Более сложные примеры уравнений. Старт в науке. Муниципальное образовательное учреждение

Уравнение – это математическое выражение, являющееся равенством, содержащее неизвестное. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например: соотношение вида (x – 1)2 = (x – 1)(x – 1) выполняется при всех значениях x.

Если уравнение, содержащее неизвестное x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

В разделе математики, который называется теорией уравнений, основным предметом изучения являются методы решения уравнений. В школьном курсе алгебры уравнениям уделяется большое внимание.

История изучения уравнений насчитывает много веков. Самыми известными математиками, внесшими вклад в развитие теории уравнений, были:

Архимед (около 287–212 до н. э.) - древнегреческий ученый, математик и механик. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Франсуа Виет жил в XVI в. Он внес большой вклад в изучение различных проблем математики. В частности, он ввел буквенные обозначения коэффициентов уравнения и установил связь между корнями квадратного уравнения.

Леонард Эйлер (1707 – 1783) - математик, механик, физик и астроном. Автор св. 800 работ по математическаму анализу, дифференциальных уравнений, геометрии, теории чисел, приближённым вычислениям, небесной механике, математике, оптике, баллистике, кораблестроению, теории музыки, и т. д. Оказал значительное влияниена развитие науки. Вывел формулы (Формулы Эйлера), выражающие тригонометрические функции переменного х через показательную функцию.

Лагранж Жозеф Луи (1736 - 1813 гг.), французский математик и механик. Ему принадлежат выдающиеся исследования, среди них исследования по алгебре (симметрической функции корней уравнения, по дифференциальным уравнениям (теория особых решений, метод вариации постоянных).

Ж. Лагранж и А. Вандермонд - французские математики. В 1771 г. впервые применили способ решения систем уравнений (способ подстановки).

Гаусс Карл Фридрих (1777 -1855 гг.) - немецкий математик. Написал книгу, в которой излагается теория уравнений деления круга (т. е. уравнений xn - 1 = 0), которая во многом была прообразом Галуа теории. Помимо общих методов решения этих уравнений, установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой. Изучал способ сложения. Сделал вывод, что системы уравнений можно между собой складывать, делить, и умножать.

О. И. Сомов – обогатил разные части математики важными и многочисленными трудами, среди них теория определённых алгебраических уравнений высших степеней.

Галуа Эварист (1811-1832 гг.), - французский математик. Основной его заслугой является формулировка комплекса идей, к которым он пришёл в связи с продолжением исследований о разрешимости алгебраических уравнений, начатых Ж. Лагранжем, Н. Абелем и др. , создал теорию алгебраических уравнений высших степеней с одним неизвестным.

А. В. Погорелов (1919 – 1981 гг.) - В его творчестве связаны геометрические методы с аналитическими методами теории дифференциальных уравнений с частными производными. Его труды оказали существенное влияние также на теорию нелинейных дифференциальных уравнений.

П. Руффини - итальянский математик. Посвятил ряд работ, доказательству неразрешимости уравнения 5-й степени, систематически использует замкнутость множества подстановок.

Не смотря на то, что ученые давно изучают уравнения, науке не известно, как и когда у людей возникла необходимость использовать уравнения. Известно только, что задачи, приводящие к решению простейших уравнений, люди решали с того времени, как стали людьми. Еще 3 - 4 тысячи лет до н. э. египтяне и вавилоняне умели решать уравнения. Правило решения этих уравнений, совпадает с современным, но неизвестно, как они до этого дошли.

В Древнем Египте и Вавилоне использовался метод ложного положения. Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь = с, в котором а, Ь, с целые числа. По правилам арифметических действий ах = с - b,

Если Ь > с, то с b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке). Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения. В папирусе Ахмеса 15 задач решается этим методом. Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизвестное количество» единиц). Теперь читают немного менее неточно: «ага». Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах = b. Этот способ заключается в том, что каждую часть уравнения делят на а. Его применяли как египтяне, так и вавилоняне. У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получен ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет в части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть, Яко можеши ею все класть. Не токмо что есть во гражданстве, Но и высших наук в пространстве, Яже числятся в сфере неба, Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми». Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов». Индийские математики часто давали задачи в стихах. Задача о лотосе:

Над озером тихим, с полмеры над водой, Был виден лотоса цвет. Он рос одиноко, и ветер волной Нагнул его в сторону, и уж нет

Цветка над водой. Нашёл его глаз рыбака В двух мерах от места, где рос. Сколько озера здесь вода глубока? Тебе предложу я вопрос.

