Метод наименьших квадратов входит в группу. Где применяется метод наименьших квадратов. Алгоритм реализации метода наименьших квадратов

3. Аппроксимация функций с помощью метода

наименьших квадратов

Метод наименьших квадратов применяется при обработке результатов эксперимента для аппроксимации (приближения) экспериментальных данных аналитической формулой. Конкретный вид формулы выбирается, как правило, из физических соображений. Такими формулами могут быть:

и другие.

Сущность метода наименьших квадратов состоит в следующем. Пусть результаты измерений представлены таблицей:

Таблица 4

x n

y n

(3.1)

где f - известная функция, a 0 , a 1 , …, a m - неизвестные постоянные параметры, значения которых надо найти. В методе наименьших квадратов приближение функции (3.1) к экспериментальной зависимости считается наилучшим, если выполняется условие

(3.2)

то есть сумм a квадратов отклонений искомой аналитической функции от экспериментальной зависимости должна быть минимальна .

Заметим, что функция Q называется невязкой.


Так как невязка

то она имеет минимум. Необходимым условием минимума функции нескольких переменных является равенство нулю всех частных производных этой функции по параметрам. Таким образом, отыскание наилучших значений параметров аппроксимирующей функции (3.1), то есть таких их значений, при которых Q = Q (a 0 , a 1 , …, a m ) минимальна, сводится к решению системы уравнений:

(3.3)

Методу наименьших квадратов можно дать следующее геометрическое истолкование: среди бесконечного семейства линий данного вида отыскивается одна линия, для которой сумма квадратов разностей ординат экспериментальных точек и соответствующих им ординат точек, найденных по уравнению этой линии, будет наименьшей.

Нахождение параметров линейной функции

Пусть экспериментальные данные надо представить линейной функцией:

Требуется подобрать такие значения a и b , для которых функция

(3.4)

будет минимальной. Необходимые условия минимума функции (3.4) сводятся к системе уравнений:

После преобразований получаем систему двух линейных уравнений с двумя неизвестными:

(3.5)

решая которую , находим искомые значения параметров a и b .

Нахождение параметров квадратичной функции

Если аппроксимирующей функцией является квадратичная зависимость

то её параметры a , b , c находят из условия минимума функции:

(3.6)

Условия минимума функции (3.6) сводятся к системе уравнений:


После преобразований получаем систему трёх линейных уравнений с тремя неизвестными:

(3.7)

при решении которой находим искомые значения параметров a , b и c .

Пример . Пусть в результате эксперимента получена следующая таблица значений x и y :

Таблица 5

y i

0,705

0,495

0,426

0,357

0,368

0,406

0,549

0,768

Требуется аппроксимировать экспериментальные данные линейной и квадратичной функциями.

Решение. Отыскание параметров аппроксимирующих функций сводится к решению систем линейных уравнений (3.5) и (3.7). Для решения задачи воспользуемся процессором электронных таблиц Excel .

1. Сначала сцепим листы 1 и 2. Занесём экспериментальные значения x i и y i в столбцы А и В, начиная со второй строки (в первой строке поместим заголовки столбцов). Затем для этих столбцов вычислим суммы и поместим их в десятой строке.

В столбцах C – G разместим соответственно вычисление и суммирование

2. Расцепим листы.Дальнейшие вычисления проведём аналогичным образом для линейной зависимости на Листе 1и для квадратичной зависимости на Листе 2.

3. Под полученной таблицей сформируем матрицу коэффициентов и вектор-столбец свободных членов. Решим систему линейных уравнений по следующему алгоритму:

Для вычисления обратной матрицы и перемножения матриц воспользуемся Мастером функций и функциями МОБР и МУМНОЖ .

4. В блоке ячеек H2: H 9 на основе полученных коэффициентов вычислим значенияаппроксимирующего полинома y i выч ., в блоке I 2: I 9 – отклонения D y i = y i эксп . - y i выч .,в столбце J – невязку:

Полученные таблицы и построенные с помощью Мастера диаграмм графики приведёны на рисунках6, 7, 8.


Рис. 6. Таблица вычисления коэффициентов линейной функции,

аппроксимирующей экспериментальные данные.


Рис. 7. Таблица вычисления коэффициентов квадратичной функции,

аппроксимирующей экспериментальные данные.


Рис. 8. Графическое представление результатов аппроксимации

экспериментальных данных линейной и квадратичной функциями.

