Значение химического элемента кислорода. Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение. Строение молекулы кислорода

Среди всех веществ на Земле особое место занимает то, что обеспечивает жизнь, - газ кислород. Именно его наличие делает нашу планету уникальной среди всех других, особенной. Благодаря этому веществу в мире живет столько прекрасных созданий: растения, животные, люди. Кислород - это совершенно незаменимое, уникальное и чрезвычайно важное соединение. Поэтому постараемся узнать, что он собой представляет, какими характеристиками обладает.

Особенно часто применяется первый метод. Ведь из воздуха можно выделить очень много этого газа. Однако он будет не совсем чистым. Если же необходим продукт более высокого качества, тогда в ход пускают электролизные процессы. Сырьем для этого является либо вода, либо щелочь. Гидроксид натрия или калия используют для того, чтобы увеличить силу электропроводности раствора. В целом же суть процесса сводится к разложению воды.

Получение в лаборатории

Среди лабораторных методов широкое распространение получил метод термической обработки:

  • пероксидов;
  • солей кислородсодержащих кислот.

При высоких температурах они разлагаются с выделением газообразного кислорода. Катализируют процесс чаще всего оксидом марганца (IV). Собирают кислород вытеснением воды, а обнаруживают - тлеющей лучинкой. Как известно, в атмосфере кислорода пламя разгорается очень ярко.

Еще одно вещество, используемое для получения кислорода на школьных уроках химии, - перекись водорода. Даже 3 % раствор под действием катализатора мгновенно разлагается с высвобождением чистого газа. Его нужно лишь успеть собрать. Катализатор тот же - оксид марганца MnO 2 .

Среди солей чаще всего используются:

  • бертолетова соль, или хлорат калия;
  • перманганат калия, или марганцовка.

Чтобы описать процесс, можно привести уравнение. Кислорода выделяется достаточно для лабораторных и исследовательских нужд:

2KClO 3 = 2KCl + 3O 2 .

Аллотропные модификации кислорода

Существует одна аллотропная модификация, которую имеет кислород. Формула этого соединения О 3 , называется оно озоном. Это газ, который образуется в природных условиях при воздействии ультрафиолета и грозовых разрядов на кислород воздуха. В отличие от самого О 2 , озон имеет приятный запах свежести, который ощущается в воздухе после дождя с молнией и громом.

Отличие кислорода и озона заключается не только в количестве атомов в молекуле, но и в строении кристаллической решетки. В химическом отношении озон - еще более сильный окислитель.

Кислород - это компонент воздуха

Распространение оксигена в природе очень широко. Кислород встречается в:

  • горных породах и минералах;
  • воде соленой и пресной;
  • почве;
  • растительных и животных организмах;
  • воздухе, включая верхние слои атмосферы.

Очевидно, что им заняты все оболочки Земли - литосфера, гидросфера, атмосфера и биосфера. Особенно важным является содержание его в составе воздуха. Ведь именно этот фактор позволяет существовать на нашей планете жизненным формам, в том числе и человеку.

Состав воздуха, которым мы дышим, чрезвычайно неоднороден. Он включает в себя как постоянные компоненты, так и переменные. К неизменным и всегда присутствующим относятся:

  • углекислый газ;
  • кислород;
  • азот;
  • благородные газы.

К переменным можно отнести пары воды, частицы пыли, посторонние газы (выхлопные, продукты горения, гниения и прочие), растительная пыльца, бактерии, грибки и прочие.

Значение кислорода в природе

Очень важно, сколько кислорода содержится в природе. Ведь известно, что на некоторых спутниках больших планет (Юпитер, Сатурн) были обнаружены следовые количества этого газа, однако очевидной жизни там нет. Наша Земля имеет достаточное его количество, которое в сочетании с водой дает возможность существовать всем живым организмам.

Помимо того, что он является активным участником дыхания, кислород еще проводит бесчисленное количество реакций окисления, в результате которых высвобождается энергия для жизни.

Основными поставщиками этого уникального газа в природе являются зеленые растения и некоторые виды бактерий. Благодаря им поддерживается постоянный баланс кислорода и углекислого газа. Кроме того, озон выстраивает защитный экран над всей Землей, который не позволяет проникать большому количеству уничтожающего ультрафиолетового излучения.

Лишь некоторые виды анаэробных организмов (бактерии, грибки) способны жить вне атмосферы кислорода. Однако их гораздо меньше, чем тех, кто очень в нем нуждается.

Использование кислорода и озона в промышленности

Основные области использования аллотропных модификаций кислорода в промышленности следующие.

  1. Металлургия (для сварки и вырезки металлов).
  2. Медицина.
  3. Сельское хозяйство.
  4. В качестве ракетного топлива.
  5. Синтез многих химических соединений, в том числе взрывчатых веществ.
  6. Очищение и обеззараживание воды.

Сложно назвать хотя бы один процесс, в котором не принимает участие этот великий газ, уникальное вещество - кислород.

Миллионы лет непрерывно происходит потребление кислорода.

Он в огромных количествах расходуется на медленное и быстрое окисление, на горение и взрыв, а состав воздуха остается неизменным, содержание кислорода в нем не уменьшается.

Как же воздух пополняется кислородом?

Еще в конце XVIII века был поставлен опыт, который поможет нам ответить на этот вопрос.

Под стеклянный колпак была помещена зажженная свеча. Некоторое время свеча горела, но вскоре погасла:

кислород воздуха под колпаком был весь израсходован. Время горения свечи было зафиксировано.

Предполагая, что растения играют какую-то роль в образовании кислорода, опыт был повторен. Рядом с зажженной свечой положили пучок мяты. Горящую свечу и мяту накрыли тем же колпаком. Лучи солнечного света, проникая через стекло колпака, падали на растение, освещая его зеленые листья. Прошло много времени - больше, чем в первом опыте, - но свеча не гасла и продолжала гореть обычным пламенем. Так было установлено, что зеленые листья растений изменяют состав воздуха и на свету выделяют кислород. Одновременно было открыто, что растения извлекают из воздуха углекислый газ.

Никто в то время не мог еще объяснить суть этого замечательного явления. Честь открытия роли растений в жизни нашей планеты принадлежит великому русскому ученому Клименту Аркадьевичу Тимирязеву.

Если посмотреть через микроскоп на срез зеленого листа, то в клетках, похожих на пчелиные соты, можно увидеть зеленые зерна - хлоропласты. Их также называют хлорофилловыми зернами. В каждой клеточке листа содержится от 25 до 50 хлорофилловых зерен. Это о ник говорил Тимирязев: «Хлорофилловое зерно - тот фокус, та точка в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на земле».

Что же происходит в зеленых листьях растений? В листьях имеются многочисленные отверстия - устьица, которые служат растению для дыхания и питания. Через эти устьица из воздуха в листья проникает углекислый газ. Своими корнями растение всасывает влагу из земли и подает ее к листьям по тонким капиллярам ствола и стеблей.

Под влиянием света и тепла солнечных лучей в хлорофилловых зернах листа между водой и углекислотой происходит сложная химическая реакция - фотосинтез. В результате образуются продукты, переходящие в виноградный сахар и кислород.

Виноградный сахар имеет особое название - глюкоза , которое произошло от греческого слова «глюкос», означающего «сладкий».

