Ядерные источники питания для автомобиля. Ядерные батарейки — что это? Принцип действия аккумулятора

ЯДЕРНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Применение энергии ядерного распада дает в отличие, например, от солнечных источников питания качественно иные типы космических электростанций длительного действия. Дело в том, что источники энергии, космических ядерных установок (реактор или радиоактивный изотоп) не получают эту энергию из космоса, a являются как бы аккумуляторами. В то же время ядерный реактор не является непосредственно источником электроэнергии. Реактор или изотоп - это мощный источник тепла. Получение электрического тока в ядерном источнике питания сводится к преобразованию тепловой энергии в электрическую.

Ядерный источник энергии будет находиться непосредственно на борту ОКС, а это дает возможность получать энергию практически непрерывно и независимо от каких-либо внешних факторов.

Здесь мы не будем останавливаться на принципе действия и устройстве ядерного реактора, об этом написано достаточно много и обстоятельно. Рассмотрим лишь некоторые способы преобразования тепловой энергии в электрическую.

Турбогенераторная установка с ядерным реактором считается одной из наиболее перспективных систем для длительного применения в космосе, поэтому рассмотрим ее подробнее.

На рис. 31 показана принципиальная схема такой установки, с теплопередающим агентом и рабочим телом которой является жидкость.

Рис. 31. Схема ядерной турбогенераторной установки:

1 - реактор; 2 - кипятильник; 3 - насос; 4 - турбина; 5 - электрогенератор; 6 - холодильник; 7 - насос

Выделяющееся в ядерном реакторе тепло воспринимается теплоносителем первичного контура. Нагретая до высокой температуры жидкость поступает в теплообменный аппарат - кипятильник, где отдает свое тепло рабочему телу вторичного контура. После этого первичный теплоноситель насосом высокого давления перегоняется снова в реактор.

Основной рабочий цикл установки осуществляется во вторичном контуре. Рабочее тело (также жидкость) сначала нагревается до температуры кипения в кипятильнике, а затем здесь же полностью испаряется. Пар, который поступает на рабочие лопатки паровой турбину, приводит во вращение обыкновенный машинный электрогенератор. Отработанный пар по выходе из турбины поступает в холодильник, где полностью конденсируется, т. е. снова превращается в жидкость.

Как мы уже говорили, единственным способом отдача тепла в окружающее пространство в космосе является радиационное излучение. Поэтому холодильником любой космической установки является излучатель тепла. Рабочее тело, пришедшее к первоначальному жид-кому состоянию, перегоняется насосом снова в кипятильник. На этом цикл основного рабочего контура замыкается.

Схема, в которой основное рабочее тело не нагревается непосредственно в реакторе, а воспринимает тепло через промежуточный теплоноситель, называется двухконтурной .

Возможно применение и одноконтурной схемы теплопередачи, в которой нет первичного контура и рабочее тело нагревается и испаряется не в кипятильнике, а непосредственно в каналах тепловыделяющих элементов реактора.

Очевидно, что одноконтурная схема проще и легче, так как в ней нет теплообменного аппарата - кипятильника и магистралей первичного контура. Кроме того, при такой схеме можно было бы значительно увеличить съем тепла с тепловыделяющей поверхности реактора, получить более высокую температуру цикла, а следовательно, и больший к.п.д. Но несмотря на все эти преимущества, одноконтурную схему нельзя применить для ОКС. Главная причина - засорение теплоносителя системы радиоактивными продуктами распада и возникновение так называемой наведенной активности в элементах конструкции установки. А это влечет за собой увеличение веса антирадиационной защиты для экипажа и, кроме того, делает в значительной мере невозможным ремонт и профилактику установки в условиях эксплуатации. При двухконтурной схеме основное рабочее тело не имеет непосредственного контакта с ядерным реактором и вторичный контур системы вполне доступен для обслуживания.

Реальное осуществление космической электротурбоустановки с ядерным реактором связано с выбором подходящего рабочего тела для основного (вторичного) контура.