Виды уравнений

Линейные уравнения

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а (ах + b; ах = - b; х = - b: а.).

Например: решить линейное уравнение: 4х + 12 = 0.

Решение: Т. к а = 4, а b = 12, то х = - 12: 4; х = - 3.

Проверка: 4 (- 3) + 12 = 0; 0 = 0.

Т. к 0 = 0, то -3 является корнем исходного уравнения.

Ответ. х = -3

Если а равно нулю, и b равно нулю, то корнем уравнения ах + b = 0 является любое число.

Например:

0 = 0. Т. к 0 равно 0, то корнем уравнения 0х + 0 = 0 является любое число.

Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Например:

0 = 6. Т. к 0 не равно 6, то 0х – 6 = 0 не имеет корней.

Системы линейных уравнений.

Система линейных уравнений – это система, все уравнения которой линейные.

Решить систему - значит найти все ее решения.

Прежде чем решать систему линейных уравнений, можно определить число её решений.

Пусть дана система уравнений: {а1х + b1y = с1, {а2х + b2y = c2.

Если а1 делённое на а2 не равно b1 делённое на b2, то система имеет одно единственное решение.

Если а1 делённое на а2 равно b1 делённое на b2, но равно с1 делённое на с2, то система не имеет решений.

Если а1 делённое на а2 равно b1 делённое на b2, и равно с1 делённое на с2, то система имеет бесконечно много решений.

Система уравнений, имеющая, по крайней мере, одно решение, называется совместной.

Совместная система называется определенной, если она имеет конечное число решений, и неопределенной, если множество ее решений бесконечно.

Система, не имеющая ни одного решения, называется несовместной или противоречивой.

Способы решения линейных уравнений

Всего есть несколько способов решения линейных уравнений:

1) Метод подбора. Это самый простейший способ. Он заключается в том, что подбирают все допустимые значения неизвестного путём перечисления.

Например:

Решить уравнение.

Пусть х = 1. Тогда

4 = 6. Т. к 4 не равно 6, то наше предположение, что х = 1 было неверным.

Пусть х = 2.

6 = 6. Т. к 6 равно 6, то наше предположение, что х = 2 было верным.

Ответ: х = 2.

2) Способ упрощения

Этот способ заключается в том, что все члены содержащие неизвестное переносим в левую часть, а известные в правую с противоположным знаком, приводим подобные, и делим обе части уравнения на коэффициент при неизвестном.

Например:

Решить уравнение.

5х – 4 = 11 + 2х;

5х – 2х = 11 + 4;

3х = 15; : (3) х = 5.

Ответ. х = 5.

3) Графический способ.

Он заключается в том, что строится график функций данного уравнения. Т. к в линейном уравнение у = 0, то график будет параллелен оси ординат. Точка пересечения графика с осью абсцисс будет решением данного уравнения.

Например:

Решить уравнение.

Пусть у = 7. Тогда у = 2х + 3.

Построим график функций обоих уравнений:

Способы решения систем линейных уравнений

В седьмом классе изучают три способа решения систем уравнений:

1) Способ подстановки.

Этот способ заключается в том, что в одном из уравнений выражают одно неизвестное через другое. Полученное выражение подставляют в другое уравнение, которое после этого обращается в уравнение с одним неизвестным, затем решают его. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например.

Решить систему уравнений.

5х - 2у - 2 = 1.

3х + у = 4; у = 4 - 3х.

Подставим полученное выражение в другое уравнение:

5х – 2(4 – 3х) -2 = 1;

5х – 8 + 6х = 1 + 2;

11х = 11; : (11) х = 1.

Подставим полученное значение в уравнение 3х + у = 4.

3 · 1 + у = 4;

3 + у = 4; у = 4 – 3; у = 1.

Проверка.

/3 · 1 + 1 = 4,

\5 · 1 – 2 · 1 – 2 = 1;

Ответ: х = 1; у = 1.

2) Способ сложения.

Этот способ заключается в том, что если данная система состоит из уравнений, которые при почленном сложении образуют уравнение с одним неизвестным, то решив это уравнение, мы получим значение одного из неизвестных. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например:

Решить систему уравнений.

/3у – 2х = 5,

\5х – 3у = 4.

Решим полученное уравнение.

3х = 9; : (3) х = 3.