Молекулы глюкозы состоят из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. На образование 1 молекулы глюкозы необходимо 6 молекул углекислого газа (СO 2) и 6 молекул воды (Н 2 O). При этом должно выделиться 6 молекул кислорода. Следовательно, когда образуется 1 грамм глюкозы, освобождается более 1 грамма, или около 900 кубических сантиметров, чистого кислорода.

Так под влиянием солнечного света и тепла в хлорофилловых зернах растений, живущих на земле и под водой, происходит образование кислорода, которым непрерывно пополняется наша планета.

Растения являются неиссякаемым источником необходимого для жизни кислорода, и их по праву можно назвать «зеленой фабрикой кислорода».

До последнего времени считали, что кислород, который выделяется из растений при фотосинтезе, отщепляется от углекислого газа. Полагали, что в хлорофилловых зернах под действием света происходит расщепление молекулы углекислого газа на кислород и углерод. Углерод, вступая в реакцию с водой, образует, в конечном счете, глюкозу, а кислород выделяется в атмосферу.

В настоящее время существует другая теория. Считают, что в хлорофилловых зернах под действием солнечных лучей происходит распад не молекулы углекислого газа, а молекулы воды. При этом образуется кислород, который выделяется в атмосферу, и водород, который в соединении с углекислым газом дает глюкозу.

Теория эта получила свое экспериментальное подтверждение в 1941 году в опытах А. П. Виноградова, который впервые применил для изучения фотосинтеза тяжелый изотоп кислорода О 18 .

Поливая растение водой, содержащей тяжелый изотоп О 18 , А. П. Виноградов наблюдал, что чем больше тяжелого изотопа кислорода О 18 содержалось в воде, которой поливали растение, тем больше его находили в выделяющемся кислороде.

Если поливать растение обычной водой и поместить его в атмосферу углекислого газа, содержащего тяжелый изотоп кислорода О 18 , то в выделяющемся при фотосинтезе кислороде изотоп О 18 не обнаруживается.

Эти опыты убедительно показали, что при фотосинтезе в зеленых листьях растений кислород получается не за счет углекислого газа, а за счет разложения воды. Водород, входящий в состав воды, вместе с углекислотой идет на образование глюкозы.

Глюкоза в листьях не остается. Она, как растворимое питательное вещество, разносится по всему растению и служит ему пищей и строительным материалом для образования клетчатки. Из клетчатки состоят корни, стволы, стебли и листья растений.

Часть глюкозы превращается в крахмал и откладывается в плодах и зернах.

Для жизни и развития растения необходимы солнечный свет и непрерывное поступление к нему углекислого газа и воды. В процессе питания растения воздух вокруг него обогащается кислородом и обедняется углекислым газом. Благодаря работе ветра воздух перемешивается, и таким образом у листьев растения поддерживается постоянная концентрация углекислого газа.

А как же обеспечивается подача углекислого газа к листьям в жаркую безветренную погоду? В такую погоду молекулы углекислого газа, беспорядочно двигаясь в воздушном пространстве, очутившись около зеленого листа, вдруг резко поворачивают к нему.

Какая сила заставляет их свернуть к листу?

Если наполнить двумя различными газами сосуд, разделенный перегородкой, и затем осторожно вынуть ее, газы перемешаются, образуя однородную смесь. Такое же явление можно наблюдать, если привести в соприкосновение два различных раствора.

Если разделить между собой два различных газа или раствора, поместив между ними перегородку из желатины, кожи или другого мелкопористого материала, можно заметить, как через некоторое время по обеим сторонам перегородки концентрации газов или растворов будут одинаковы.

Процессы самопроизвольного перемешивания газов или жидкостей, а также проникновение их через полупроницаемые перегородки называются диффузией.

Скорость диффузии тем больше, чем больше разница в концентрациях диффундирующих веществ.

Вот почему, как только концентрация углекислого газа у зеленого листа становится меньше, чем на некотором расстоянии от него, воздух около листа пополняется молекулами углекислого газа из близлежащих слоев атмосферы. Их места занимают сотни, тысячи и миллионы молекул углекислого газа из более отдаленных частей пространства.

Одновременно с процессом диффузии углекислого газа идет процесс диффузии кислорода от зеленого листа в более отдаленные пространства, где концентрация его меньше.

Под водой, как и на суше, растения питаются углекислым газом и вырабатывают глюкозу и крахмал, освобождая кислород.

Откуда же берется углекислый газ в воде. Он образуется при дыхании животных и растений, живущих под водой. Кроме того, он попадает туда из воздуха, растворяясь в поверхностных слоях воды. Перемешиванием, или диффузией, углекислый газ проникает вглубь.

Углекислый газ хорошо растворяется в воде. Его растворимость при низких температурах в 35 раз больше растворимости кислорода. В литре воды при температуре 0° и давлении 760 миллиметров растворяется 50 кубических сантиметров кислорода, а углекислого газа - более 1700 кубических сантиметров. Хотя при температуре воды 20° углекислого газа в литре растворится примерно половина от этого количества, но и этого достаточно, чтобы растения, находящиеся под водой, не испытывали недостатка в углекислом газе. На зеленой поверхности подводных растений происходит тот же процесс усвоения углерода, что и на воздухе.

Налейте в стакан обыкновенной водопроводной воды и пропустите через нее углекислый газ. Опустите в воду растение и накройте его воронкой. На узкую часть воронки наденьте пробирку, наполненную водой. Вынесите стакан с растением на солнечный свет. Через несколько часов в пробирке соберется заметное количество газа. Снимите пробирку с узкой части воронки и под водой

Растение, находясь под водой, при питании выделяет кислород.

заткните ее пробкой. Теперь можно вынуть пробирку из воды и опрокинуть ее пробкой вверх. Оставшаяся в пробирке вода опустится на дно, а газ окажется над водой. Откройте пробку. Так как плотность кислорода несколько больше плотности воздуха, кислород некоторое время (пока не продиффундирует в воздух) останется в пробирке. Опустите в пробирку тлеющую лучинку, и вы убедитесь в том, что газ, который выделился из растения, - кислород.

Образующийся в воде кислород равномерно распределяется по всей толще воды, насыщая ее. Если кислорода окажется больше, чем его может раствориться в воде при данной температуре, избыток его уйдет в воздух. Если его будет меньше, то недостающее количество кислорода дополнится из воздуха.

Не совсем верно утверждать, что кислород равномерно распределяется по всей толще воды. На разной глубине вода имеет различную температуру. А мы знаем, что чем выше температура, тем меньше растворится в ней кислорода. Поэтому в разное время года, на различных глубинах концентрация растворенного в воде кислорода различна. В неглубоких водоемах разница в количестве растворенного кислорода в верхних и нижних слоях не очень велика, и ею можно пренебречь.

Растения, живущие на земле или под водой, не только выделяют кислород, но и поглощают его. Как и любой живой организм, растения дышат. Часть кислорода, которая образуется при питании растений, потребляется ими при дыхании.

Если после долгой зимней ночи войти в закрытое помещение, где находилось много цветов, чувствуется такая духота, как будто здесь долгое время находилось много людей. Растения израсходовали часть кислорода воздуха на дыхание, и в помещении образовался избыток углекислого газа.

Итак, кислород в природе совершает непрерывный круг. При дыхании человека, животных и растений, при горении твердого и жидкого топлива кислород расходуется и образуется углекислый газ. Этот газ идет на питание растений, которые возвращают кислород обратно в воздух.

Растения играют важную роль в жизни человека. Они не только кормят и согревают нас - они веками обеспечивают постоянное содержание кислорода в воздухе, без чего невозможна жизнь на Земле.

