов и двадцать восемь нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы железа с массовыми числами от 45-ти до 72-х, а также 6 изомерных состояний ядер. Наиболее долгоживущим среди вышеперечисленных изотопов является 60 Fe с периодом полураспада равным 2,6 млн. лет.

Ионы железа

Электронная формула, демонстрирующая распределение по орбиталям электронов железа выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .

В результате химического взаимодействия железо отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Fe 0 -2e → Fe 2+ ;

Fe 0 -3e → Fe 3+ .

Молекула и атом железа

В свободном состоянии железо существует в виде одноатомных молекул Fe. Приведем некоторые свойства, характеризующие атом и молекулу железа:

Сплавы железа

До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Примеры решения задач

Задание Элементарный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов железа в молекуле через «х», число атомов кислорода через «у».

Найдем соответствующие относительные атомные массы элементов железа и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(Fe) = 56; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y= ω(Fe)/Ar(Fe) : ω(O)/Ar(O);

x:y = 72,41/56: 27,59/16;

x:y = 1,29: 1,84.

Наименьшее число примем за единицу (т.е. все числа разделим на наименьшее число 1,29):

1,29/1,29: 1,84/1,29;

Следовательно, простейшая формула соединения железа с кислородом имеет вид Fe 2 O 3 .

Ответ Fe 2 O 3

Физические свойства железа зависят от супеню его чистоты. Чистое железо достаточно пластичным металлом серебристо-белого цвета. Плотность железа составляет 7,87 г/см 3 . Температура плавления составляет 1539 ° С. В отличие от многих других металлов, железо проявляет магнитные свойства.

Чистое железо на воздухе достаточно устойчивым. В практической деятельности железо применяется, содержащего примеси. При нагревании железо является достаточно активным в отношении многих неметаллов. Рассмотрим химические свойства железа на примере взаимодействия с типичными неметаллами: кислородом и серой.

При сгорании железа в кислороде образуется соединение железа с кислорода, которая получила название железная окалина. Реакция сопровождается выделением тепла и света. Составим уравнение химической реакции:

3Fe + 2O 2 = Fe 3 O 4

При нагревании железо бурно реагирует с серой с образованием феррум (II) сульфида. Реакция также сопровождается выделением тепла и света. Составим уравнение химической реакции:

Железо широко применяется в промышленности и быту. Железный век - эпоха в развитии человечества, которая началась в начале первого тысячелетия до нашей эры в связи с распространением выплавки железа и изготовление железного орудия труда и военного оружия. Железный век пришел на смену бронзовому возраста. Сталь впервые появилась в Индии в десятом веке до нашей эры, чугун - только в средние века. Чистое железо используется для изготовления сердечников трансформаторов и электромагнитов, а также в производстве специальных сплавов. Больше всего на практике используют сплавы железа: чугун и сталь. Чугун применяется в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, которые проявляют устойчивость к коррозии.

Под влиянием кислорода воздуха и влаги железные сплавы превращаются в ржавчину. Продукт ржавления можно описать химической формулой Fe 2 O 3 · хH 2 O. Одна шестая часть выплавляемого чугуна, погибает от ржавления, поэтому вопрос борьбы с коррозией является весьма актуальным. Методы защиты от коррозии весьма разнообразны. Важнейшие из них: защита поверхности металла покрытием, создание сплавов с антикоррозийными свойствами, электрохимические средства, изменение состава среды. Защитные покрытия делят на две группы: металлические (покрытие железа цинком, хромом, никелем, кобальтом, медью) и неметаллические (лаки, краски, пластмассы, резина, цемент). При введении в состав сплавов специальных добавок получают нержавеющую сталь.

Железо. Распространенность железа в природе

Железо. Распространенность железа в природе. Биологическая роль железа

Второй важный химический элемент после кислорода, свойства которого будут изучаться, - это Ферум. Железо является металлическим элементом, который образует простое вещество - железо. Железо входит в состав восьмой группы побочной подгруппы периодической системы . Согласно номеру группы максимальная валентность железа должна составлять восемь, однако в соединениях Ферум чаще проявляет валентность два и три, а также известные соединения с валентностью железа шесть. Относительная атомная масса железа равно пятьдесят шесть.