Подставим полученное значение в уравнение 3у – 2х = 5.

3у – 2 · 3 = 5;

3у = 11; : (3) у = 11/3; у = 3 2/3.

Итак, х = 3; у = 3 2/3.

Проверка.

/3 · 11/3 – 2 · 3 = 5,

\5 · 3 – 3 · 11/ 3 = 4;

Ответ. х = 3; у = 3 2/3

3) Графический способ.

Этот способ основан на том, что в одной системе координат строятся графики уравнений. Если графики уравнения пересекаются, то координаты точки пересечения являются решением данной системы. Если графики уравнения являются параллельными прямыми, то данная система не имеет решений. Если графики уравнений сольются в одну прямую, то система имеет бесконечно много решений.

Например.

Решить систему уравнений.

18х + 3у - 1 = 8.

2х - у = 5; 18х + 3y - 1 = 8;

У = 5 - 2х; 3у = 9 - 18х; : (3) у = 2х - 5. у = 3 - 6х.

Построим графики функций у = 2х - 5 и у = 3 - 6х на одной системе координат.

Графики функций у = 2х - 5 и у = 3 - 6х пересекаются в точке А (1; -3).

Следовательно решением данной системы уравнений будет х = 1 и у = -3.

Проверка.

2 · 1 - (- 3) = 5,

18 · 1 + 3 · (-3) - 1 = 8.

18 - 9 – 1 = 8;

Ответ. х = 1; у = -3.

Заключение

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Математические уравнения не только полезны - они также могут быть и красивы. И многие ученые признают, что они часто любят определенные формулы не только за их функциональность, но еще и за их форму, некую особую поэтичность. Есть те уравнения, которые известны на весь мир, как, например, E = mc^2. Другие не столь широко распространены, но красота уравнения не зависит от его популярности.

Общая теория относительности

Уравнение, описанное выше, было сформулировано Альбертом Эйнштейном в 1915 году как часть инновационной общей теории относительности. Теория на самом деле произвела революцию в мире науки. Это удивительно, как одним уравнением можно описать абсолютно все, что есть вокруг, в том числе пространство и время. Весь истинный гений Эйнштейна воплощен в нем. Это очень элегантное уравнение, которое кратко описывает, как все вокруг вас связано - например, как присутствие Солнца в галактике искривляет пространство и время так, чтобы Земля вращалась вокруг него.

Стандартная модель

Стандартная модель - это еще одна из важнейших теорий физики, в ней описываются все элементарные частицы, из которых состоит вселенная. Существуют различные уравнения, способные описать эту теорию, однако чаще всего пользуются уравнением Лагранжа, французского математика и астронома 18 века. Он успешно описал абсолютно все частицы и силы, которые на них воздействуют, за исключением гравитации. Это также включает недавно открытый бозон Хиггса. Оно в полной мере сочетается с квантовой механикой и общей теорией относительности.

Математический анализ

В то время как первые два уравнения описывают конкретные аспекты вселенной, данное уравнение может быть использовано во всех возможных ситуациях. Фундаментальная теорема математического анализа формирует основу математического метода, известного как исчисление, и связывает две свои основные идеи - концепцию интеграла и понятие производной. Зародился математический анализ еще в древности, однако все теории были собраны воедино Исааком Ньютоном в 17 веке - он использовал их для вычисления и описания движения планет вокруг Солнца.

Теорема Пифагора

Старым добрым известным всем уравнением выражается знаменитая теорема Пифагора, которую учат все школьники на уроках геометрии. Это формула описывает, что в любом прямоугольном треугольнике квадрат длины гипотенузы, самой длинной из всех сторон (c), равен сумме квадратов двух других сторон, катетов (a и b). В итоге, уравнение выглядит следующим образом: a^2 + b^2 = c^2. Эта теорема удивляет многих начинающих математиков и физиков, когда они только учатся в школе и еще не знают, что им готовит новый мир.

1 = 0.999999999….

Это простое уравнение указывает на то, что число 0.999 с бесконечным количеством девяток после запятой, на самом деле, равно единице. Это уравнение замечательно тем, что оно крайне простое, невероятно наглядное, но все же умудряется удивить и поразить многих. Некоторые люди не могут поверить в то, что это на самом деле так. Более того, красиво и само по себе уравнение - левая его часть представляет собой простейшую основу математики, а правая скрывает в себе тайны и загадки бесконечности.

