Дискретное преобразование. Сдвиг в частотной области. Двумерное преобразование Фурье

Пусть f (x 1 , x 2) – функция двух переменных. По аналогии с одномерным преобразованием Фурье можно ввести двумерное преобразование Фурье:

Функция при фиксированных значениях ω 1 , ω 2 описывает плоскую волну в плоскости x 1 , x 2 (рисунок 19.1).

Величины ω 1 , ω 2 имеют смысл пространственных частот и размерность мм −1 , а функция F(ω 1 , ω 2) определяет спектр пространственных частот. Сферическая линза способна вычислять спектр оптического сигнала (рисунок 19.2). На рисунке 19.2 введены обозначения: φ - фокусное расстояние,

Рисунок 19.1 – К определению пространственных частот

Двумерное преобразование Фурье обладает всеми свойствами одномерного преобразования, кроме того отметим два дополнительных свойства, доказательство которых легко следует из определения двумерного преобразования Фурье.


Рисунок 19.2 – Вычисление спектра оптического сигнала с использованием
сферической линзы

Факторизация . Если двумерный сигнал факторизуется,

то факторизуется и его спектр:

Радиальная симметрия . Если двумерный сигнал радиально-симметричен, то есть

Где – функция Бесселя нулевого порядка. Формулу, определяющую связь между радиально-симметричным двумерным сигналом и его пространственным спектром называют преобразованием Ганкеля.


ЛЕКЦИЯ 20. Дискретное преобразование Фурье. Низкочастотный фильтр

Прямое двумерное дискретное преобразование Фурье (ДПФ) преобразует изображение, заданное в пространственной координатной системе (x, y ), в двумерное дискретное преобразование изображения, заданное в частотной координатной системе (u,v ):

Обратное дискретное преобразование Фурье (ОДПФ) имеет вид:

Видно, что ДПФ является комплексным преобразованием. Модуль этого преобразования представляет амплитуду спектра изображения и вычисляется как корень квадратный из суммы квадратов действительной и мнимой частей ДПФ. Фаза (угол сдвига фазы) определяется как арктангенс отношения мнимой части ДПФ к действительной. Энергетический спектр равен квадрату амплитуды спектра, или сумме квадратов мнимой и действительной частей спектра.



Теорема о свертке

В соответствии с теоремой о свертке, свертка двух функций в пространственной области может быть получена ОДПФ произведения их ДПФ, то есть

Фильтрация в частотной области позволяет по ДПФ изображения подобрать частотную характеристику фильтра, обеспечивающую необходимое преобразование изображения. Рассмотрим частотные характеристики наиболее распространенных фильтров.

Из предыдущего раздела о дискретизации непрерывных сигналов следует, что реальные сигналы могут быть описаны выборками как в спектральной, так и во временной области. И дискретный спектр, и дискретный сигнал полностью описывают исходный непрерывный (континуальный) сигнал. Однако чтобы найти дискретный спектр по заданному дискретному сигналу, надо проделать трудоемкие расчеты: сначала по дискретному сигналу восстановить непрерывный сигнал, затем с помощью преобразования Фурье найти непрерывный спектр, затем его дискретизировать. Аналогичную процедуру необходимо проделать для обратного преобразования. Непосредственный переход от дискретного сигнала к дискретному спектру и наоборот возможен с использованием дискретного преобразования Фурье.

Рассмотрим непрерывный сигнал конечной длительности с числом степеней свободы, равным Для этого сигнала можно записать разложение в ряд Котельникова:

С помощью обычного преобразования Фурье найдем спектр этого сигнала:

Непосредственное вычисление интеграла в этой формуле - процедура трудоемкая. Однако это нетрудно сделать другим способом.

Рассмотрим спектр который определяется выражением

Применив к нему обратное преобразование Фурье, получим, что ему соответствует временная функция

Очевидно, справедливо и обратное соотношение

Применяя теорему о запаздывании, можно записать

Подставляя (3.2) в (3.1), получим окончательное выражение для спектра

Чтобы перейти к дискретному преобразованию Фурье, значения спектра в выражении (3.3) нужно вычислять не для всех значений частоты, а для дискретных (выборочных):

В результате получим окончательную формулу для дискретного преобразования Фурье

Свойства дискретного преобразования Фурье во многом аналогичны свойствам обычного преобразования Фурье. Отметим только одно специфическое свойство, которое

можно назвать периодичностью дискретного преобразования Фурье.