А не меняется ли содержание кислорода в воздухе зимой, когда остаются зелеными только хвойные деревья?

Зимой количество кислорода, выделяемого растениями, сокращается, но запасы его в атмосфере чрезвычайно велики. Если бы в течение тысячи или даже двух тысяч лет вообще не было никакого возвращения кислорода, а происходило только его потребление, то общее количество израсходованного кислорода не превысило бы 0,1 процента всего запаса кислорода в атмосфере. Запасы кислорода в воздухе неисчислимы.

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

    История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

    Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

    Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

    Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

    Физические свойства

В мировом океане содержание растворённого O 2 больше в холодной воде, а меньше - в тёплой.

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре(22 объёма O 2 в 1 объёме Ag при 961 °C). Межатомное расстояние - 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) - это бледно-голубая жидкость.

Фазовая диаграмма O 2

Твёрдый кислород (температура плавления −218,35°C) - синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    α-О 2 - существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.

    β-О 2 - существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å,α=46,25°.

    γ-О 2 - существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

    δ-О 2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;

    ε-О 4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;

    ζ-О n давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

    Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O − 2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

В ионе диоксигенила O 2 + кислород имеет формально степень окисления +½. Получают по реакции:

Фториды кислорода

Дифторид кислорода, OF 2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

Монофторид кислорода (Диоксидифторид), O 2 F 2 , нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF 3 + . Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O 2 и O 3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O 2 переходит в O 3 .

    Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров - устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона - один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород - озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости - кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, - окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

    Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

    Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, пероксид водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), пероксид водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

    Изотопы

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12 О до 24 О. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15 O с периодом полураспада ~120 с. Наиболее краткоживущий изотоп 12 O имеет период полураспада 5,8·10 −22 с.

    Атомный номер (Z): 8

    Группа, группа периодов: 16 (халькогены), период 2

    Блок: п-блок

    Стандартный атомный вес (Ar):

    Обычный: 15,999

    Конфигурация электронов : 2s2 2p4

    Количество электронов на оболочку: 2, 6

    Фаза: газ

    Точка плавления: 54,36 К (-218,79 ° С, -361,82 ° F)

    Точка кипения: 90,188 К (-182,962 ° С, -297,322 ° F)

    Плотность: 1,429 г / л

    В жидком состоянии: 1,141 г / см3

    Тройная точка: 54.361 К, 0.1463 кПа

    Критическая точка: 154.581 К, 5.043 МПа

    Теплота плавления: (O2) 0,444 кДж / моль

    Теплота испарения: (O2) 6,82 кДж / моль

    Молярная теплоемкость: (O2) 29,378 Дж / (моль · К)

Кислород представляет собой химический элемент с символом O и атомным номером 8. Он является членом группы халькогенов на периодической таблице и представляет собой высокореактивный неметалл и окислитель, который легко образует оксиды с большинством элементов, а также с другими соединениями. По массе, кислород является третьим элементом во Вселенной после водорода и гелия. При стандартной температуре и давлении, два атома этого элемента связываются с образованием дикислорода, двухатомного газа без цвета и без запаха с формулой O2. Кислород представляет собой важную часть атмосферы, а двухатомный кислородный газ составляет 20,8% атмосферы Земли. В качестве соединений, включающих оксиды, элемент составляет почти половину земной коры. Диоксид используется в клеточном дыхании, и многие основные классы органических молекул в живых организмах содержат кислород, включая белки, нуклеиновые кислоты, углеводы и жиры, как и основные составляющие неорганические соединения оболочек животных, зубы и кости. Основная масса живых организмов содержат кислород как компонент воды, основной составляющей форм жизни. И наоборот, запасы кислорода постоянно пополняются в ходе фотосинтеза, в котором используется энергия солнечного света для производства кислорода из воды и двуокиси углерода. Кислород слишком химически реактивен, чтобы оставаться свободным элементом в воздухе, при отсутствии постоянного пополнения благодаря фотосинтетическому действию живых организмов. Другая форма (аллотроп) кислорода, озон (O3), является сильным поглотителем ультрафиолетового излучения спектра B, и высотный озоновый слой помогает защитить биосферу Земли от ультрафиолетового излучения. Но озон является загрязнителем вблизи поверхности Земли, где он является побочным продуктом смога. Кислород был открыт независимо Карлом Вильгельмом Шееле в Упсале в 1773 году или ранее и Джозефом Пристли в Уилтшире в 1774 году, но Пристли часто уделяют приоритетное внимание, потому что его работа была опубликована первой. Название «кислород» было придумано в 1777 году Антуаном Лавуазье, чьи эксперименты с кислородом помогли дискредитировать тогдашнюю популярную теорию горения и коррозии флогистона. Название происходит от греческих корней ὀξύς oxys, «кислый», буквально «острый», что говорит о кислом вкусе кислот и -γενής -genes, «производитель», буквально «родитель», потому что в те времена ошибочно считалось, что для создания всех кислот требуется кислород. Общее использование кислорода включает отопление жилых помещений, двигатели внутреннего сгорания, производство стали, пластмасс и текстиля, пайка, сварка и резка стали и других металлов, ракетное топливо, кислородная терапия и системы поддержки жизни на самолетах, подводных лодках, космических полетах и дайвинге.

История

Ранние эксперименты

Один из первых известных экспериментов по взаимосвязи между сжиганием и воздухом был проведен греческим писателем II века до н.э. по механике, Филоном из Византии. В своей работе «Pneumatica», Филон отметил, что переворачивание сосуда над горящей свечой и окружение шейки сосуда водой приводит к тому, что в шейку проникает вода. Филон ошибочно предположил, что части воздуха в сосуде были превращены в классический элемент огонь и, таким образом, смогли проникнуть через поры в стекле. Много веков спустя, Леонардо да Винчи, основываясь на работе Филона, отмечал, что во время горения и дыхания потребляется часть воздуха. В конце 17-го века Роберт Бойл доказал, что для горения необходим воздух. Английский химик Джон Мейоу (1641-1679) модернизировал эту работу, показав, что огню для горения требуется только часть воздуха, которую он назвал spiritus nitroaereus. В одном из экспериментов он обнаружил, что помещение мыши или свечи в закрытый контейнер над водой заставляло воду подниматься и заменять одиннадцатый объем воздуха перед тушением свечи (или смертью мыши). Отсюда он предположил, что нитроарий потребляется как при дыхании, так и при сжигании. Мейоу отметил, что при нагревании вес сурьмы увеличивается, и предполагается, что с ней нужно сочетать нитроарий. Мейоу также считал, что легкие отделяют нитроарий от воздуха и пропускают его в кровь, а животное тепло и мышечное движение являются результатом реакции нитроария с некоторыми веществами в организме. Отчеты об этих и других экспериментах и идеях были опубликованы в 1668 году в его труде «Tractatus» в тракте «De respiratione».