Ответ. Аппроксимировали экспериментальные данные линейной зависимостью y = 0,07881 x + 0,442262 c невязкой Q = 0,165167 и квадратичной зависимостью y = 3,115476 x 2 – 5,2175 x + 2,529631 c невязкой Q = 0,002103 .

Задания. Аппроксимировать функцию, заданную таблично, линейной и квадратичной функциями.

Таблица 6

№0

x

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

y

3,030

3,142

3,358

3,463

3,772

3,251

3,170

3,665

1

3,314

3,278

3,262

3,292

3,332

3,397

3,487

3,563

2

1,045

1,162

1,264

1,172

1,070

0,898

0,656

0,344

3

6,715

6,735

6,750

6,741

6,645

6,639

6,647

6,612

4

2,325

2,515

2,638

2,700

2,696

2,626

2,491

2,291

5

1.752

1,762

1,777

1,797

1,821

1,850

1,884

1,944

6

1,924

1,710

1,525

1,370

1,264

1,190

1,148

1,127

7

1,025

1,144

1,336

1,419

1,479

1,530

1,568

1,248

8

5,785

5,685

5,605

5,545

5,505

5,480

5,495

5,510

9

4,052

4,092

4,152

4,234

4,338

4,468

4,599

Метод наименьших квадратов используется для оценки параметров уравнение регрессии.
Количество строк (исходных данных)

Одним из методов изучения стохастических связей между признаками является регрессионный анализ .
Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

  1. выбор формы связи (вида аналитического уравнения регрессии);
  2. оценку параметров уравнения;
  3. оценку качества аналитического уравнения регрессии.
Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.
В случае линейной парной связи уравнение регрессии примет вид: y i =a+b·x i +u i . Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y . Результатом такой оценки является уравнение: , где , - оценки параметров a и b , - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x) (см. предпосылки МНК).

Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем: получить такие оценки параметров , , при которых сумма квадратов отклонений фактических значений результативного признака - y i от расчетных значений – минимальна.
Формально критерий МНК можно записать так: .

Классификация методов наименьших квадратов

  1. Метод наименьших квадратов.
  2. Метод максимального правдоподобия (для нормальной классической линейной модели регрессии постулируется нормальность регрессионных остатков).
  3. Обобщенный метод наименьших квадратов ОМНК применяется в случае автокорреляции ошибок и в случае гетероскедастичности.
  4. Метод взвешенных наименьших квадратов (частный случай ОМНК с гетероскедастичными остатками).

Проиллюстрируем суть классического метода наименьших квадратов графически . Для этого построим точечный график по данным наблюдений (x i , y i , i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

Математическая запись данной задачи: .
Значения y i и x i =1...n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - , . Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е. .
В результате получим систему из 2-ух нормальных линейных уравнений:
Решая данную систему, найдем искомые оценки параметров:

Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм (возможно некоторое расхождение из-за округления расчетов).
Для расчета оценок параметров , можно построить таблицу 1.
Знак коэффициента регрессии b указывает направление связи (если b >0, связь прямая, если b <0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.
Формально значение параметра а – среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - r x,y . Он может быть рассчитан по формуле: . Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: .
Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если r x, y >0, то связь прямая; если r x, y <0, то связь обратная.
Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице ê r x , y ê =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то r x,y близок к 0.
Для расчета r x,y можно использовать также таблицу 1.

Таблица 1

N наблюдения x i y i x i ∙y i
1 x 1 y 1 x 1 ·y 1
2 x 2 y 2 x 2 ·y 2
...
n x n y n x n ·y n
Сумма по столбцу ∑x ∑y ∑x·y
Среднее значение
Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R 2 yx:

,
где d 2 – объясненная уравнением регрессии дисперсия y ;
e 2 - остаточная (необъясненная уравнением регрессии) дисперсия y ;
s 2 y - общая (полная) дисперсия y .
Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y , объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y . Коэффициент детерминации R 2 yx принимает значения от 0 до 1. Соответственно величина 1-R 2 yx характеризует долю дисперсии y , вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.
При парной линейной регрессии R 2 yx =r 2 yx .

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов. Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение.

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Основная сфера применения таких полиномов - обработка экспериментальных данных (построение эмпирических формул). Дело в том, что интерполяционный полином, построенный по значениям функции, полученным с помощью эксперимента, будет испытывать сильное влияние "экспериментального шума", к тому же при интерполировании узлы интерполяции не могут повторяться, т.е. нельзя использовать результаты повторных экспериментов при одинаковых условиях. Среднеквадратичный же полином сглаживает шумы и позволяет использовать результаты многократных экспериментов.