Рассмотрим значение определяемое формулой (3.4) для где целое число:

Таким образом, дискретное преобразование Фурье является периодической функцией частоты с периодом, равным Это свойство аналогично свойству периодичности спектра дискретизированных сигналов, которое рассматривалось в гл. 2.

Перейдем теперь к выводу обратного дискретного преобразования Фурье, позволяющего определять выборки сигнала по выборкам спектра. Для этого воспользуемся обычным обратным преобразованием Фурье

Спектральную плотность сигнала запишем в виде ряда Котельникова

и подставим в интеграл обратного преобразования Фурье

Интеграл в выражении аналогичен вычисленному ранее интегралу (3.2). Пользуясь этой аналогией, запишем

Подставляя (3.6) в (3.5), получим выражение для временной функции

Полагая в соотношении получим формулу для определения значений дискретного сигнала т. е. приходим к обратному дискретному преобразованию Фурье

где А принимает значения от 0 до

Иногда для удобства записи, используя свойство периодичности дискретного преобразования Фурье, изменяют пределы суммирования в выражении (3.8) и обратное дискретное преобразование Фурье записывают в виде

Для иллюстрации применим дискретное преобразование Фурье к дискретизированному треугольному импульсу (рис. описываемому пятью выборочными значениями

Подставим это выражение дискретного сигнала в формулу дискретного преобразования Фурье (3.4)

Для сравнения найдем спектральную плотность исходного треугольного импульса:

Легко видеть, что дискретный спектр (3.11) неточно описывает спектральную плотность треугольного импульса (3.12). Значения несколько отличаются от соответствующих значений спектра треугольного импульса (рис. 3.1, б).

Теперь подставим дискретные значения спектра (3.11) в выражение для обратного дискретного преобразования Фурье (3.8):

Несмотря на отличие значений дискретного спектра от значений непрерывного, полученный результат полностью совпадает с формулой исходного дискретного сигнала (3.11).

Рассмотренный пример показывает, что дискретное преобразование Фурье не всегда точно описывает спектр исходного непрерывного сигнала, подобно тому, как

Рис. 3.1. Дискретное преобразование Фурье дискретизированного треугольного импульса

дискретизированный сигнал не всегда точно описывает исходный непрерывный сигнал. Однако связь между дискретным сигналом и его дискретным преобразованием Фурье всегда носит взаимно однозначный характер и формулу прямого и обратного преобразований Фурье являются строгими при любом числе дискретных значений. Поэтому аппарат дискретных преобразований Фурье имеет самостоятельное значение и может быть применен к любым числовым последовательностям.

В этом случае формулы дискретного преобразования Фурье должны быть несколько изменены, так как для абстрактной числовой последовательности значения интервала дискретизации и длительности сигнала не имеют смысла. Поэтому коэффициент перед суммой в формуле (3.4) опускают, заменяют на отсчетные значения сигнала и спектра обозначают через и формулу дискретного преобразования Фурье записывают в виде

При этом обратное дискретное преобразование Фурье имеет вид

Значения вычисленные по формуле (3.14), отличаются от выборочных значений спектра непрерывного колебания в раз. Для определения выборочных значений надо значения вычисленные по формуле (3.14), умножить на величину интервала дискретизации по времени :

Покажем, что преобразования (3.14), (3.15) являются взаимно обратными. Для этого возьмем произвольную числовую последовательность с помощью дискретного преобразования Фурье (3.14) найдем последовательность и применим к ней обратное дискретное преобразование

Фурье (3.15). Получившуюся при этом последовательность обозначим

Поменяем порядок суммирования и несколько преобразуем это выражение:

Внутренняя сумма выражения (3,16) равна нулю, если и равна если Следовательно, при т. е. числовые последовательности совпадают друг с другом. Таким образом, при последовательном применении к любой числовой последовательности прямого и обратного дискретного преобразования Фурье получают в результате ту же последовательность.