Теория флогистона

Ученые, которые в своих экспериментах производили кислород, включают Роберта Гука, Оле Борча, Михаила Ломоносова и Пьера Байена, но никто из них не считал его химическим элементом . Возможно, это отчасти объясняется преобладанием философии горения и коррозии, называемой теорией флогистона, которая была тогда предпочтительным объяснением этих процессов. Согласно теории флогистона, основанной в 1667 году немецким алхимиком Дж. Бехером и модифицированная химиком Георгом Эрнстом Шталем к 1731 году, все горючие материалы состоят из двух частей. Одна часть, называемая флогистоном, испускается при сжигании вещества, содержащего ее, а связанная часть считалась ее истинной формой. Считалось, что высоко горючие материалы, которые оставляют мало остатков, такие как дерево или уголь, в основном, состоят из флогистона; негорючие вещества, которые подвергаются коррозии, например, железо, содержат очень мало флогистона. Воздух не играл роли в теории флогистона, и не проводились какие-либо начальные количественные эксперименты для проверки этой идеи; вместо этого, теория основывалась на наблюдениях о том, что происходит, когда что-то горит, что наиболее распространенные объекты становятся светлее и что что-то теряют в этом процессе.

Открытие кислорода

Кислород был впервые открыт шведским фармацевтом Карлом Вильгельмом Шееле. Он производил кислородный газ, нагревая оксид ртути и различные нитраты в 1771-1772 годах. Шееле назвал этот газ «воздухом огня», потому что он был единственным известным сторонником теории горения, и написал отчет об этом открытии в рукописи, которую он назвал «Трактат о воздухе и огне», который он отправил своему издателю в 1775 году. Этот документ был опубликован в 1777 году. Тем временем, 1 августа 1774 года, в эксперименте, проведенном британским священнослужителем Джозефом Пристли, солнечный свет был сфокусирован на ртутном оксиде (HgO) внутри стеклянной трубки, что высвобождало газ, который он назвал «дефлогистонированным воздухом». Он отметил, что в газе свечи горели ярче, и что мышь была более активной и жила дольше, вдыхая его. После того, как он сам подышал этим газом, он писал: «ощущение этого газа в моих легких не отличалось от ощущения воздуха, но мне казалось, что моя грудь чувствовала себя очень легкой, что продолжалось в течение некоторого времени после этого». Пристли опубликовал свои открытия в 1775 году в статье под названием «Отчет о дальнейших открытиях о воздухе», которая была включена во второй том его книги под названием «Эксперименты и наблюдения за различными видами воздуха» Поскольку он первым опубликовал свои выводы, Пристли обычно считается первооткрывателем кислорода. Французский химик Антуан Лоран Лавуазье позже утверждал, что обнаружил новое вещество самостоятельно. Пристли посетил Лавуазье в октябре 1774 года и рассказал ему о своем эксперименте и о том, как он высвободил новый газ. Шееле также отправил письмо Лавуазье 30 сентября 1774 года, в котором описывалось его открытие неизвестного ранее вещества, но Лавуазье не признал получение этого письма (копия письма была найдена в вещах Шееле после его смерти).

Вклад Лавуазье

Лавуазье произвел первые адекватные количественные эксперименты по окислению и дал первое правильное объяснение того, как работает сжигание. Он использовал эти и подобные эксперименты, начиная с 1774 года, чтобы дискредитировать теорию флогистона и доказать, что вещество, обнаруженное Пристли и Шееле, было химическим элементом. В одном из экспериментов, Лавуазье отметил, что не наблюдалось общего увеличения веса при нагревании олова и воздуха в закрытом контейнере. Он отметил, что воздух «ворвался внутрь контейнера», когда он открыл его, указывая, что часть захваченного воздуха была уничтожена. Он также отметил, что олово увеличилось в весе, и это увеличение было таким же, как вес воздуха, который «вырвался наружу». Этот и другие эксперименты по сжиганию были задокументированы в его книге «Sur la combustion en général», которая была опубликована в 1777 году. В этой работе он доказал, что воздух представляет собой смесь двух газов; «жизненно важного воздуха», который необходим для горения и дыхания, и азота (греч. Ἄζωτον «безжизненный»). Лавуазье переименовал «жизненный воздух» в кислород в 1777 году, из греческих корней ὀξύς (oxys) (кислотный, от вкуса кислот) и -γενής (-genēs) (производитель, буквально «порождающий»), потому что он ошибочно полагал, что кислород является составной частью всех кислот. Химики (такие как сэр Хамфри Дэви в 1812 году), в конечном итоге, определили, что Лавуазье ошибался в этом отношении (водород образует основу для кислотной химии), но к тому времени это название слишком хорошо прижилось. Слово вошло в английский язык, несмотря на сопротивление английских ученых и тот факт, что англичанин Пристли первым изолировал газ и написал об этом. Частично это объясняется поэмой, восхваляющей газ под названием «Кислород» в популярной книге «Ботанический сад» (1791 г.) Эразма Дарвина, дедушки Чарльза Дарвина.

Поздняя история

Согласно оригинальной атомной гипотезе Джона Далтона, все элементы являются одноатомными, а атомы в соединениях обычно имеют простейшие атомные отношения по отношению друг к другу. Например, Далтон предположил, что формула воды была НО, а атомная масса кислорода в 8 раз больше, чем у водорода, вместо современного значения около 16. В 1805 году Джозеф Луи Гей-Люссак и Александр фон Гумбольдт показали, что вода образуется из двух объемов водорода и одного объема кислорода; и к 1811 году Амедео Авогадро пришел к правильной интерпретации состава воды, основанной на том, что теперь называется законом Авогадро и двухатомными элементарными молекулами в этих газах. К концу 19 века ученые поняли, что воздух может быть сжижен и его компоненты могут быть изолированы путем сжатия и охлаждения. Используя каскадный метод, швейцарский химик и физик Рауль Пьер Пикте испарял жидкий диоксид серы, чтобы сжижать углекислый газ, который, в свою очередь, испарялся, чтобы охладить кислородный газ, что достаточно для его сжижения. 22 декабря 1877 года он отправил телеграмму во Французскую академию наук в Париже, объявив о своем открытии жидкого кислорода. Спустя два дня, французский физик Луи-Поль Кайете объявил о своем собственном методе сжижения молекулярного кислорода. В каждом случае производилось всего несколько капель жидкости, и никакого значимого анализа не проводилось. Кислород впервые был сжижен в стабильном состоянии 29 марта 1883 года польскими учеными из Ягеллонского университета, Зигмунтом Врублевски и Каролем Ольшевски. В 1891 году шотландский химик Джеймс Дьюар смог получить достаточно жидкого кислорода для исследования. Первый коммерчески жизнеспособный процесс получения жидкого кислорода был независимо разработан в 1895 году немецким инженером Карлом фон Линде и британским инженером Уильямом Хэмпсоном. Они оба опустили температуру воздуха до такой степени, пока газ не стал сжижаться, а затем перегоняли составляющие газы, кипятя их по очереди и захватывая их отдельно. Позднее, в 1901 году, впервые была продемонстрирована сварка оксиацетиленом, при сжигании смеси ацетилена и сжатого О2. Этот метод сварки и резки металла стал более распространенным. В 1923 году американский ученый Роберт Х. Годдард стал первым человеком, разработавшим двигатель, сжижающий жидкое топливо; в этом двигателе использовался бензин для топлива и жидкий кислород в качестве окислителя. 16 марта 1926 года в Оберне, штат Массачусетс, США, Годдард успешно пролетел на небольшой ракете с жидким топливом 56 м на скорости 97 км / ч. Уровни кислорода в атмосфере слегка различаются по всему миру, возможно, из-за сжигания ископаемого топлива.