В наземных атомных электростанциях с турбогенератором в качестве рабочего тела применяется вода. Но высокая коррозионная активность, большие давления пара (до 280 атм и более), высокая наведенная радиоактивность, а главное, низкие максимальные температуры цикла (не выше 300 °C) делают воду совершенно неприменимой для космических энергоустановок.

Наилучшие свойства имеют жидкометаллические теплоносители. Жидкие металлы: ртуть, натрий, калий, рубидий, цезий и некоторые другие - обладают очень высокой теплопроводностью, большой скрытой теплотой парообразования, небольшими давлениями паров при высоких температурах, что и оправдывает их широкое распространение в конструктивных разработках ядерных турбогенераторных установок. Антикоррозионные свойства и наведенная активность их также вполне приемлемы.

Принципиально турбогенераторная схема может осуществляться не только на парах жидких металлов, но и с газом в качестве рабочего тела - по так называемому циклу Брайтона, т. е. как газотурбинная установка, в состав которой вместо насоса входит компрессор. Но такая схема при некоторых преимуществах (более высокие температуры и высокие эксплуатационные качества) имеет очень существенные недостатки, в частности очень большой удельный вес.

Конструктивное решение турбогенераторной ядерной установки можно рассмотреть на примере разработанной в США системы SNAP-2 с электрической мощностью 3 квт (рис. 32).

Рис. 32. Энергетическая установка SNAP-2:

1 - трубка конденсатора; 2 - излучатель; 3 - активная зона реактора; 4 - дополнительный подогреватель; 5 - насос теплоносителя; 6 - отражатель реактора; 7 - управление нагрузкой; 8 - полезная нагрузка; 9 - расширительный бак; 10 - ртутный насос; 11 - подшипник скольжения и упорные подшипники; 12 - статор электрогенератора; 13 - турбина; 14 - подшипник скольжения; 15 - насос

В качестве теплоносителя первичного контура применен сплав натрия с калием, температура которого на выходе из реактора 650 °C. Теплоноситель вторичного контура - ртуть. Максимальная температура рабочего цикла 621 °C. Турбина - двухступенчатая. Площадь радиационного холодильника - излучателя - 9,3 м 2 . Электрический генератор дает переменный ток напряжением 110 в, частотой 2000 гц.

Полный к. п. д. SNAP-2 равен всего лишь 6,5 %. Это значит, что из 50 квт тепловой мощности реактора около 47 квт рассеивается излучателем или уходит на нагрев конструкции. Общий вес системы SNAP-2 без биологической защиты - 270 кг (из них 90 кг приходится на реактор), т. е. удельный вес установки без защиты составляет 90 кг/квт.

Но и этот довольно высокий удельный вес ядерной установки заметно увеличится из-за веса биологической защиты, который в большой степени зависит от размещения энергоустановки на станции, а также от условии эксплуатации, в частности от места запуска реактора - будет ли он производиться на Земле или после выведения ОКС на орбиту.

Наземный запуск ядерной установки усложняет обслуживание стартовой площадки, но обеспечивает условия для полной проверки работы всей энергосистемы.

Запуск же на орбите связан со снижением надежности всей энергетической системы и довольно сложен в осуществлении. В случае запуска на Земле экипаж в момент подготовки к старту и в полете при прохождении атмосферы должен быть полностью защищен не только от направленной радиации, но и от «разбрызгивания» ее молекулами окружающего воздуха, т. е. практически защита должна быть круговой, сплошной. На орбите же достаточно лишь так называемой теневой защиты экипажа, вес которой, очевидно, намного меньше. Кроме того, на орбите энергоустановка может быть удалена от основной конструкции ОКС на некоторое расстояние, например с помощью выдвижной телескопической штанги или другим способом. А так как толщина защиты зависит от расстояния до источника радиации, то вес теневого защитного экрана можно будет сделать еще меньше. Сколько же должна весить биологическая защита для турбогенератора SNAP-2? При ее расчете исходят из допустимой дозы облучения экипажа. Если принять, что суммарная доза для экипажа ОКС за три месяца не должна превысить 15 рентген, то вес защиты при удавлении реактора от экипажа на 15 м составит от 200 до 450 кг в зависимости от взаимной компоновки реактора и кабины экипажа.