Специальная теория относительности

Альберт Эйнштейн снова попадает в список, на этот раз со своей специальной теорией относительности, которая описывает, как время и пространство являются не абсолютными понятиями, а относительными - к скорости смотрящего. Это уравнение показывает, как время «расширяется», тем сильнее замедляясь, чем быстрее человек движется. На самом деле, уравнение не является таким уж сложным, простые производные, линейная алгебра. Однако то, что оно собой воплощает, представляет абсолютно новый способ смотреть на мир.

Уравнение Эйлера

Эта простая формула включает в себя основные знания о природе сфер. Она говорит о том, что если вы разрезаете сферу и получаете грани, ребра и вершины, то если F принять за число граней, E - за число ребер, а V - за число вершин, то вы всегда получите одно и то же: V - E + F = 2. Именно так и выглядит данное уравнение. Поражает то, что какую бы сферическую форму вы ни взяли - будь-то тетраэдр, пирамида или любая другая комбинация граней, ребер и вершин, у вас всегда получится одинаковый результат. Эта комбинаторика рассказывает людям нечто фундаментальное о сферических формах.

Уравнение Эйлера-Лагранжа и теорема Нетер

Эти понятия являются довольно абстрактными, но очень сильными. Самое интересное заключается в том, что данный новый способ мышления о физике смог пережить несколько революций в данной науке, таких как открытие квантовой механики, теории относительности и так далее. Здесь L означает уравнение Лагранжа, которое является мерой энергии в физической системе. А решение этого уравнения расскажет вам о том, как конкретная система будет развиваться с течением времени. Вариантом уравнения Лагранжа является теорема Нетер, которая является фундаментальной для физики и роли симметрии. Суть теоремы заключается в том, что если ваша система симметрична, то в ней действует соответствующий закон сохранения. Собственно говоря, главная идея этой теоремы заключается в том, что законы физики действуют повсеместно.

Уравнение ренормгруппы

Это уравнение также называется по имени его создателей, уравнением Каллана-Симанчика. Оно является жизненно важным базовым уравнением, написанным в 1970 году. Оно служит для того, чтобы продемонстрировать, как наивные ожидания рушатся в квантовом мире. Уравнение также имеет множество приложений, позволяющих оценить массу и размер протона и нейтрона, которые составляют ядро атома.

Уравнение минимальной поверхности

Данное уравнение невероятным образом вычисляет и кодирует те самые красивые мыльные пленки, которые образуются на проволоке, когда ее окунают в мыльную воду. Данное уравнение, однако, сильно отличается от привычных линейных уравнений из той же области, например, уравнения тепла, образования волн и так далее. Это уравнение - нелинейно, оно включает в себя воздействие сторонних сил и производных продуктов.

Прямая Эйлера

Возьмите любой треугольник, нарисуйте наименьший круг, который может включить в себя треугольник, и отыщите его центр. Найдите центр массы треугольника - ту точку, которая позволила бы треугольнику балансировать, например, на острие карандаша, если бы его можно было вырезать из бумаги. Нарисуйте три высоты этого треугольника (линии, которые были бы перпендикулярны тем сторонам треугольника, от которых они рисуются) и найдите точку их пересечения. Суть теоремы заключается в том, что все три точки будут находиться на одной прямой, именно это и есть прямая Эйлера. Теорема заключает в себе всю красоту и мощь математики, открывая удивительные закономерности в самых простых вещах.

52. Более сложные примеры уравнений .
Пример 1 .

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

5x + 5 – 3x + 3 = 15

2x = 7 и x = 3½

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x 2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

Пример 2 .

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 - от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо - получим:

3x = 3 или x = 1

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) - ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

что невозможно.

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

6x + 10 = 2x + 18

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

4x 2 – 12x = –8

x 2 – 3x = –2

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Пример 3 .

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Отсюда получим:

–x = –13 и x = 13.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

Обучающие:

  • Обобщить знания по всем видам уравнений, подчеркнуть значимость всех способов, применяемых при решении уравнений.
  • Активизирование работы учащихся за счет, разнообразных приемов на уроке.
  • Проверить теоретические и практические навыки при решении уравнений.
  • Заострить внимание на том, что, одно уравнение можно решить несколькими способами

Развивающие:

  • Повысить интерес учащихся к предмету, через использование ИКТ.
  • Ознакомление учащихся с историческим материалом по теме.
  • Развитие мыслительной деятельности при определении вида уравнения и способов его решения.