Характеристики

Свойства и молекулярная структура

При стандартной температуре и давлении, кислород представляет собой бесцветный, безвкусный газ, не имеющий запаха, с молекулярной формулой O2, называемый диоксидом. Являясь диоксидом, кислород имеет два атома, химически связанных друг с другом. Эта связь может быть описана по-разному, на основе уровня теории, но разумно и просто описывается как ковалентная двойная связь, которая возникает в результате заполнения молекулярных орбиталей, образованных из атомных орбиталей отдельных атомов кислорода, заполнение которых приводит к связи порядка двух. Более конкретно, двойная связь является результатом последовательной, низкой и высокой энергии или Aufbau, заполняя орбитали и, как следствие, отменяя вклады двух электронов после последовательного заполнения низких σ и σ*-орбиталей; σ перекрытие двух атомных 2p-орбиталей, лежащих вдоль молекулярной оси OO и формируя π-перекрытие двух пар атомных 2p-орбиталей, перпендикулярных оси OO-молекул, а затем отменяя вклады от оставшихся двух из шести 2p-электронов после их частичного заполнения наименьших π- и π*-орбиталей . Эта комбинация аннулирования σ и π перекрытий приводит к характеру и реакционной способности двойного связывания диоксида и триплетному электронному основному состоянию. Конфигурация электронов с двумя неспаренными электронами, найденная в двуосных орбиталях с равной энергией, представляют собой конфигурацию, называемую триплетным состоянием спина. Следовательно, основное состояние молекулы O2 называется триплетным кислородом. При наивысшей энергии, частично заполненные орбитали являются антисвязывающими, и поэтому их заполнение ослабляет порядок связей с трех до двух. Из-за его неспаренных электронов, триплетный кислород медленно реагирует с большинством органических молекул, которые имеют парные спины электронов; это предотвращает самовозгорание. В триплетной форме, молекулы O2 парамагнитны. То есть, они придают магнитный характер кислороду, когда он находится в присутствии магнитного поля, из-за спиновых магнитных моментов неспаренных электронов в молекуле и отрицательной энергии обмена между соседними молекулами O2. Жидкий кислород настолько магнитен, что в лабораторных демонстрациях мостик жидкого кислорода может поддерживаться против собственного веса между полюсами мощного магнита. Синглетный кислород – это название, присвоенное нескольким более высокоэнергетическим видам молекулярного O2, в котором все спины электронов спарены. Он намного более реактивен с общими органическими молекулами, чем молекулярный кислород как таковой. В природе, синглетный кислород обычно образуется из воды при фотосинтезе, используя энергию солнечного света. Он также образуется в тропосфере путем фотолиза озона светом короткой длины волны и иммунной системой в качестве источника активного кислорода. Каротиноиды в фотосинтезирующих организмах (и, возможно, животных) играют важную роль в поглощении энергии из синглетного кислорода и превращении его в невозбужденное основное состояние до того, как оно может нанести вред тканям.

Аллотропы кислорода

Распространенный аллотроп элементарного кислорода на Земле называется дикислородом, O2, и представляет собой большую часть атмосферного кислорода на Земле. O2 имеет длину связи 121 мкм и энергию связи 498 кДж · моль-1, которая меньше энергии других двойных связей или пар одиночных связей в биосфере и отвечает за экзотермическую реакцию O2 с любой органической молекулой. Из-за своего энергетического содержания, O2 используется сложными формами жизни, такими как животные, в клеточном дыхании. Трикислород (O3) обычно известен как озон и является очень реактивной аллотропией кислорода, которая повреждает легочную ткань. Озон образуется в верхней атмосфере, когда O2 сочетается с атомарным кислородом, создаваемым расщеплением O2 ультрафиолетовым (УФ) излучением. Поскольку озон сильно поглощает УФ-область спектра, озоновый слой верхней атмосферы функционирует как защитный радиационный экран для планеты. Вблизи поверхности Земли озон является загрязнителем, образующимся как побочный продукт автомобильных выхлопов. На низких земных орбитах существует достаточное количество атомного кислорода, чтобы вызвать коррозию космических аппаратов. Метастабильная молекула тетракислорода (O4) была обнаружена в 2001 году и, предположительно, существовала в одной из шести фаз твердого кислорода. В 2006 году было доказано, что этот этап, созданный путем повышения давления O2-20 ГПа, на самом деле является ромбоэдрическим O8. Этот кластер может быть намного более мощным окислителем, чем O2 или O3 и поэтому может использоваться в ракетном топливе. Металлическая фаза была обнаружена в 1990 году, когда твердый кислород подвергался давлению выше 96 ГПа, и в 1998 году было показано, что при очень низких температурах эта фаза становится сверхпроводящей.

Физические свойства

Кислород более легко растворяется в воде, чем азот, и в пресной воде растворяется легче, чем в морской воде. Вода, находящаяся в равновесии с воздухом, содержит приблизительно 1 молекулу растворенного О2 для каждых двух молекул N2 (1: 2), по сравнению с отношением атмосферного воздуха приблизительно 1: 4. Растворимость кислорода в воде зависит от температуры и примерно в два раза лучше (14,6 мг · л-1) растворяется при 0 ° С, чем при 20 ° С (7,6 мг · л-1). При 25 ° C и 1 стандартной атмосфере (101,3 кПа) воздуха, пресная вода содержит около 6,04 миллилитров (мл) кислорода на литр, а морская вода содержит около 4,95 мл на литр. При 5 ° C растворимость увеличивается до 9,0 мл (на 50% больше, чем при 25 ° C) на литр для воды и 7,2 мл (на 45% больше) на литр для морской воды. Кислород конденсируется при 90,20 К (-182,95 ° С, -297,31 ° F) и замораживается при 54,36 К (-218,79 ° С, -361,82 ° F) . Как жидкие, так и твердые O2 – прозрачные вещества светло-голубого цвета, вызванного поглощением в красном (в отличие от синего цвета неба, обусловленного рэлеевским рассеянием голубого света). Высокочистую жидкость O2 обычно получают путем фракционной перегонки сжиженного воздуха. Жидкий кислород также может конденсироваться из воздуха с использованием жидкого азота в качестве хладагента. Кислород является высокореактивным веществом и должен быть отделен от горючих материалов. Спектроскопия молекулярного кислорода связана с атмосферными процессами полярных сияний, воздушным светом и ночным свечением. Поглощение в герцбергском континууме и полосы Шумана-Рунге в ультрафиолете приводят к производству атомного кислорода, что важно в химии средней атмосферы . Возбужденный синглетный молекулярный кислород ответственен за красную хемилюминесценцию в растворе.

Изотопы и звездное происхождение

Естественно происходящий кислород состоит из трех стабильных изотопов, 16O, 17O и 18O, причем наиболее распространенным является 16O (99,762% естественного обилия) . Большинство 16O синтезируется в конце процесса слияния гелия в массивных звездах, но некоторое количество синтезируется в процессе горения неонов. 17O, в основном, производится сжиганием водорода в гелии во время цикла CNO, что делает его общим изотопом в зонах горения водорода звезд. Большая часть 18O получается, когда 14N (в большом количестве от сжигания CNO) захватывает ядро 4He, что делает 18O распространенным в богатых гелием зонах эволюционировавших массивных звезд. Было охарактеризовано четырнадцать радиоизотопов кислорода. Наиболее устойчивыми из них являются 15O с периодом полураспада 122,24 секунд и 140 с периодом полураспада 70,606 секунд. Все остальные радиоактивные изотопы имеют период полураспада менее 27 с, а большинство из них имеют период полураспада менее 83 миллисекунд. Наиболее распространенный режим распада изотопов, более легких, чем 16O, является β + -распад , производящий азот, а наиболее распространенный режим для изотопов, более тяжелых, чем 18O, является бета-распад с образованием фтора.