Проиллюстрируем это положение простейшими примерами.

1. Рассмотрим простейший дискретный сигнал, состоящий из одного отсчетного значения, равного а. Подставляя эту простейшую последовательность в формулу дискретного преобразования Фурье (3.14), получим Таким образом, дискретное преобразование Фурье отдельного числового значения равно этому же значению.

Другое важное применение дискретного преобразования Фурье - вычисление сигнала на выходе фильтра с заданной частотной характеристикой. Если задан входной сигнал то для него можно вычислить дискретное преобразование Фурье Если теперь умножим на частотную характеристику фильтра, то получим дискретное преобразование Фурье выходного сигнала: После этого с помощью обратного дискретного преобразования Фурье можно найти сигнал на выходе фильтра.

Если входной сигнал имеет большую длительность, его обработку с помощью дискретного преобразования Фурье можно производить по частям. Для этого берут первые N отсчетов входного сигнала, вычисляют их дискретное преобразование Фурье и после умножения на частотную характеристику фильтра с помощью обратного дискретного преобразования Фурье вычисляют первые N отсчетов выходного сигнала. После этого аналогичным путем обрабатывают следующие N отсчетов входного сигнала и т. д. Для повышения точности обработки сигнала обрабатываемые серии отсчетов могут частично перекрываться.

Преимуществом такого метода обработки сигналов является отсутствие каких-либо ограничений на вид частотной характеристики фильтра. Например, частотная характеристика может быть идеальной прямоугольной формы, что невозможно реализовать с помощью обычных фильтров.

Обработку сигналов с помощью дискретного преобразования Фурье нельзя назвать цифровой фильтрацией в полном смысле слова. Обычные цифровые фильтры, работающие в реальном масштабе времени, производят обработку сигнала непрерывно по мере его поступления, а вычисление выходного сигнала с помощью дискретного преобразования Фурье может быть произведено лишь после того, как станет известным полностью входной сигнал или хотя бы первая серия из N его отсчетов. Поэтому при использовании дискретного преобразования Фурье выходной сигнал может быть получен только с некоторым

запаздыванием по отношению к входному сигналу. Однако в ряде практических применений такое запаздывание выходного сигнала не играет существенной роли, и тогда обработка сигналов с использованием дискретного преобразования Фурье оказывается целесообразной.

Обозначим через

двумерное поле (двумерный сигнал), описывающее дискретное изображение размера строк и столбцов. Вне указанных границ этот сигнал не определен. Выполним периодическое продолжение данного финитного сигнала, введя двумерный периодический сигнал

. (3.21)

Если сигнал существует только внутри прямоугольника со сторонами элементов (рис. 3.4.а), то сигнал определен на всей плоскости и является на ней прямоугольно-периодическим (рис. 3.4.б).

Рис. 3.4. Реальное (а) и периодически продолженное (б) изображения

Любой периодический сигнал может быть представлен в виде ряда Фурье, но, в отличие от одномерных сигналов, двумерные описываются двумерным рядом Фурье, имеющим вид:

Базисные функции этого двумерного представления - двумерные комплексные экспоненты (иногда называемые комплексными синусоидами)

(3.23)

имеющие, как и сигнал , прямоугольную периодичность с тем же периодом . Здесь (,) - двумерный номер базисной функции, а величины имеют смысл пространственных частот. Иногда пространственными частотами называют целочисленные величины и .

Коэффициенты Фурье ряда (3.22) образуют двумерный частотный спектр сигнала и определяются формулой прямого преобразования Фурье:

(3.24)

Выражение (3.22), восстанавливающее сигнал по его спектру , является обратным преобразованием Фурье. В справедливости преобразований (3.22) и (3.24), называемых двумерным ДПФ, можно убедиться, подставив (3.24) в (3.22) и приведя правую часть полученного равенства к значению левой, т.е. к .

Заметим, что для точного представления дискретного сигнала с двумерным периодом элементов согласно формулам БПФ достаточно конечного числа базисных функций (3.23) - ряд (3.22) является конечным. Это и понятно, поскольку сам представляемый сигнал содержит в одном периоде конечное число точек, т.е. имеет конечное число степеней свободы. Ясно, что число степеней свободы в спектре не может отличаться от числа степеней свободы в самом сигнале.