Воспитательные:

  • Воспитать дисциплину на уроке.
  • Развитие способности к восприятию прекрасного, в себе самом, в другом человеке и в окружающем мире.

Тип урока:

  • Урок обобщения и систематизации знаний.

Вид урока:

  • Комбинированный.

Материально-техническое оснащение:

  • Компьютер
  • Экран
  • Проектор
  • Диск с презентацией темы

Методы и приемы:

План урока:

  1. Организационный момент (1минуты)
  2. Расшифровка темы урока (3минуты)
  3. Сообщение темы и цели урока (1минута)
  4. Теоретическая разминка (3минут)
  5. Исторический экскурс (3минуты)
  6. Игра “Убери лишнее” (2минуты)
  7. Творческая работа (2минуты)
  8. Задание “Найди ошибку” (2минуты)
  9. Решение одного уравнения несколькими способами (на слайде) (3минуты)
  10. Решение одного уравнения несколькими способами (у доски) (24 минут)
  11. Самостоятельная работа в парах с последующим объяснением (5минут)
  12. Индивидуальное домашнее задание(1минуты)
  13. Итог урока рефлексия (1минута)

Эпиграф урока:

“Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”.
А.Франс

Конспект урока

Организационная часть

Проверяю готовность учащихся к уроку, отмечаю отсутствующих на уроке. Ребята, Французский писатель 19 века А.Франс однажды заметил “ Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”. Так давайте на нашем уроке следовать совету, писателя и переваривать знания с большим аппетитом, ведь они пригодятся в нашей жизни.

Расшифровка темы урока

Для того, чтобы перейти к более сложном заданием, давайте разомнем свои мозги простыми заданиями. Тема нашего урока зашифрована, решив устные задания и найдя к ним ответ, зная, что каждый ответ имеет свою букву, мы раскроем тему урока. Презентация слайд 3

Сообщение темы и цели урока

Вы, сегодня сами назвали тему урока

“Виды уравнений и способы их решения”. Презентация слайд 4

Цель: Вспомнить и обобщить все виды уравнений и способы их решения. Решить одно уравнение всеми способами. Презентация слайд 5 Прочитать высказывание Эйнштейна Презентация слайд 5

Теоретическая разминка

Вопросы Презентация слайд 7

Ответы

  1. Равенство, содержащее переменную величину, обозначенную какой-то буквой.
  2. Это значит найти все его корни, или доказать, что корней нет.
  3. Значение переменной, при котором уравнение обращается в верное равенство.
  4. После этого определения прочесть стихотворение об уравнении Презентация слайд 12,13,14

Ответы на 2 последних вопроса Презентация слайд 9,10,11

Исторический экскурс

Историческая справка, о том “Кто и когда придумал уравнение” Презентация слайд 15

Представим себе, что первобытная мама по имени... впрочем, у неё, наверно, и имени то не было, сорвала с дерева 12 яблок, чтобы дать каждому из своих 4 детей. Вероятно, она не умела считать не только до 12, но и до четырёх, и уж несомненно не умела делить 12 на 4.А яблоки она поделила, наверно, так: сначала дала каждому ребёнку по яблоку, потом ещё по яблоку, потом ещё по одному и тут увидела, что яблок больше нет и дети довольны. Если записать эти действия на современном математическом языке, то получается х4=12, то есть мама решила задачу на составление уравнение. По-видимому, ответить на поставленный выше вопрос невозможно. Задачи, приводящие к решению уравнений, люди решили на основе здравого смысла с того времени, как они стали людьми. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитие учения об уравнениях достиг греческий учёный Диофант(III век), о котором писали:

Он уйму всяких разрешил проблем.
И запахи предсказывал, и ливни.
Поистине, его познанья дивны.

Большой вклад в решение уравнений внёс среднеазиатский математик Мухаммед ал Хорезми (IХ век). Его знаменитая книга ал-Хорезми посвящена решению уравнений. Она называется “Китаб ал-джебр вал-мукабала”, т. е. “Книга о восполнении и противопоставлении”. Эта книга стала известна европейцам, а от слова “ал-джебр” из ее заглавия произошло слово “алгебра” – название одной из главных частей математики. В дальнейшем многие математики занимались проблемами уравнений. Общее правило решений квадратных уравнений приведённых к виду х2+вх=0 было сформулировано немецким математиком Штифелем, проживавшим в ХV веке. После трудов нидерландского математика Жирара (ХVI век), а также Декарта и Ньютона, способ решения принял современный вид. Формулы, выражающие зависимости корней уравнения от его коэффициентов была введена Виетом. Франсуа Виет жил в ХVI веке. Он внёс большой вклад в изучение различных проблем в математике и астрономии; в частности, он ввёл буквенные обозначения коэффициентов уравнения. А сейчас познакомимся с интересным эпизодом из его жизни. Громкую славу Виет получил при короле Генрихе III, вовремя франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись, благодаря которой испанцы вели переписку с врагами Генриха III даже в самой Франции.