По распространенной в составе земной коры Ферум занимает среди металлических элементов второе место после алюминия. Массовая доля железа в земной коре составляет почти пять процентов. В самородном состоянии железо встречается очень редко, обычно лишь в виде метеоритов. Именно в этом виде наши предки и смогли впервые познакомиться с железом и оценить его как очень хороший материал для изготовления орудий труда. Считается, что железо является главной составляющей ядра земного шара. Чаще Ферум встречается в природе в составе руд. Важнейшими из них являются: магнитный железняк (магнетит) Fe 3 O 4 , красный железняк (гематит) Fe 2 O 3 , бурый железняк (лимонит) Fe 2 O 3 · nH 2 O, железный колчедан (пирит) FeS 2 , шпатовый железняк (сидерит) FeСO3, гетит FeO (OH). В водах многих минеральных источников содержится Fe (НСO 3) 2 и некоторые другие соли железа.

Железо является жизненно важным элементом. В организме человека, как и животных, феррум присутствует во всех тканях, однако наибольшая его часть (примерно три грамма) сосредоточена в кровяных шариках. Атомы железа занимают центральное положение в молекулах гемоглобина, им гемоглобин обязан своей окраской и способностью присоединять отщеплять кислород. Железо участвует в процессе переноса кислорода от легких к тканям организма. Суточная потребность организма в Ферум составляет 15-20 мг. Общая его количество попадает в организм человека с растительной пищей и мясом. При потере крови потребность в Ферум превышает количество, которое человек получает с пищей. Недостаток железа в организме может привести к состоянию, которое характеризуется уменьшением количества эритроцитов и гемоглобина крови. Медицинские препараты железа следует принимать только по назначению врача.

Химические свойства кислорода. Реакции соединения

Химические свойства кислорода. Реакции соединения. Понятие оксиды, окисления и горения. Условия возникновения и прекращения горения

Кислород при нагревании энергично реагирует со многими веществами. Если в сосуд с кислородом внести раскаленный древесный уголь С, то оно раскаляется добела и сгорает. Составим уравнение химической реакции:

С + ONaHCO 2 = CONaHCO 2

Сера S горит в кислороде ярким синим пламенем с образованием газообразного вещества - сернистого газа. Составим уравнение химической реакции:

S + ONaHCO 2 = SONaHCO 2

Фосфор Р сгорает в кислороде ярким пламенем с образованием густого белого дыма, который состоит из твердых частиц фосфор (V) оксида. Составим уравнение химической реакции:

4P + 5ONaHCO 2 = 2PNaHCO 2 ONaHCO 5

Уравнения реакций взаимодействия кислорода с углем, серой и фосфором объединяет то, что из двух исходных веществ в каждом из случаев образуется одно вещество. Такие реакции, в результате которых из нескольких исходных веществ (реагентов) образуется только одно вещество (продукт), называются реакциями сообщения.

Продукты взаимодействия кислорода с рассмотренными веществами (углем, серой, фосфором) является оксидами. Оксидами называют сложные вещества, содержащие два элемента, один из которых кислород. Почти все химические элементы образуют оксиды, за исключением некоторых инертных элементов: гелия, неона, аргона, криптона и ксенона. Есть некоторые химические элементы, которые непосредственно не сочетаются с кислородом, например, Аурум.

Химические реакции взаимодействия веществ с кислородом называют реакциями окисления. Понятие "окисления" является более общим, чем понятие "горения". Горение - это химическая реакция, при которой происходит окисление веществ сопровождается выделением тепла и света. Для возникновения горения необходимы следующие условия: тесный контакт воздуха с горючим веществом и нагрев до температуры воспламенения. Для различных веществ температура воспламенения имеет разные значения. Например, температура воспламенения древесной пыли составляет 610 ° С, серы - 450 ° С, белого фосфора 45 - 60 ° С. Для того чтобы предотвратить возникновение горения, необходимо возбудить хотя бы одно из указанных условий. То есть надо удалить горючее вещество, охладить его ниже температуры воспламенения перекрыть доступ кислорода. Процессы горения сопровождают нас в повседневно жизни, поэтому каждый человек должен знать условия возникновения и прекращения горения, а также соблюдать необходимые правила обращения с огнеопасными веществами.