Распространенность

Кислород – самый распространенный химический элемент по массе в биосфере Земли, в воздухе, на море и на суше. Кислород является третьим наиболее распространенным химическим элементом во Вселенной после водорода и гелия. Около 0,9% массы Солнца – это кислород. Кислород составляет 49,2% земной коры по массе в составе оксидных соединений, таких как двуокись кремния, и является наиболее распространенным по массе элементом в земной коре. Он также является основным компонентом Мирового океана (88,8% по массе). Кислородный газ является вторым наиболее распространенным компонентом земной атмосферы, занимая 20,8% его объема и 23,1% его массы (около 1015 тонн). Земля необычна среди планет Солнечной системы Система из-за такой высокой концентрации кислорода в атмосфере: Марс (с 0,1% O2 по объему) и Венера имеют гораздо меньше кислорода. О2, окружающий эти планеты, создается исключительно действием ультрафиолетового излучения на кислородсодержащие молекулы, такие как диоксид углерода. Необычайно высокая концентрация газообразного кислорода на Земле является результатом кислородного цикла. Этот биогеохимический цикл описывает движение кислорода внутри и между его тремя основными резервуарами на Земле: атмосферой, биосферой и литосферой. Основным движущим фактором кислородного цикла является фотосинтез, который отвечает за современную атмосферу Земли. Фотосинтез высвобождает кислород в атмосферу, а дыхание, распад и сгорание удаляют его из атмосферы. В нынешнем равновесии, производство и потребление кислорода происходят с одинаковой скоростью. Свободный кислород также содержится в водоемах Земли. Повышенная растворимость O2 при более низких температурах имеет важные последствия для океанической жизни, поскольку полярные океаны поддерживают гораздо более высокую плотность жизни из-за их более высокого содержания кислорода. Вода, загрязненная питательными веществами растений, такими как нитраты или фосфаты, может стимулировать рост водорослей посредством процесса, называемого эвтрофикацией, и распад этих организмов и других биоматериалов может уменьшить содержание O2 в эвтрофных водоемах. Ученые оценивают этот аспект качества воды, измеряя биохимическую потребность в кислороде в воде или количество O2, необходимое для восстановления его до нормальной концентрации

Анализ

Палеоклиматологи измеряют отношение кислорода-18 и кислорода-16 в оболочках и скелетах морских организмов для определения климата миллионы лет назад. Молекулы морской воды, содержащие более легкий изотоп, кислород-16, испаряются с намного более высокой скоростью, чем молекулы воды, содержащие 12% более тяжелого кислорода-18, и это несоответствие увеличивается при более низких температурах. В периоды более низких глобальных температур, снег и дождь из этой испаренной воды имеют тенденцию быть выше в кислороде-16, а оставшаяся морская вода имеет тенденцию быть выше в кислороде-18. Морские организмы затем включают больше кислорода-18 в свои скелеты и раковины, чем в более теплом климате. Палеоклиматологи также непосредственно измеряют это соотношение в молекулах воды образцов ледяного ядра возрастом до сотен тысяч лет. Планетарные геологи измеряли относительные количества изотопов кислорода в образцах с Земли, Луны, Марса и метеоритов, но долго не могли получить контрольные значения для изотопных отношений в Солнце, которые, как полагают, являются такими же, как у первичной солнечной туманности. Анализ кремниевой пластины, подвергшейся воздействию солнечного ветра в космосе и возвращенной разрушенным космическим аппаратом «Генезис», показал, что Солнце имеет более высокую долю кислорода-16, чем Земля. Это говорит о том, что в ходе неизвестного нам процесса кислород-16 исчез с протопланетного материала диска Солнца до слияния пылевых зерен, которые образовали Землю. Кислород представляет собой две полосы спектрофотометрического поглощения, достигающие максимума на длинах волн 687 и 760 нм. Некоторые ученые, занимающиеся дистанционным зондированием, предложили использовать измерение сияния, исходящего из растительных навесов в этих полосах, чтобы охарактеризовать состояние здоровья растений со спутниковой платформы. Этот подход использует тот факт, что в этих полосах можно различить отражательную способность растительности от ее флуоресценции, которая намного слабее. Измерение технически затруднено низким отношением сигнал-шум и физической структурой растительности; но оно было предложено как возможный метод мониторинга углеродного цикла со спутников в глобальном масштабе.

Биологическая роль O2

Фотосинтез и дыхание

В природе, свободный кислород вырабатывается путем легкого расщепления воды при кислородном фотосинтезе. По некоторым оценкам, зеленые водоросли и цианобактерии в морской среде обеспечивают около 70% свободного кислорода, вырабатываемого на Земле, а остальное производится наземными растениями. Другие оценки океанического вклада в атмосферный кислород выше, а некоторые оценки ниже, что указывает на то, что океаны ежегодно производят ~ 45% атмосферного кислорода Земли . Упрощенная общая формула для фотосинтеза: 6 CO2 + 6 H2O + фотоны → C6H12O6 + 6 O2 или просто двуокись углерода + вода + солнечный свет → глюкоза + дикислород Фотолитическая эволюция кислорода происходит в тилакоидных мембранах фотосинтезирующих организмов и требует энергии четырех фотонов. Здесь принимает участие множество этапов, но результатом является образование протонного градиента через тилакоидную мембрану, которая используется для синтеза аденозинтрифосфата (АТФ) посредством фотофосфорилирования. О2, оставшийся (после производства молекулы воды), высвобождается в атмосферу. Кислород используется в митохондриях для получения АТФ во время окислительного фосфорилирования. Реакция на аэробное дыхание, по сути, является обратным процессом фотосинтеза и упрощается: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + 2880 кДж · моль-1. У позвоночных, O2 диффундирует через мембраны в легких и в эритроциты. Гемоглобин связывает O2, меняя цвет от синевато-красного в ярко-красный (CO2 выделяется из другой части гемоглобина через эффект Бора). Другие животные используют гемоцианин (моллюски и некоторые членистоногие) или гемэритрин (пауки и омары) . В литре крови можно растворить 200 см3 O2. До открытия анаэробных многоклеточных животных, кислород считался обязательным условием для существования всех сложных форм жизни. Реактивные виды кислорода, такие как супероксид-ион (O- 2) и перекись водорода (H2O2), являются реактивными побочными продуктами использования кислорода в организмах. Части иммунной системы высших организмов создают перекись, супероксид и синглетный кислород для уничтожения вторгающихся микробов. Реактивные формы кислорода также играют важную роль в гиперчувствительном ответе растений на патогенную атаку. Кислород повреждает анаэробные организмы, которые были доминирующей формой ранней жизни на Земле до тех пор, пока О2 не начал накапливаться в атмосфере, около 2,5 миллиардов лет назад, во время оксигенации, примерно через миллиард лет после первого появления этих организмов. Взрослый человек в состоянии покоя вдыхает 1,8-2,4 г кислорода в минуту. Это составляет более 6 миллиардов тонн кислорода в год.

Живые организмы

Парциальное давление свободного кислорода в организме живых позвоночных является самым высоким в дыхательной системе, и уменьшается вдоль любой артериальной системы, в периферических тканях и венозной системе, соответственно. Парциальное давление – это давление, которое имел бы кислород, если бы он сам занимал весь объем.