Таким образом, суммарный вес установки может достичь 720 кг, а удельный вес - 240 кг/квт. Следует заметить, однако, что с увеличением мощности установки эти Цифры значительно уменьшаются.

Турбогенераторная установка - не единственный способ использования энергии ядерного реактора в космосе. Существуют и другие способы преобразования ее в электричество. Об этих способах мы расскажем в разделе о немашинных методах преобразования энергии.

Энергия ядерного распада может быть получена не только в реакторе, но и с помощью радиоактивных изотопов . Основные достоинства этого источника энергии, применимого для небольших мощностей до 0,5 квт), - малый вес и длительное время непрерывной и стабильной работы.

Принципиальная схема использования изотопов ничем не отличается от схемы турбогенераторной установки с реактором - теплоноситель прокачивается через специальный котел с трубками из материала, насыщенного изотопом, например стронцием-90 или цезием-144. Но может использоваться я схема, применяемая в солнечных батареях: облученный теплом от изотопа слой люминофора излучает фотоны, которые попадают на кремниевый элемент, аналогичный солнечной батарее. Получить большую электрическую мощность с помощью радиоизотопов очень трудно, да и вряд ли выгодно, если учесть сложность получения изотопов и их высокую стоимость.

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Ядерные взрывы в космосе Перспектива использования околоземного космического пространства в качестве плацдарма для размещения ударных вооружений заставила задуматься над способами борьбы со спутниками еще до появления самих спутников.Наиболее радикальным по тем

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Советские ядерные двигатели В Советском Союзе работы над ядерными ракетными двигателями начались в середине 50-х годов. В НИИ-1 (научный руководитель - Мстислав Келдыш) инициатором и руководителем работ по ЯРД был Виталий Иевлев. В 1957 году он сделал по этой теме сообщение

Из книги Малая скоростная автоматизированная подводная лодка-истребитель пр. 705(705К) автора Автор неизвестен

Источники: 1. История отечественного судостроения, т.5. СПб.: "Судостроение", 1996.2. Шмаков Р.А. Опередившие время… (ПЛА проектов 705 и /05К). "Морской Сборник", 1996, 9 7.3. Адмиралтейские верфи. Люди, корабли, годы. 1926-1996, СПб: "Гангут", 1 9964. Михайловский А.П. Рабочая глубина. Записки

Из книги Эскадренные миноносцы типа "Новик" в ВМФ СССР автора Лихачев Павел Владимирович

ИСТОЧНИКИ РГА ВМФ. Фонды: р-12 опись 1 дело № 22 "О степени готовности кораблей Балтийского флота", р-35 1 № 6, р- 2293№ 56 "Журнал боевых действий эсминца "Энгельс", р-2571№ 62л. 97,139, р-2571№ 101, р-3511№ 7л.18, р-951№16л.З, р-2502№33л.89 "Приказы командира бригады эсминцев МСБМ. 1932., р-2571№ 50 "Тех.

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 3.7 Ядерные спектры и эффект Мёссбауэра При максимально возможной опоре на механику или электродинамику необходимо указать физически наглядные математические операции, интерпретация которых через колебания подходящей модели приводит для неё к законам сериальных

Из книги Броненосец Двенадцать Апостолов автора Арбузов Владимир Васильевич

§ 3.13 Ядерные реакции и дефект массы Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной

Из книги Импульсные блоки питания для IBM PC автора Куличков Александр Васильевич

Из книги Металл Века автора Николаев Григорий Ильич

ИСТОЧНИКИ РГА ВМФ Фонд 417. Главный морской штаб. Фонд 418. Морской генеральный штаб. Фонд 421. Морской Технический комитет. Фонд 427. Главное управление кораблестроения и снабжений Фонд 609. Штаб командующего флотом Черного моря. Фонд 870. Вахтенные и шканечные журналы (коллекция).