Круговорот кислорода в природе

Круговорот кислорода в природе. Применение кислорода, его биологическая роль

Примерно четвертая часть атомов всей живой материи приходится на долю кислорода. Поскольку общее количество атомов кислорода в природе неизменно, с удалением кислорода из воздуха вследствие дыхания и других процессов должно происходить его пополнения. Важнейшими источниками кислорода в неживой природе является углекислый газ и вода. Кислород попадает в атмосферу главным образом в результате процесса фотосинтеза, в котором участвует это-о-два. Важным источником кислорода является атмосфера Земли. Часть кислорода образуется в верхних частях атмосферы вследствие диссоциации воды под действием солнечного излучения. Часть кислорода выделяется зелеными растениями в процессе фотосинтеза с аш-два-о и это-в-два. В свою очередь атмосферное это-о-два образуется в результате реакций горения и дыхания животных. Атмосферное о-два расходуется на образование озона в верхних частях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения. Преобразование в-два в це-о-два приводит к выделению энергии, соответственно, на превращение это-о-два в о-два энергия должна расходоваться. Эта энергия оказывается Солнцем. Таким образом, жизнь на Земле зависит от циклических химических процессов, возможных благодаря попаданию солнечной энергии.

Применение кислорода обусловлено его химическими свойствами . Кислород широко используется как окислитель. Его применяют для сварки и резки металлов, в химической промышленности - для получения различных соединений и интенсификации некоторых производственных процессов. В космической технике кислород применяется для сжигания водорода и других видов топлива, в авиации - при полетах на больших высотах, в хирургии - для поддержания больных с затрудненным дыханием.

Биологическая роль кислорода обусловлено его способностью поддерживать дыхание. Человек при дыхании в течение одной минуты в среднем потребляет 0,5 дм3 кислорода, в течение суток - 720 дм 3 , а в течение года - 262,8 м 3 кислорода.
1. Реакция термического разложения калий перманганата. Составим уравнение химической реакции:

Вещество калий-марганец-о-четыре широко распространена в повседневно жизни под названием "марганцовка". Кислород, который образовался, проявляют тлеющей лучиной, которая ярко вспыхивает у отверстия газоотводной трубки прибора, в котором проводят реакцию, или при внесении в сосуд с кислородом.

2. Реакция разложения водород пероксида в присутствии марганца (IV) оксида. Составим уравнение химической реакции:

Водород пероксид также хорошо известен из повседневно жизни. Он может быть использован для обработки царапин и мелких ран (раствор аш-два-о-два мас три процента должен быть в каждой аптечке неотложной помощи). Многие химические реакции ускоряется в присутствии определенных веществ. В данном случае реакции разложения водород пероксида ускоряет марганец-о-два, однако сам марганец-о-два не расходуется и не входит в состав продуктов реакции. Марганец-о-два является катализатором.

Катализаторами называются вещества, которые ускоряют химические реакции, но сами при этом не расходуются. Катализаторы не только широко применяются в химической промышленности, но и играют важную роль в жизни человека. Природные катализаторы, которые получили название ферменты, участвующие в регулировании биохимических процессов.

Кислород, как уже отмечалось ранее, немного тяжелее воздуха. Поэтому его можно собрать вытеснением воздуха в сосуд, размещенную отверстием вверх.

Восстанавливали древесным углём в горне (см.), устроенном в яме; в горн мехами нагнетали, продукт - крицу ударами отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна процесса повышалась и часть науглероживалась, т. е. получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское » - английское pig iron. Позже было замечено, что при загрузке в горн не железной, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс (см. Кричный передел) оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную («домницу»), а затем и в доменную. В середине 18 в. в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в на поду пламенной отражательной (см. Пудлингование). Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в и его. Однако все существовавшие способы производства не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) занимает второе место среди (на первом). Оно энергично мигрирует в земной коре, образуя около 300 (, и т. д.). принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений (см. Железные). - земных глубин, оно накапливается на ранних этапах магмы, в ультраосновных (9,85%) и основных (8,56%) (в гранитах его всего 2,7%). В накапливается во многих морских и континентальных осадках, образуя осадочные.

Ниже приводятся физические свойства , относящиеся в основном к с общим содержанием примесей менее 0,01% по массе:

Своеобразно взаимодействие с. Концентрированная HNO 3 (плотность 1,45 г/см 3) пассивирует вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная HNO 3 растворяет с образованием Fe 2+ или Fe 3+ , восстанавливаясь до MH 3 или N 2 O и N 2 .

Получение и применение. Чистое получают в относительно небольших количествах водных его или его. Разрабатывается способ непосредственного получения из. Постепенно увеличивается производство достаточно чистого путём его прямого из рудных концентратов, или углём при относительно низких.

