Описать свойства функции по графику. Функция и ее свойства. Преобразование графиков функции

Представлены свойства и графики степенных функций при различных значениях показателя степени. Основные формулы, области определения и множества значений, четность, монотонность, возрастание и убывание, экстремумы, выпуклость, перегибы, точки пересечения с осями координат, пределы, частные значения.

Формулы со степенной функцией

На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, ...

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, ... . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, ... - целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, ... .

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, ...

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, ... . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, ... - натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, ... .

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x ≤ 0 монотонно убывает
при x ≥ 0 монотонно возрастает
Экстремумы: минимум, x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1 , y(-1) = (-1) n ≡ (-1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, ...

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, ... . Если положить n = -k , где k = 1, 2, 3, ... - натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, ... .

Нечетный показатель, n = -1, -3, -5, ...

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, ... .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -1 ,
при n < -2 ,

Четный показатель, n = -2, -4, -6, ...

Ниже представлены свойства функции y = x n с четным отрицательным показателем n = -2, -4, -6, ... .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -2 ,
при n < -2 ,

Степенная функция с рациональным (дробным) показателем

Рассмотрим степенную функцию y = x p с рациональным (дробным) показателем степени , где n - целое, m > 1 - натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя - нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, ... . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p < 0

Пусть рациональный показатель степени (с нечетным знаменателем m = 3, 5, 7, ... ) меньше нуля: .

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = -1, -3, -5, ...

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, ... - нечетное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = -1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Четный числитель, n = -2, -4, -6, ...

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, ... - четное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0 < p < 1

График степенной функции с рациональным показателем (0 < p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: -∞ < y < +∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вниз
при x > 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, ...

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 < p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: 0 ≤ y < +∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно убывает
при x > 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем (p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 5, 7, 9, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 5, 7, 9, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 4, 6, 8, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 4, 6, 8, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 монотонно убывает
при x > 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя - четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, ... . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p < 0

Область определения: x > 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Для понимая данной темы, рассмотрим функцию, изображенную на графике // Покажем, как график функции позволяет определить ее свойства.

Разбираем свойства функции на примере

Областью определения функции явл. промежуток [ 3,5; 5,5].

Областью значений функции явл. промежуток [ 1; 3].

1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке , если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

Функцию f называют убывающей на некотором промежутке , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

Если функция возрастает на всей области определения, то ее называют возрастающей .

Если функция убывает на всей области определения, то ее называют убывающей .

Пример 1. график возрастающей и убывающей функций соотвественно.

Пример 2.

Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

Раздел содержит справочный материал по основным элементарным функциям и их свойствам. Приводится классификация элементарных функций. Ниже даны ссылки на подразделы, в которых рассматриваются свойства конкретных функций - графики, формулы, производные, первообразные (интегралы), разложения в ряды, выражения через комплексные переменные.

Страницы со справочным материалом по элементарным функциям

Классификация элементарных функций

Алгебраическая функция - это функция, которая удовлетворяет уравнению:
,
где - многочлен от зависимой переменной y и независимой переменной x . Его можно записать в виде:
,
где - многочлены.

Алгебраические функции делятся на многочлены (целые рациональные функции), рациональные функции и иррациональные функции.

Целая рациональная функция , которая также называется многочленом или полиномом , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания) и умножения. После раскрытия скобок, многочлен приводится к каноническому виду:
.

Дробно-рациональная функция , или просто рациональная функция , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания), умножения и деления. Рациональную функцию можно привести к виду
,
где и - многочлены.

Иррациональная функция - это алгебраическая функция, не являющаяся рациональной. Как правило, под иррациональной функцией понимают корни и их композиции с рациональными функциями. Корень степени n определяется как решение уравнения
.
Он обозначается так:
.

Трансцендентными функциями называются неалгебраические функции. Это показательные, тригонометрические, гиперболические и обратные к ним функции.