Из книги Источники питания и зарядные устройства автора

Глава 3 Импульсные источники питания персональных компьютеров типа АТ/ХТ Совершенствование персональных компьютеров и используемых в них источников электропитания происходило постепенно и параллельно. Появление новых функциональных возможностей у вычислительных

Из книги Сварка автора Банников Евгений Анатольевич

В ИНДУСТРИИ ПИТАНИЯ В нашей стране большое внимание уделяется увеличению выпуска товаров народного потребления и улучшению их качества. Важная отрасль нашего народного хозяйства - пищевая промышленность, на долю которой приходится более половины всех потребительских

Из книги Автономное электроснабжение частного дома своими руками автора Кашкаров Андрей Петрович

Источники питания. База знаний Предупреждение:если вы не маньяк-электронщик (или т.п.) с соответствующим опытом, то не используйте назащищенные (unprotected) LiCo аккумуляторы, особенно если они невнятного происхождения! Выигрыш в цене нивелируется нюансами эксплуатации (нельзя

Из книги Windows 10. Секреты и устройство автора Алмаметов Владимир

Из книги Основы рационального питания автора Омаров Руслан Сафербегович

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

2.6. Блок питания Блок питания, как вы можете видеть из названия, отвечает за предоставление питания всем комплектующим компьютера, которые устанавливаются в материнскую плату и не имеют отдельной вилки для розетки. То есть, каждая деталь компьютера, чтобы работать,

Из книги автора

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание: основ правильного питания; свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Из книги автора

Источники Источников по классической метрологии много. Полный анализ их невозможен, я бы рекомендовал следующие книги:Б.Г.Артемьев, Ю.Е.Лукашов «Справочное пособие для специалистов метрологических служб»;В.А.Кузнецов, Г.В.Ялунина «Общая метрология»;«Метрология,

Первые упоминания об атомной батарейке зафиксированы в 2005 году.

Как устроена и как работает атомная батарейка

Действительно, атомная батарейка существует. По-другому ее называют атомный аккумулятор или ядерный аккумулятор. Она предназначена для питания различных мобильных устройств. Создана батарейка самого продолжительного срока действия благодаря процессу ядерного распада, так как основным элементом, который способствует работе устройства, является тритий. Именно от этого вещества и питается атомная батарейка.

Внутри атомный аккумулятор содержит , на работу которой оказывает действие тритий. Отмечается, что радиоактивность, которая излучается атомной батарейкой, очень и очень мала, поэтому вред здоровью человека и окружающей среде устройство не приносит. Главное достижение – это продолжительность работы батарейки. Без дополнительной подзарядки ядерный аккумулятор может прослужить около 20 лет.

Где используются атомные батарейки

Атомные батарейки – это настоящее достижение, ведь только такие устройства современности способны выдерживать температуры от -50 до +150оC, работая в экстремальных условиях. К тому же доказано, что они способны выдерживать широчайший диапазон давлений и вибраций. В различной микроэлектронике срок службы атомной батарейки варьируется. Но, как указывалось выше, минимальный срок действия без подзарядки составляет 20 лет. Максимальный – 40 лет и больше.

Как правило, атомный аккумулятор используется для работы датчиков давления, всевозможных медицинских имплантантов, часов, для зарядки литиевых батареек. С помощью работы батареек данного типа осуществляется питание маломощных процессоров. Размер и вес ядерной батарейки минимален, поэтому устройство идеально подходит для заряда космических кораблей и исследовательских станций.