Напрасно французы пытались найти ключ к шифру, и тогда король обратился к Виету. Рассказывают, что Виет нашёл за две недели непрерывной работы ключ к шифру, после чего, неожиданно для Испании, Франция стала выигрывать одно сражение за другим. Будучи уверенным, что шифр разгадать не возможно, испанцы обвинили Виета в связи с дьяволом и приговорили к сожжению на костре. К счастью, он не был выдан инквизиции и вошёл в историю как великий математик.

Игра “Убери лишнее”

Цель игры ориентирование в видах уравнений.

У нас даны три столбика уравнений,в каждом из них, уравнения определены по какому-то признаку,но одно из них лишнее ваша задача его найти и охарактеризовать. Презентация слайд 16

Творческая работа

Цель этого задания: Восприятие на слух математической речи ориентировании детей в видах уравнений.

На экране вы видите 9 уравнений. Каждое уравнение имеет свой номер, я буду называть вид этого уравнения, а вы должны найти уравнение этого вида, и поставить только номер, под которым оно стоит, в результате вы получите 9-значное число Презентация слайд 17

  1. Приведенное квадратное уравнение.
  2. Дробно-рациональное уравнение
  3. Кубическое уравнение
  4. Логарифмическое уравнение
  5. Линейное уравнение
  6. Неполное квадратное уравнение
  7. Показательное уравнение
  8. Иррациональное уравнение
  9. Тригонометрическое уравнение

Задание “Найди ошибку”

Один ученик решал уравнения, но весь класс смеялся, в каждом уравнении он допустил ошибку, ваша задача найти ее и исправить. Презентация слайд 18

Решение одного уравнения несколькими способами

А теперь решим одно уравнение всеми возможными способами, для экономии времени на уроке одно уравнение на экране. Сейчас вы назовете вид этого уравнения, и объясните какой способ используется, при решении этого уравнения Презентация слайды 19-27

Решение одного уравнения несколькими способами (у доски)

Мы посмотрели пример, а теперь давайте решим уравнение у доски всевозможными способами.

X-2 - иррациональное уравнение

Возведем в квадрат обе части уравнения.

X 2 +2x+4x-1-4=0

Решаем это уравнение у доски 9 способами.

Самостоятельная работа в парах с последующим объяснением у доски

А сейчас вы поработаете в парах, на парту я даю уравнение, ваша задача определить вид уравнения, перечислить все способы решения этого уравнения, решить 1-2 наиболее рациональными для вас способами. (2 минуты)

Задания для работы в парах

Решите уравнение

После самостоятельной работы в парах один представитель выходит к доске представляет свое уравнение, решает одним способом

Индивидуальное домашнее задание (дифференцируемо)

Решите уравнение

(определить вид уравнения, решить всеми способами на отдельном листе)

Итог урока рефлексия.

Подвожу итог урока, заостряю внимание на том, что одно уравнение можно решить многими способами, выставляю оценки, делаю вывод, кто был активным кому надо быть поактивнее. Зачитываю высказывание Калинина Презентация слайд 28

Посмотрите внимательно на те цели которые мы с вами поставили для сегодняшнего урока:

  • Что на ваш взгляд нам удалось сделать?
  • Что получилось не очень хорошо?
  • Что вам особенно понравилось и запомнилось?
  • Сегодня я узнал новое...
  • На уроке мне пригодились знания...
  • Для меня было сложно...
  • На уроке мне понравилось...

Литература.

  1. Дорофеев Г.В. “Сборник заданий для проведения письменного экзамена по математике за курс средней школы” - М.: Дрофа, 2006.
  2. Гарнер Мартин. Математические головоломки и развлечения.
  3. Ивлев Б.М., Саакян С.М. Дидактические материалы по алгебре и началам анализа для 10 кл., 11 кл. М.: Просвещение. 2002.

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.