Накопление в атмосфере

В атмосфере Земли почти не присутствовал газообразный кислород до того, как появились фотосинтетические археи и бактерии, вероятно, около 3,5 млрд лет назад. Свободный кислород впервые появился в значительных количествах во время палеопротерозойского эона (от 3,0 до 2,3 миллиарда лет назад). В течение первого миллиарда лет, любой свободный кислород, продуцируемый этими организмами, образовывал сочетание с растворенным железом в океанах с образованием полосчатых железных образований. Когда такие кислородные потоки стали насыщенными, свободный кислород начал выделяться из океанов 3-2,7 миллиарда лет назад, достигнув 10% своего нынешнего уровня около 1,7 миллиарда лет назад. Наличие большого количества растворенного и свободного кислорода в океанах и атмосфере, возможно, заставило большинство существующих анаэробных организмов исчезнуть во время оксигенации (кислородная катастрофа) около 2,4 миллиардов лет назад. Клеточное дыхание с использованием O2 позволяет аэробным организмам производить гораздо больше АТФ, чем анаэробные организмы. Клеточное дыхание O2 происходит у всех эукариот, включая все сложные многоклеточные организмы, такие как растения и животные. С начала периода кембрия, 540 миллионов лет назад, уровни O2 в атмосфере колебались между 15% и 30% по объему. К концу каменноугольного периода (около 300 миллионов лет назад) уровни атмосферного O2 достигли максимума 35% по объему, что, возможно, способствовало увеличению размера насекомых и земноводных в это время. Изменения в уровнях кислорода формировали климат прошлого. Когда уровень кислорода уменьшался, плотность воздуха снижалась, а это, в свою очередь, увеличивало поверхностное испарение и приводило к увеличению осадков и более теплым температурам. При нынешних скоростях фотосинтеза, потребовалось бы около 2000 лет для регенерации всего O2 в данной атмосфере.

Промышленное производство

Сто тысяч миллионов тонн O2 экстрагируются из воздуха для промышленного использования ежегодно двумя основными методами. Наиболее распространенным методом является фракционная перегонка сжиженного воздуха с перегонкой N2 в виде пара, в то время как O2 остается в виде жидкости. Другой первичный способ получения O2 – пропускать поток чистого сухого воздуха через один слой пары идентичных цеолитных молекулярных сит, который поглощает азот и доставляет газовый поток, составляющий от 90% до 93% O2. Одновременно с этим, азот выделяется из другого насыщенного азотом цеолитного слоя, уменьшая рабочее давление в камере и отводя часть кислородного газа из проецирующего слоя через него в обратном направлении потока. По истечении установленного времени цикла работы, два слоя взаимозаменяются, что позволяет обеспечить непрерывную подачу газообразного кислорода, прокачиваемого по трубопроводу. Это известно как адсорбция под давлением. Кислородный газ все чаще получают при помощи этих некриогенных технологий. Кислородный газ также может быть получен путем электролиза воды в молекулярный кислород и водород. Должно использоваться электричество постоянного тока: при использовании переменного тока, газы в каждом конце состоят из водорода и кислорода во взрывоопасном отношении 2: 1. Вопреки распространенному мнению, соотношение 2: 1, наблюдаемое при электролизе постоянного тока подкисленной водой, не доказывает, что эмпирическая формула воды представляет собой H2O, если не будут сделаны определенные предположения о молекулярных формулах самого водорода и кислорода. Аналогичным методом является электрокаталитическая эволюция O2 из оксидов и оксокислот. Также могут использоваться химические катализаторы, такие как химические генераторы кислорода или кислородные свечи, которые используются как часть оборудования для жизнеобеспечения на подводных лодках, и все еще являются частью стандартного оборудования на коммерческих авиалайнерах в случае чрезвычайных ситуаций сброса давления. Другой метод разделения воздуха заключается в том, чтобы сделать так, чтобы воздух растворялся через керамические мембраны на основе диоксида циркония либо высоким давлением, либо электрическим током для получения почти чистого газа O2.

Хранение

Методы хранения кислорода включают резервуары для кислорода высокого давления, криогеники и химические соединения. По соображениям экономии, кислород часто транспортируется большими партиями в виде жидкости в специально изолированных танкерах, поскольку один литр сжиженного кислорода эквивалентен 840 литрам газообразного кислорода при атмосферном давлении и 20 ° C (68 ° F). Такие танкеры используются для пополнения емкостей для хранения жидкого кислорода, которые стоят за пределами больниц и других учреждений, которым требуются большие объемы чистого газообразного кислорода. Жидкий кислород пропускают через теплообменники, которые преобразуют криогенную жидкость в газ до того, как он попадет в здание. Кислород также хранится и поставляется в меньших цилиндрах, содержащих сжатый газ; форма, которая полезна в некоторых переносных медицинских применениях и кислородно-топливной сварке и резке.

Применение

Медицина

Употребление кислорода из воздуха является основной целью дыхания, поэтому в медицине используется кислородная терапия, которая не только увеличивает уровень кислорода в крови пациента, но и оказывает вторичное влияние, снижая резистентность к кровотоку во многих типах пораженных легких и ослабляя нагрузку на сердце. Кислородная терапия используется для лечения эмфиземы, пневмонии, некоторых сердечных заболеваний (застойной сердечной недостаточности), некоторых заболеваний, вызывающих повышенное давление в легочной артерии, и любых заболеваний, ухудшающих способность организма принимать и использовать газообразный кислород. Такие методы лечения могут использоваться в больничных условиях, на дому или же вообще при помощи переносных устройств. Кислородные палатки когда-то использовались при кислородной терапии, но с тех пор были заменены, в основном, использованием кислородных масок или назальных канюлей. В гипербарической (с высоким давлением) медицине используются специальные кислородные камеры для увеличения парциального давления O2 вокруг пациента и, при необходимости, медицинского персонала. Этот метод лечения иногда используется при отравлении угарным газом, газовой гангрене и декомпрессионной болезни. Увеличение количества O2 в легких помогает вытеснить монооксид углерода из гем-группы гемоглобина. Кислородный газ является ядовитым для анаэробных бактерий, которые вызывают газовую гангрену, поэтому увеличение его парциального давления помогает убить их. Декомпрессионная болезнь возникает у дайверов, которые быстро декомпрессируют после погружения, что приводит к образованию пузырьков инертного газа, в основном, азота и гелия, в крови. Как можно более быстрое увеличение давления O2 помогает повторно перевести пузырьки обратно в кровь, чтобы эти избыточные газы могли выдыхаться естественным путем через легкие.