Возможный вред от работы атомной батарейки

Несмотря на то что говорят, что ядерная батарейка не оказывает никакого вредного действия на кожу человека, соприкасаясь с ней, стоит быть все-таки осторожным. Это относительно новое открытие современности, поэтому исследований проводилось достаточно мало. Если сейчас, используя такую батарейку для заряда наручных часов, человек не замечает никакого негативного воздействия, еще нельзя говорить о том, что это в дальнейшем не скажется на развитии всевозможных неприятных и опасных для жизни заболеваний.

Разрабатываемая атомная батарейка на основе углерода-14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации. Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Технология находится в процессе разработки!

Атомная батарейка:

Атомная батарейка — эта технология , которая базируется на идее преобразования энергии, которую излучает радиоактивный источник, в электрическую энергию. Простейшая атомная батарейка состоит из источника излучения и отделенного от нее диэлектрической пленкой коллектора. При распаде радиоактивный источник испускает бета-излучение, вследствие чего он заряжается положительно, а коллектор — отрицательно и между ними возникает разность потенциалов.

Над созданием источников питания, которые могли бы работать за счет энергии радиоизотопов, сейчас трудятся ученые по всему миру. Образцы ядерных батареек существуют и в России, и в США, и в других странах. При этом в качестве радиоактивных источников используется тритий, Ni-63 и углерод-14.

Атомная батарейка на основе углерода -14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации.

Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Второе отличие атомной батарейки на основе углерода-14 состоит в том, что в качестве «подложки» под радиоактивный элемент используется принципиально новая структура – пористая карбидокремниевая гетероструктура. Технология производства карбидной пленки путем ее наращивания на готовой кремниевой подложке «методом эндотаксии» позволяет уменьшить стоимость «подложки» в 100 раз, что делает атомную батарейку дешевой.

Неоспоримым плюсом карбидокремниевой гетероструктуры также является ее устойчивость к радиации . При излучении изотопа она остается практически неизменной, что и позволяет говорить о том, что такая атомная батарейка будет работать неограниченно долгое время.

Карбид кремния — это тоже полупроводниковый материал. Он химически более устойчив, способен работать при температуре до 350 градусов. Кремниевые датчики температур работают максимум до 200. Карбид кремния работает при температуре на 150 градусов выше. Он в 10 раз радиационно пассивнее и устойчивее, чем кремний.

Преимущества атомной батарейки на основе углерода-14:

— углерод-14 нетоксичен,

низкая стоимость атомной батарейки по сравнению с другими атомными батарейками на основе других радиоактивных источников,

длительный период эксплуатации — срок службы более 100 лет,

безопасность. Бета-излучение обладает малой проникающей способностью и задерживается оболочкой атомной батарейки,

— возможность работать в экстремальных условиях – при сверх низких и высоких температурах.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Новая система земледелия Овсинского И.Е....

Стеклоткань

Биоразлагаемые пакеты

Резина для шин, экономящая до 30% горючего...

Утилизация опасных отходов, содержащих тяжелые мет...

Снижение вязкости нефти

Берегоукрепление дамбами в чрезвычайных ситуациях...

Утеплитель эковата для монолитного утепления и зву...

Российские инфракрасные обогреватели...

Эмаль антикоррозийная, супергидрофобная, со свойст...

Наконец на нашей аккумуляторной поляне засветился Росатом, показав на форуме «Атомэкспо-2017» ядерную батарейку со сроком службы не менее 50 лет. Пользуясь этим знаменательным поводом, рассмотрим перспективы использования мирного атома для мобильных устройств.

Атомный (ядерный) аккумулятор - это все-таки батарейка, а не аккумулятор, так как - это по определению одноразовый источник электрического тока, без возможности перезаряда. Несмотря на это, воображение публики активно будоражит перспектива использования атомных аккумуляторов в мобильных устройствах. Но обо всем по порядку.