Остановимся на наиболее существенных свойствах двумерного дискретного спектра Фурье. Вычислим спектральные коэффициенты (3.24) в частотных точках :

Поскольку при любых целых значениях и последний множитель в полученном выражении равен единице, то отсюда имеем равенство:

,

означающее прямоугольную периодичность двумерного ДПФ. Следовательно, картина двумерного ДПФ подобна картине двумерного периодически продолженного сигнала, качественно показанной на рис. 3.4.б (если на ней пространственные координаты заменить частотными ). Однако необходимо иметь в виду, что спектральные коэффициенты , как это следует из (3.24), являются комплексными числами, в том числе и при вещественном сигнале . Но тогда возникает вопрос. Общее количество спектральных компонент, как установлено, равно . Комплексное число эквивалентно паре вещественных чисел - действительной и мнимой частям при алгебраическом или модулю и фазе при экспоненциальном представлении. Следовательно, полный спектр описывается вещественными числами, что вдвое превышает размерность самого сигнала . В этом, на первый взгляд, содержится противоречие. Оно находит свое разъяснение при дальнейшем изучении свойств двумерного ДПФ.

Преобразуем соотношение (3.25) следующим образом. Во-первых, вместо частот подставим частоты . Во-вторых, выполним комплексное сопряжение обеих частей, что не нарушит равенства. В результате нетрудно получить выражение:

,

которым устанавливается однозначная связь между спектральными коэффициентами в двух различных точках спектрального прямоугольника . Полученным соотношением и снимается противоречие, поскольку количество независимых спектральных коэффициентов уменьшается благодаря данной спектральной симметрии в два раза. Согласно установленному свойству, спектрально-сопряженной зависимостью связаны между собой спектральные коэффициенты, принадлежащие левому верхнему и правому нижнему углам прямоугольника . Аналогично также связаны между собой коэффициенты Фурье из правого верхнего и левого нижнего участков спектрального прямоугольника .

В заключение данного пункта укажем, что при практическом применении двумерного ДПФ - как прямого, так и обратного, совсем не требуется оперировать периодическими сигналами и спектрами, как это предполагается, казалось бы, преобразованиями (3.22) и (3.24). От этой необходимости избавляют сами соотношения (3.22) и (3.24). В самом деле, прямое преобразование Фурье (3.24) содержит в правой части значения периодически продолженного сигнала лишь в пределах одного “главного” прямоугольника . Но в этих пределах исходный и периодически продолженный сигналы полностью совпадают, что дает возможность использовать в формуле (3.24) исходный сигнал . Аналогичные пояснения можно сделать и относительно обратного преобразования (3.22), откуда следует, что практически в процессе вычислений оперировать следует “основным” участком спектра, относящимся к спектральной области .

Из сделанных пояснений, имеющих лишь исключительно вычислительное значение, не следует делать вывода об искусственности и ненужности рассмотренных математических моделей периодических полей. При обработке изображений возникают многочисленные задачи, правильное толкование и решение которых возможно только на основе этих математических интерпретаций. Одной из таких важнейших задач является цифровая двумерная фильтрация в спектральной области, осуществление которой связано с выполнением так называемой циклической свертки.

Исследуем особенности спектрального представления дискретного сигнала, который задан на отрезке своими отсчётами
, взятыми соответственно в моменты времени
; полное число отсчётов
(- интервал дискретизации).

Методика изучения таких дискретных сигналов состоит в том, что полученная выборка отсчётных значений мысленно повторяется бесконечное число раз. В результате сигнал становится периодическим.

Сопоставив такому сигналу некоторую математическую модель можно воспользоваться разложением в ряд Фурье и найти соответствующие амплитудные коэффициенты. Совокупность этих коэффициентов образует спектр дискретного периодического сигнала.

Воспользуемся моделью в виде последовательности дельта-импульсов. Тогда исходное колебание будет выражено формулой:

(5.1)

Где
– выборочные значения аналогового сигнала.