Важнейший современной техники. В чистом виде из-за его низкой практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса применяется в виде весьма различных по составу и свойствам. На долю приходится примерно 95% всей металлической продукции. Богатые (свыше 2% по массе) - чугуны, выплавляют в доменных из обогащенных железных (см. Доменное производство). Сталь различных марок (содержание менее 2% по массе) выплавляют из чугуна в мартеновских и электрических и конвертерах путём (выжигания) излишнего, удаления вредных примесей (главным образом S, Р, О) и добавления легирующих элементов (см. Мартеновская, Конвертер). Высоколегированные стали (с большим содержанием, и др. элементов) выплавляют в электрических дуговых и индукционных. Для производства сталей и особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество и автоматизацию процесса.

На основе создаются материалы, способные выдерживать воздействие высоких и низких, и высоких, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство и его постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Как художественный материал использовалось с древности в Египте (для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон),

>> Масса атома. Относительная атомная масса

Масса атома. Относительная атомная масса

Материал параграфа поможет вам выяснить:

> в чем различие между массой атома и относительной атомной массой ;
> почему удобно пользоваться относительными атомными массами;
> где найти значение относительной атомной массы элемента.

Это интересно

Масса электрона составляет приблизительно 9 10 -28 г.

Масса атома.

Важной характеристикой атома является его масса. Почти вся масса атома сконцентрирована в ядре. Электроны имеют настолько малую массу, что ею обычно пренебрегают.

сравнивают с 1/12 - массы атома Карбона (он почти в 12 раз тяжелее атома Гидрогена). Эту маленькую массу назвали атомной единицей массы (сокращенно - а. е. м.):

1 а. е. м. = 1/12m a (С) = 1/12 1,994 10 -23 г = 1,662 10 -24 г.

Масса атома Гидрогена почти совпадает с атомной единицей массы: m а (Н)~ 1а. е. м. Масса атома Урана больше ее в

То есть
m a (U) ~ 238 а. е. м.

Число, которое получают делением массы атома элемента на атомную единицу массы, называют относительной атомной массой элемента. Эту величину обозначают A r (E):

Индекс возле буквы А - первая буква в латинском слове relativus - относительный.

Относительная атомная масса элемента показывает, во сколько раз масса атома элемента больше 1/12 массы атома Карбона.

m а (Н) = 1,673 10 -2 4 г

m a (H)= 1 а. е. м.

A r (H) = 1

Относительная атомная масса элемента не имеет размерности.

Первую таблицу относительных атомных масс составил почти 200 лет назад английский ученый Дж. Дальтон.

На основании изложенного материала можно сделать такие выводы:

Относительные атомные массы пропорциональны массам атомов;
соотношения масс атомов такие же, как и относительных атомных масс.

Значения относительных атомных масс химических элементов записаны в периодической системе .

Джон Дальтон (1766- 1844)

Выдающийся английский физик и химик. Член Лондонского королевского общества (Английской академии наук). Первым выдвинул гипотезу о разных массах и размерах атомов, определил относительные атомные массы многих элементов и составил первую таблицу их значений (1803). Предложил символы элементов и обозначения химических соединений.

Сделав свыше 200 000 метеорологических наблюдений, изучив состав и свойства воздуха, открыл законы парциальных (частичных) давлений газов (1801), теплового расширения газов (1802), растворимости газов в жидкостях (1803).


Рис. 35. Клетка элемента Урана

Они определены с очень высокой точностью; соответствующие числа являются в основном пяти- и шестизначными (рис. 35).

В обычных химических расчетах значения относительных атомных масс принято округлять до целых чисел. Так, для Гидрогена и Урана

A r (H) = 1,0079 ~ 1;
A r (U) = 238,029 ~ 238.

Лишь значение относительной атомной массы Хлора округляют до десятых:

A r (Cl) = 35,453 ~ 35,5.

Найдите в периодической системе значения относительных атомных масс Лития, Карбона, Оксигена, Неона и округлите их до целых чисел.

Во сколько раз массы атомов Карбона, Оксигена, Неона и Магния больше массы атома Гелия? Для вычислений используйте округленные значения относительных атомных масс.

Обратите внимание : элементы размещены в пeриодической системе в порядке возрастания атомных масс.

Выводы

Атомы имеют чрезвычайно малую массу.

Для удобства вычислений используют относительные массы атомов.