Обзор основных элементарных функций

Все элементарные функции можно представить в виде конечного числа операций сложения, вычитания, умножения и деления, произведенных над выражением вида:
z t .
Обратные функции могут выражаться также через логарифмы. Ниже перечислены основные элементарные функции.

Степенная функция :
y(x) = x p ,
где p - показатель степени. Она зависит от основания степени x .
Обратной к степенной функции является также степенная функция:
.
При целом неотрицательном значении показателя p она является многочленом. При целом значении p - рациональной функцией. При рациональном значении - иррациональной функцией.

Трансцендентные функции

Показательная функция :
y(x) = a x ,
где a - основание степени. Она зависит от показателя степени x .
Обратная функция - логарифм по основанию a :
x = log a y .

Экспонента, е в степени х :
y(x) = e x ,
Это показательная функция, производная которой равна самой функции:
.
Основанием степени экспоненты является число e :
≈ 2,718281828459045... .
Обратная функция - натуральный логарифм - логарифм по основанию числа e :
x = ln y ≡ log e y .

Тригонометрические функции :
Синус : ;
Косинус : ;
Тангенс : ;
Котангенс : ;
Здесь i - мнимая единица, i 2 = -1 .

Обратные тригонометрические функции :
Арксинус: x = arcsin y , ;
Арккосинус: x = arccos y , ;
Арктангенс: x = arctg y , ;
Арккотангенс: x = arcctg y , .

Определение : Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.

Обозначение:

где x – независимая переменная (аргумент), y – зависимая переменная (функция). Множество значений x называется областью определения функции (обозначается D(f)). Множество значений y называется областью значений функции (обозначается E(f)). Графиком функции называется множество точек плоскости с координатами (x, f(x))

Способы задания функции.

  1. аналитический способ (с помощью математической формулы);
  2. табличный способ (с помощью таблицы);
  3. описательный способ (с помощью словесного описания);
  4. графический способ (с помощью графика).

Основные свойства функции.

1. Четность и нечетность

Функция называется четной, если
– область определения функции симметрична относительно нуля
f(-x) = f(x)


График четной функции симметричен относительно оси 0y

Функция называется нечетной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = –f(x)

График нечетной функции симметричен относительно начала координат.

2.Периодичность

Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т) .

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

3. Монотонность (возрастание, убывание)

Функция f(x) возрастает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1

Функция f(x) убывает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1 f(x 2) .

4. Экстремумы

Точка Х max называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Х max , выполнено неравенство f(х) f(X max).

Значение Y max =f(X max) называется максимумом этой функции.

Х max – точка максимума
У max – максимум

Точка Х min называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Х min , выполнено неравенство f(х) f(X min).

Значение Y min =f(X min) называется минимумом этой функции.

X min – точка минимума
Y min – минимум

X min , Х max – точки экстремума
Y min , У max – экстремумы.

5. Нули функции

Нулем функции y = f(x) называется такое значение аргумента х, при котором функция обращается в нуль: f(x) = 0.

Х 1 ,Х 2 ,Х 3 – нули функции y = f(x).

Задачи и тесты по теме "Основные свойства функции"

  • Свойства функций - Числовые функции 9 класс

    Уроков: 2 Заданий: 11 Тестов: 1

  • Свойства логарифмов - Показательная и логарифмическая функции 11 класс

    Уроков: 2 Заданий: 14 Тестов: 1

  • Функция квадратного корня, его свойства и график - Функция квадратного корня. Свойства квадратного корня 8 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Степенные функции, их свойства и графики - Степени и корни. Степенные функции 11 класс

    Уроков: 4 Заданий: 14 Тестов: 1

  • Функции - Важные темы для повторения ЕГЭ по математике

    Заданий: 24

Изучив эту тему, Вы должны уметь находить область определения различных функций, определять с помощью графиков промежутки монотонности функции, исследовать функции на четность и нечетность. Рассмотрим решение подобных задач на следующих примерах.

Примеры.

1. Найти область определения функции.

Решение: область определения функции находится из условия

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.