- дискретное преобразование Фурье (ДПФ) (5.4)

Основные свойства ДПФ

1. ДПФ- линейное преобразование т.е. сумме сигналов отвечает сумма их ДПФ

2. Число различных коэффициентов
, вычисляемых по формуле (5.4), равно числу N за период; при коэффициент

3. Коэффициент (постоянная составляющая) является средним значением всех отсчётов:

5. Пусть отсчётные значения вещественные числа. Тогда коэффициенты ДПФ, номера которых располагаются симметрично относительно /2, образуют сопряжённые пары:

Задача дискретного спектрального анализа может быть поставлена и по-иному. Допустим, что коэффициенты , образующие ДПФ, заданы. Положим в формуле (5.2)
и учтём, что суммируется лишь конечное число членов ряда, которые отвечают гармоникам, содержащимся в спектре исходного сигнала.

Таким образом, получаем формулу для вычисления отсчётных значений

(5.5)

Очевидно, что (5.5) представляет собой формулу обратного дискретного преобразования Фурье (ОДПФ) .

11 Алгоритм быстрого преобразования Фурье. Число вычислительных операций. Сравнение дискретного и быстрого преобразования Фурье.

=0, 1, 2,…,( /2)-1 (5.7)

Учтём, что последовательности коэффициентов, относящихся к чётной и нечётной частям входного массива, являются периодическими с периодом N/2:

Кроме того, входящий в формулу (5.7) множитель при
можно преобразовать так:

Отсюда находим выражение для второй половины множества коэффициентов ДПФ


(5.8)

Формулы (5.7) и (5.8) лежат в основе алгоритма БПФ. Далее вычисления строят по итерационному принципу: последовательности отсчётов с чётными и нечётными номерами вновь разбивают на две части. Процесс продолжают до тех пор, пока не получается последовательность, состоящая из единственного элемента. ДПФ этого элемента совпадает с ним самим.

Число операций, необходимых для вычисления БПФ оценивается как
.

Выигрыш в скорости вычислений по сравнению с традиционным ДПФ достигает сотен и даже тысяч при достаточных длинах входных массивов.

12.. Z - преобразование и его свойства. Применение Z - преобразования.

При анализе и синтезе дискретных и цифровых устройств Z-преобразование играет такую же роль, как интегральные преобразования Фурье по отношению к непрерывным сигналам.

Пусть
– числовая последовательность, конечная или бесконечная, содержащая отсчётные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицательным степеням комплексной переменнойZ:

(5.9)

Эта сумма называется Z-преобразованием последовательности
. Свойства дискретных последовательностей чисел можно изучать, исследуя ихZ-преобразования обычными методами математического анализа.

Данное выражение имеет смысл при |Z|> .

Обратное Z- преобразование

Пусть x(z) – функция комплексной переменной Z. Замечательное свойство Z-преобразование состоит в том, что функция x(z) определяет всю бесконечную совокупность отсчётов (
).

Действительно, умножим обе части ряда (5.9) на множитель
:

Интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером m, поэтому:

(5.11)

Данное выражение носит название обратное Z-преобразование.

Важнейшие свойства Z -преобразования:

1. Линейность . Если
и
- некоторые дискретные сигналы, причём известны соответствующиеZ-преобразования x(z) и y(z), то сигналу
будет отвечать преобразованиепри любых постоянныхи. Доказательство проводится путём подстановки суммы в формулу (5.9).

2. Z -преобразование смещённого сигнала . Рассмотрим дискретный сигнал
, получающийся из дискретного сигнала
путём сдвига на одну позицию в сторону запаздывания, т.е. когда
. Непосредственно вычисляяZ-преобразование, получаем следующий результат:

Таким образом, символ
служит оператором единичной задержки (на один интервал дискретизации) вZ-области.

3. Z -преобразование свёртки . Пусть x(z) и y(z) – непрерывные сигналы, для которых определена свёртка:

(5.13)

Применительно к дискретным сигналам по аналогии с (5.13) принято вводить дискретную свёртку
– последовательность чисел общий член которой:

Подобную дискретную свёртку называют линейной

Вычислим Z-преобразование дискретной свёртки:

(5.15)

Итак, свёртке двух дискретных сигналов отвечает произведение Z-преобразований.