Численное интегрирование и дифференцирование. Пример.

Численное интегрирование – вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.

Численное дифференцирование – совокупность методов вычисления значения производной дискретно заданной функции.

Интегрирование

Постановка задачи. Математическая постановка задачи: необходимо найти значение определенного интеграла

где a, b - конечны, f(x) - непрерывна на [а, b].

При решении практических задач часто бывает, что интеграл неудобно или невозможно взять аналитически: он может не выражаться в элементарных функциях, подынтегральная функция может быть задана в виде таблицы и пр. В таких случаях применяют методы численного интегрирования. Численные методы интегрирования используют замену площади криволинейной трапеции на конечную сумму площадей более простых геометрических фигур, которые могут быть вычислены точно. В этом смысле говорят об использовании квадратурных формул.

В большинстве методов используется представление интеграла в виде конечной суммы (квадратурная формула):

В основе квадратурных формул лежит идея замена на отрезке интегрирования графика подынтегрального выражения функциями более простого вида, которые легко могут быть проинтегрированы аналитически и, таким образом, легко вычислены. Наиболее просто задача построения квадратурных формул реализуется для полиномиальных математических моделей.

Можно выделить три группы методов:

1. Метод с разбиением отрезка интегрирования на равные интервалы. Разбиение на интервалы производится заранее, обычно интервалы выбираются равными (чтобы легче было вычислить функцию на концах интервалов). Вычисляют площади и суммируют их (методы прямоугольников, трапеции, Симпсона).

2. Методы с разбиением отрезка интегрирования с помощью специальных точек (метод Гаусса).

3. Вычисление интегралов с помощью случайных чисел (метод Монте-Карло).

Метод прямоугольников. Пусть функцию (рисунок) необходимо проинтегрировать численным методом на отрезке . Разделим отрезок на N равных интервалов. Площадь каждой из N криволинейных трапеций можно заменить на площадь прямоугольника.

Ширина всех прямоугольников одинакова и равна:

В качестве выбора высоты прямоугольников можно выбрать значение функции на левой границе. В этом случае высота первого прямоугольника составит f(a), второго – f(x 1),…, N-f(N-1).

Если в качестве выбора высоты прямоугольника взять значение функции на правой границе, то в этом случае высота первого прямоугольника составит f(x 1), второго – f(x 2), …, N – f(x N).

Как видно, в этом случае одна из формул дает приближение к интегралу с избытком, а вторая с недостатком. Существует еще один способ – использовать для аппроксимации значение функции в середине отрезка интегрирования:

Оценка абсолютной погрешности метода прямоугольников (середина)

Оценка абсолютной погрешности методов левых и правых прямоугольников.

Пример. Вычислить для всего интервала и с делением интервала на четыре участка

Решение. Аналитическое вычисление данного интеграла дает I=агсtg(1)–агсtg(0)=0,7853981634. В нашем случае:

1)h = 1; xо = 0; x1 = 1;

2) h = 0,25 (1/4); x0 = 0; x1 = 0,25; x2 = 0,5; х3 = 0,75; x4 = 1;

Вычислим методом левых прямоугольников:

Вычислим методом правых прямоугольников:

Вычислим методом средних прямоугольников:

Метод трапеций. Использование для интерполяции полинома первой степени (прямая линия, проведенная через две точки) приводит к формуле трапеций. В качестве узлов интерполирования берутся концы отрезка интегрирования. Таким образом, криволинейная трапеция заменяется на обычную трапецию, площадь которой может быть найдена как произведение полусуммы оснований на высоту

В случае N отрезков интегрирования для всех узлов, за исключением крайних точек отрезка, значение функции войдет в общую сумму дважды (так как соседние трапеции имеют одну общую сторону)

Формула трапеции может быть получена, если взять половину суммы формул прямоугольников по правому и левому краям отрезка:

Проверка устойчивости решения. Как правило, чем меньше длина каждого интервала, т.е. чем больше число этих интервалов, тем меньше различаются приближенное и точное значение интеграла. Это справедливо для большинства функций. В методе трапеций ошибка вычисления интеграла ϭ приблизительно пропорциональна квадрату шага интегрирования (ϭ ~ h 2).Таким образом, для вычисления интеграла некоторой функции в переделах a,b необходимо разделить отрезок на N 0 интервалов и найти сумму площадей трапеции. Затем нужно увеличить число интервалов N 1 , опять вычислить сумму трапеции и сравнить полученное значение с предыдущим результатом. Это следует повторять до тех пор (N i), пока не будет достигнута заданная точность результата (критерий сходимости).