Что именно представил Росатом на форуме? Генеральный директор ФГУП «НИИ НПО Луч», Павел Зайцев заявил, что представленный источник, работающий на изотопе Ni63, способен в течение 50 лет выдавать 1mkW с напряжением 2V. Павел Зайцев вполне откровенно говорит про скромные вольт-амперные характеристики, делая основной упор на длительный срок службы. Наверно, исключительно из личной скромности, Генеральный директор ФГУП «НИИ НПО Луч» указал в технических характеристиках только мощность, а не общепринятую ёмкость. Но мы не будем придавать этому большое значение и просто рассчитаем ёмкость:

C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA

Получается, что ёмкость ядерной батарейки, размером с небольшой универсальный аккумулятор , всего лишь как у литий-полимерного (Li-Pol) аккумулятора для блютуз наушников! Павел Зайцев предполагает использование своей ядерной батарейки в кардиологии, что вызывает большие сомнения при столь огромных размерах. Возможно эта ядерная батарея может рассматриваться как некий прототип получения электричества из изотопов, но Росатому потребуется уменьшить батарею в тысячи раз, чтобы соответствовать современным электрокардиостимуляторам.

Совсем не порадовала стоимость ядерного аккумулятора - директор государственного унитарного предприятия объявил цену изотопа никеля в долларах (!) 4000USD/грамм. Означает ли это, что основной компонент будет приобретаться за границей России? А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы (также не ясно сколько?), но стоимость которых (уже в рублях) колеблется от 10 000 до 100 000 рублей за штуку. Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно. Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей:

Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит:)

Заявленный срок службы (50 лет), как мы догадались - это как раз половина периода полураспада Ni 63 (100лет). Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки .

Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С 14

С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков. Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет. Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод 14 . Углерод 14 может превратиться обратно в обычный углерод 12 когда её дополнительная энергия уйдет. Но это очень долгий процесс потому что период полураспада углерода 14 составляет 5730 лет.
Недавно ученные из университета Bristol"s Cabot Institute продемонстрировали, что углерод 14 концентрируется в блоках радиацией снаружи. Это значит, что возможно убрать большинство радиации нагревая их - большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле. Радиоактивный углерод 14 в форме газа, может быт переделан при низких давлениях и высоких температурах в алмаз - это еще одна форма углерода. Искусственные алмазы, сделанные из радиоактивного углерода, излучают поток бета-излучения, которое может создать электрический ток. Это дает нам ядерную энергию алмазной батареи. Чтобы она была безопасной для нашего использования она покрывается слоем не радиоактивного алмаза, который полностью поглощает всю радиацию и превращает её в электричество почти на 100%. Там нет движущейся частей, ее не надо обслуживать, алмаз просто производит электричество. Так как алмаз самое твердое вещество на свете, то ни какое другое вещество не может дать такую защиту для радиоактивного углерода 14 . Поэтому снаружи можно обнаружить очень маленькое количество радиации. Но это почти то же самое количество радиации, сколько выделяет банан, так что оно совсем безопасно. Как мы уже сказали только половина углерода 14 распадается через каждый 5730 лет, это значит что наша батарея-бриллиант имеет удивительное время жизни - она разрядится на 50% только в 7746 году. Эти бриллиантовые батареи будут лучше всего использованы там, где нельзя менять обычные батарей. Например в спутниках для космических исследований или для имплантированных устройств, таких как кардиостимуляторы.

Мы просим всех отправлять свои предложения на #diamondbattery. Разработка этой новой технологии решила бы много проблем, например: ядерного мусора, чистого электричества и увеличения срока службы батарей. Это перенесет нас в "бриллиантовый век" производства энергии.

Очень красивая концепция ученых из Бристоля 2016 года и очень скромная коробочка Росатома возможно (?) когда-нибудь будут доработаны до алмазных электростанций, но никак не ядерных батареек для мобильных устройств. Сложно будет уговорить людей ходить с Фукусимой в кармане, даже если за это начнут доплачивать.