Поддержка жизни и рекреационное использование

O2 как дыхательный газ низкого давления применяется в современных космических костюмах, которые окружают тело пассажира дыхательным газом. В этих устройствах используется почти чистый кислород при примерно одной трети от нормального давления, что приводит к нормальному парциальному давлению в крови O2. Этот компромисс более высокой концентрации кислорода для более низкого давления необходим для поддержания гибкости костюма. Дайверы и подводники также используют искусственно поставляемый О2. Подводные лодки и атмосферные подводные костюмы обычно работают при нормальном атмосферном давлении. Дыхательный воздух очищается от углекислого газа путем химической экстракции, а кислород заменяется для поддержания постоянного парциального давления. Дайверы, погружающиеся при давлении окружающей среды, дышат воздушными или газовыми смесями с кислородной фракцией, подходящей для рабочей глубины. Чистый или почти чистый O2 при погружении при давлениях выше атмосферного, обычно ограничивается ребризерами или декомпрессией на относительно небольших глубинах (глубина ~ 6 метров или менее), или медицинской помощи в камерах рекомпрессии при давлениях до 2,8 бар, где от острой кислородной токсичности можно избавиться без риска утопления. Глубокое погружение требует значительного разведения O2 с другими газами, такими как азот или гелий, для предотвращения кислородной токсичности. Люди, которые поднимаются на горы или летают в самолётах без давления, иногда имеют приборы для поставки дополнительного O2. В коммерческих самолетах под давлением, аварийный O2 автоматически подается пассажирам в случае сброса давления в кабине. Внезапная потеря давления в кабине активирует химические генераторы кислорода над каждым сиденьем, в результате чего падают кислородные маски. Экзотермическая реакция затем производит постоянный поток газообразного кислорода. Кислород, предположительно вызывающий мягкую эйфорию, имеет историю рекреационного использования в кислородных барах и в спорте. Кислородные бары существуют в Японии, Калифорнии и Лас-Вегасе, штат Невада, с конца 1990-х годов, предлагая пользователю вдохнуть больше O2, чем обычно, за плату. Профессиональные спортсмены, особенно в американском футболе, иногда выходят с поля между играми и надевают кислородные маски, чтобы повысить производительность. Фармакологический эффект таких действий сомнителен; эффект плацебо – более вероятное объяснение. Доступные исследования подтверждают эффект повышения производительности от употребления обогащенных кислородом смесей, только если они используются во время аэробных упражнений. Другие виды рекреационного использования, в которых не используется дыхание, включают в себя пиротехнические применения.

Промышленное использование

При плавке железной руды в сталь потребляется 55% коммерческого кислорода. В этом процессе, O2 входит через фурму высокого давления в расплавленное железо, которое удаляет примеси серы и избыток углерода в соответствующих оксидах, SO2 и СО2. Реакции являются экзотермическими, поэтому температура возрастает до 1700 ° С. Еще 25% коммерчески произведенного кислорода используется химической промышленностью. Этилен реагирует с O2 для получения этиленоксида, который, в свою очередь, превращается в этиленгликоль; первичный питательный материал, используемый для производства множества продуктов, включая антифризы и полиэфирные полимеры (прекурсоры многих пластмасс и тканей). Большинство из оставшихся 20% коммерчески производимого кислорода используется в медицине, резке металла и сварке, в качестве окислителя в ракетном топливе и в обработке воды. Кислород используется в оксиацетиленовой сварке, при сжигании ацетилена с O2 для получения очень горячего пламени. В этом процессе, металл толщиной до 60 см (24 дюйма) сначала нагревается небольшим оксиацетиленовым пламенем, а затем быстро разрезается большим потоком O2.

Соединения кислорода

Окислительное состояние кислорода составляет -2 почти во всех известных соединениях кислорода. Состояние окисления -1 находится в нескольких соединениях, таких как пероксиды. Соединения, содержащие кислород в других состояниях окисления, очень необычны: -1/2 (супероксиды), -1/3 (озониды), 0 (элементная, гипофлуорная кислота), +1/2 (диоксигенил), +1 (диизоцианид диоксиген) и +2 (дифторид кислорода).

Оксиды и другие неорганические соединения

Вода (H2O) представляет собой оксид водорода и наиболее известное кислородное соединение. Атомы водорода ковалентно связаны с кислородом в молекуле воды, но также имеют дополнительное притяжение (около 23,3 кДж · моль-1 на атом водорода) к соседнему атому кислорода в отдельной молекуле. Эти водородные связи между молекулами воды удерживают их примерно на 15% ближе, чем можно было бы ожидать в простой жидкости с просто ван-дер-ваальсовыми силами. Благодаря своей электроотрицательности, кислород образует химические связи почти со всеми остальными элементами, чтобы получить соответствующие оксиды. Поверхность большинства металлов, таких как алюминий и титан, окисляется в присутствии воздуха и покрывается тонкой пленкой оксида, которая пассивирует металл и замедляет дальнейшую коррозию. Многие оксиды переходных металлов представляют собой нестехиометрические соединения с немного меньшим количеством металла, чем показывает химическая формула. Например, минерал FeO (wüstite) записывается как Fe1-xO, где x обычно составляет около 0,05. Кислород присутствует в атмосфере в следовых количествах в виде двуокиси углерода (CO2). Породы земной коры состоят в значительной части из оксидов кремния (кремний SiO2, как в граните и кварце), алюминия (оксид алюминия Al2O3, в боксите и корунде), железа (оксид железа (III) Fe2O3 в гематите и ржавчине) и карбоната кальция (в известняке). Остальная часть земной коры также состоит из соединений кислорода, в частности, различных сложных силикатов (в силикатных минералах). Мантия Земли гораздо большей массы, чем кора, и в основном состоит из силикатов магния и железа. Водорастворимые силикаты в форме Na4SiO4, Na2SiO3 и Na2Si2O5 используются в качестве моющих средств и адгезивов. Кислород также действует как лиганд для переходных металлов, образующий комплексы диоксигена с переходными металлами, в которых присутствует металл-O2. Этот класс соединений включает гем-белки гемоглобин и миоглобин. Экзотическая и необычная реакция происходит с PtF6, который окисляет кислород, чтобы получить O2 + PtF6 -.

Органические соединения

Среди наиболее важных классов органических соединений, которые содержат кислород (где «R» представляет собой органическую группу) можно выделить: спирты (R-OH); простые эфиры (R-O-R); кетоны (R-CO-R); альдегиды (R-CO-H); карбоновые кислоты (R-COOH); эфиры (R-COO-R); ангидриды кислот (R-CO-O-CO-R); и амиды (R-C (O) -NR2). Существует много важных органических растворителей, которые содержат кислород, включая: ацетон, метанол, этанол, изопропанол, фуран, ТГФ, диэтиловый эфир, диоксан, этилацетат, ДМФ, ДМСО, уксусную кислоту и муравьиную кислоту. Ацетон (CH3) 2CO) и фенол (C6H5OH) используются в качестве питающих материалов при синтезе многих веществ. Другими важными органическими соединениями, которые содержат кислород, являются: глицерин, формальдегид, глутаровый альдегид, лимонная кислота, уксусный ангидрид и ацетамид. Эпоксиды представляют собой простые эфиры, в которых атом кислорода является частью кольца из трех атомов. Элемент аналогично встречается практически во всех биомолекулах, которые важны для жизни (или генерируются ею). Кислород спонтанно реагирует со многими органическими соединениями при комнатной температуре или ниже комнатной температуры в процессе, называемом автоокислением. Большинство органических соединений, содержащих кислород, не производятся прямым воздействием O2. Органические соединения, важные в промышленности и торговле, которые производятся путем прямого окисления предшественника, включают этиленоксид и перуксусную кислоту.

Безопасность и меры предосторожности

Стандарт NFPA 704 оценивает сжатый кислородный газ как не опасный для здоровья, негорючий и нереактивный газ, но окислитель. Охлажденный жидкий кислород (LOX) имеет рейтинг опасности для здоровья 3 (увеличивает риск гипероксии из конденсированных паров, а также имеет риски, общие для криогенных жидкостей, такие как обморожение).

Токсичность кислорода

Газообразный кислород (O2) может быть токсичным при повышенном парциальном давлении, приводя к судорогам и другим проблемам со здоровьем.