Многие сигналы удобно анализировать, раскладывая их на синусоиды (гармоники). Тому есть несколько причин. Например, подобным образом работает человеческое ухо. Оно раскладывает звук на отдельные колебания различных частот. Кроме того, можно показать, что синусоиды являются "собственными функциями" линейных систем (т.к. они проходят через линейные системы, не изменяя формы, а могут изменять лишь фазу и амплитуду). Еще одна причина в том, что теорема Котельникова формулируется в терминах спектра сигнала.

Преобразование Фурье (Fourier transform) - это разложение функций на синусоиды (далее косинусные функции мы тоже называем синусоидами, т.к. они отличаются от "настоящих" синусоид только фазой). Существует несколько видов преобразования Фурье.

1. Непериодический непрерывный сигнал можно разложить в интеграл Фурье.

2. Периодический непрерывный сигнал можно разложить в бесконечный ряд Фурье.

3. Непериодический дискретный сигнал можно разложить в интеграл Фурье.

4. Периодический дискретный сигнал можно разложить в конечный ряд Фурье.

Компьютер способен работать только с ограниченным объемом данных, следовательно, реально он способен вычислять только последний вид преобразования Фурье. Рассмотрим его подробнее.

Комплексное ДПФ

До сих пор мы рассматривали ДПФ от действительных сигналов. Обобщим теперь ДПФ на случай комплексных сигналов. Пусть x[n], n=0,…,N-1 - исходный комплексный сигнал, состоящий из N комплексных чисел. Обозначим X[k], k=0,…N-1 - его комплексный спектр, также состоящий из N комплексных чисел. Тогда справедливы следующие формулы прямого и обратного преобразований Фурье:

Если по этим формулам разложить в спектр действительный сигнал, то первые N/2+1 комплексных коэффициентов спектра будут совпадать со спектром "обычного" действительного ДПФ, представленным в "комплексном" виде, а остальные коэффициенты будут их симметричным отражением относительно половины частоты дискретизации. Для косинусных коэффициентов отражение четное, а для синусных - нечетное.

Двумерное ДПФ

Для изображений, представляющих собой двумерный сигнал, спектром является также двумерный сигнал. Базисные функции преобразования Фурье имеют вид:

причем фазы также могут быть различны. На изображении каждая из этих базисных функций представляют собой волну определенной частоты, определенной ориентации и определенной фазы.

Здесь N 1 xN 2 - размер исходного сигнала, он же - размер спектра. k 1 и k 2 - это номера базисных функций (номера коэффициентов двумерного ДПФ, при которых эти функции находятся). Поскольку размер спектра равен размеру исходного сигнала, то k 1 = 0,…,N 1 -1; k 2 = 0,…,N 2 -1.

n 1 и n 2 - переменные-аргументы базисных функций. Поскольку область определения базисных функций совпадает с областью определения сигнала, то n 1 = 0,…,N 1 -1; n 2 = 0,…,N 2 -1.

Двумерное ДПФ (в комплексной форме) определяется следующими формулами (здесь x - исходный сигнал, а X - его спектр):

Непосредственное вычисление двумерного ДПФ по приведенным формулам требует огромных вычислительных затрат. Однако можно доказать, что двумерное ДПФ обладает свойством сепарабельности, т.е. его можно вычислить последовательно по двум измерениям.

Для вычисления двумерного ДПФ достаточно вычислить одномерные комплексные ДПФ всех строк изображения, а затем вычислить в результирующем "изображении" одномерные комплексные ДПФ всех столбцов.

При этом результаты всех одномерных комплексных ДПФ нужно записывать на место исходных данных для этих ДПФ. Например, при вычислении одномерного ДПФ первой строки изображения нужно результат ДПФ записать в первую строку этого изображения (он имеет тот же размер). Для этого нужно каждый "пиксель" хранить в виде комплексного числа.

Таким образом, эффективный алгоритм вычисления ДПФ изображения заключается в вычислении одномерных БПФ сначала от всех строк, а потом - от всех столбцов изображения.