Использование атома в мирных целях - это один из спорных вопросов современности, если учесть, что энергетика - это наиболее монополизированная отрасль экономики, когда в цене KW электроэнергии более 90% составляют налоги и сборы. Эффективность мирного атома вызывают сомнения, так как в цену условно дешевой атомной энергии не включается стоимость техногенных последствий. Поэтому некоторые страны, в том числе Германия и Япония приняли решение полностью отказаться от использования атома в энергетике. Ведь развивая возобновляемые источники энергии, можно не только полностью отказаться от атомной энергии, но и создать высокотехнологическую отрасль с миллионами высококвалифицированных рабочих мест.

Подводя итог, мы, скорее всего, имеем очередную технодурилку типа "Супераккумулятор ", а не прорывное "изобретение" бриллиантового века. Другими словами, применять мирный атом в микроэнергетике - это что свинью брить - визгу много, а шерсти мало!

Создание портативного одноразового источника питания, срок службы которого измерялся бы не сутками или месяцами, а годами, прежде покорилось специалистам Корнельского университета. Элемент питания, в качестве базы для которого был выбран радиоактивный изотоп никеля-63, мог похвастаться непрерывным сроком службы до 50 лет. Но, разумеется, не обошлось и без существенных ограничений в номинальных параметрах «ядерной батарейки». Всё дело в том, что принцип, на котором строится работа таких устройств — сопровождающее распад никеля-63 испускание электронов для последующего заряда медной пластины — не позволял добиться серьёзной мощности источника питания. В итоге указанная характеристика для ядерных батареек находилась на уровне нескольких милливатт, что накладывало ряд существенных ограничений при её эксплуатации.

Решением описанной проблемы активно занялись учёные Национального исследовательского технологического университета «МИСиС», которые вчера рапортовали о достигнутых успехах. Им удалось изготовить прототип уникальной «ядерной батарейки», способной, как и её предшественник родом из США, питать определённую электронику на протяжении 50 лет.

Как рассказали в «МИСиС», спроектированная ими «ядерная батарейка» обладает огромным потенциалом и имеет широкий спектр потенциально возможного применения, начиная от использования разработки в медицинском оборудовании и миниатюрных приборах для поддержания жизнедеятельности, заканчивая размещением такого источника питания в космических аппаратах. Команде инженеров под руководством профессора Юрия Пархоменко удалось воплотить на практике концепцию преобразования энергии бета-излучения в электрическую на основе монокристаллов пьезоэлектриков. Этот принцип и лёг в основу показанного образца автономной бета-вольтаической батареи переменного напряжения, первичным источником энергии для которой послужил хорошо знакомый изотоп никель-63.

Излучение выбранного в качестве источника электронов изотопа, несмотря на свою радиоактивность, характеризуется периодом полураспада в 100 лет и не несёт какой-либо угрозы для здоровья биологических организмов. Но главной особенностью прототипа отечественного производства стало применение импульсных источников питания для накопления и последующей отдачи заряда. За счёт этого учёные сумели обойти главный недостаток бета-вольтаической «ядерной батарейки» — их крайне малую мощность, сильно сужавшую сферы дальнейшего эффективного применения.

«В импульсном режиме один бета-вольтаический элемент способен выдавать мощность вплоть до 1 мВт/см 3 . При низких удельных мощностях энергетического материала батарейка, собранная на их основе, способна обеспечивать непрерывную выходную мощность 10-100 нВт/см 3 — достаточную, чтобы обеспечить питание кардиоимплантата», — объяснил технические особенности продемонстрированного решения господин Пархоменко.

Инновационная российская «ядерная батарейка», ставшая реальностью благодаря усилиям сотрудников «МИСиС», обладает всеми необходимыми для начала серийного производства и скорейшего внедрения технологии преимуществами. Здесь и сверхмалые габариты источника питания, и отсутствие пагубного влияния энергетического материала, и длительный срок эксплуатации в несколько десятков лет. Однако дойдёт ли дело до выпуска коммерческого образца — покажет время.