Относительная атомная масса элемента является отношением массы атома элемента к - массы атома Карбона.

Значения относительных атомных масс указаны в периодической системе химических элементов.

?
48. В чем различие между понятиями «масса атома» и относительная атомная масса»?
49. Что такое атомная единица массы?
50. Что означают записи A r и A r ?
51. Какой атом легче - Карбона или Титана? Во сколько раз?
52. Что имеет большую массу: атом Флуора или два атома Лития; два ато­ма Магния или три атома Сульфура?
53. Найдите в периодической системе три-четыре пары элементов, соот­ношение масс атомов которых составляет: а) 1: 2; б) 1: 3.
54. Вычислите относительную атомную массу Гелия, если масса атома этого элемента равна 6,647 - 10 -24 г.
55. Рассчитайте массу атома Бериллия.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Химия относится к естественным наукам. Она изучает состав, строение, свойства и превращения веществ, а также явления, сопровождающие эти превращения.

Вещество является одной из основных форм существования материи. Вещество как форма материи состоит из отдельных частиц различной степени сложности и обладает собственной массой, так н а з ы в а е м о й

массой покоя.

    1. Простые и сложные вещества. Аллотропия.

Все вещества можно разделить на простые и сложные .

Простые вещества состоят из атомов одного химического элемента, сложные - из атомов нескольких химических элементов.

Химический элемент - это определенный вид атомов с одинаковым зарядом ядра. Следовательно, атом - это мельчайшая частица химического элемента.

Понятие простое вещество нельзя отождествлять с понятием

химический элемент . Химический элемент характеризуется определенным положительным зарядом ядра атома, изотопным составом, химическими свойствами. Свойства элементов относятся к его отдельным атомам. Простое вещество характеризуется определенной плотностью, растворимостью, температурами плавления и кипения и т.п. Эти свойства относятся к совокупности атомов и для разных простых веществ они различны.

Простое вещество - это форма существования химического элемента в свободном состоянии. Многие химические элементы образуют несколько простых веществ, различных по строению и свойствам. Это явление называется аллотропией , а образующие вещества - аллотропными видоизменениями . Так, элемент кислород образует две аллотропные модификации - кислород и озон, элемент углерод - алмаз, графит, карбин, фуллерен.

Явление аллотропии вызывается двумя причинами: различным числом атомов в молекуле (например, кислород О 2 и азон О 3 ) либо образованием различных кристаллических форм (например, углерод образует следующие аллотропные модификации: алмаз, графит, карбин, фуллерен), карбин был открыт в 1968г (А.Сладков, Россия), а фуллерен в 1973 г теоретически (Д.Бочвар, Россия), а в 1985г - экспериментально (Г.Крото и Р.Смолли, США).

Сложные вещества состоят не из простых веществ, а из химических элементов. Так водород и кислород, входящие в состав воды, содержатся в воде не в виде газообразных водорода и кислорода с их характерными свойствами, а в виде элементов - водорода и кислорода.

Мельчайшей частицей веществ, имеющих молекулярную структуру, является молекула, которая сохраняет химические свойства данного вещества. Согласно современным представлениям из молекул состоят в основном вещества, находящиеся в жидком и газообразном состоянии. Большинство же твердых веществ (в основном неорганических) состоит не из молекул, а из других частиц (ионов, атомов). Не имеют молекулярной структуры соли, оксиды металлов, алмаз, металлы и пр.

    1. Относительная атомная масса

Современные методы исследования позволяют определить чрезвычайно малые массы атомов с большей точностью. Так, например, масса атома водорода составляет 1,674 10 -27 кг, углерода – 1,993 10 -26 кг.

В химии традиционно используются не абсолютные значения атомных масс, а относительные. В 1961г за единицу атомной массы принята атомная единица массы (сокращенно а.е.м.), которая представляет собой 1/12 часть массы атома изотопа углерода 12 С .

Большинство химических элементов имеют атомы с различной массой (изотопы). Поэтому относительной атомной массой (или просто атомной массой) А r химического элемента называется величина, равная отношению средней массы атома элемента к 1/12 массы атома углерода 12 С.

Атомные массы элементов обозначают А r , где индекс r – начальная буква английского слова relative – относительный. Записи A r (H), A r (O), A r (C) означают: относительная атомная масса водорода, относительная атомная масса кислорода, относительная атомная масса углерода.

Относительная атомная масса – одна из основных характеристик химического элемента.