Для методов прямоугольников и трапеции обычно на каждом шаге итерации число интервалов увеличивается в 2 раза (N i +1 =2N i).

Критерий сходимости:

Главное преимущество правила трапеций – его простота. Однако если при вычислении интеграла требуется высокая точность, применение этого метода может потребовать слишком большого количества итераций.

Абсолютная погрешность метода трапеций оценивается как
.

Пример. Вычислить приближенно определенный интеграл по формуле трапеций.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: .

Таким образом, общая формула трапеций сокращается до приятных размеров:

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади.

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Если взять еще больше отрезком => будет еще точнее.

Формула Симпсона. Формула трапеции дает результат, сильно зависящий от величины шага h, что сказывается на точности вычисления определенного интеграла особенно в тех случаях, когда функция имеет немонотонный характер. Можно предположить повышение точности вычислений, если вместо отрезков прямых, заменяющих криволинейные фрагменты графика функции f(x), использовать, например, фрагменты парабол, приводимых через три соседние точки графика. Подобная геометрическая интерпретация лежит в основе метода Симпсона для вычисления определенного интеграла. Весь интервал интегрирования a,b разбивается N отрезков, длина отрезка также будет равна h=(b-a)/N.

Формула Симпсона имеет вид:

остаточный член

С увеличением длины отрезков точность формулы падает, поэтому для увеличения точности применяют составную формулу Симпсона. Весь интервал интегрирования разбивается на четное число одинаковых отрезков N, длина отрезка также будет равна h=(b-a)/N. Составная формула Симпсона имеет вид:

В формуле выражения в скобках представляют собой суммы значений подынтегральной функции соответственно на концах нечетных и четных внутренних отрезков.

Остаточный член формулы Симпсона пропорционален уже четвертой степени шага:

Пример: Пользуясь правилом Симпсона вычислить интеграл . (Точное решение - 0,2)

Метод Гаусса

Квадратурная формула Гаусса . Основной принцип квадратурных формул второй разновидности виден из рисунка 1.12: необходимо так разместить точки х 0 и х 1 внутри отрезка [a ;b ], чтобы площади "треугольников" в сумме были равны площади "сегмента". При использовании формулы Гаусса исходный отрезок [a ;b ] сводится к отрезку [-1;1] заменой переменной х на

0.5∙(b a )∙t + 0.5∙(b + a ).

Тогда , где .

Такая замена возможна, если a и b конечны, а функция f (x ) непрерывна на [a ;b ]. Формула Гаусса при n точках x i , i =0,1,..,n -1 внутри отрезка [a ;b ]:

, (1.27)

где t i и A i для различных n приводятся в справочниках. Например, при n =2 A 0 =A 1 =1; при n =3: t 0 =t 2 »0.775, t 1 =0, A 0 =A 2 »0.555, A 1 »0.889.

Квадратурная формула Гаусса

получена с весовой функцией равной единице p(x)= 1 и узлами x i , являющимися корнями полиномов Лежандра

Коэффициенты A i легко вычисляются по формулам

i =0,1,2,...n .

Значения узлов и коэффициентов для n=2,3,4,5 приведены в таблице

Порядок Узлы Коэффициенты
n =2 x 1 =0 x 0 = -x 2 =0.7745966692 A 1 =8/9 A 0 =A 2 =5/9
n =3 x 2 = -x 1 =0.3399810436 x 3 = -x 0 =0.8611363116 A 1 =A 2 =0.6521451549 A 0 =A 3 =0.6521451549
n=4 x 2 = 0 x 3 = -x 1 = 0.5384693101 x 4 =-x 0 =0.9061798459 A 0 =0.568888899 A 3 =A 1 =0.4786286705 A 0 =A 4 =0.2869268851
n =5 x 5 = -x 0 =0.9324695142 x 4 = -x 1 =0.6612093865 x 3 = -x 2 =0.2386191861 A 5 =A 0 =0.1713244924 A 4 =A 1 =0.3607615730 A 3 =A 2 =0.4679139346

Пример. Вычислить значение по формуле Гаусса для n =2:

Точное значение: .

Алгоритм вычисления интеграла по формуле Гаусса предусматривает не удвоение числа микроотрезков, а увеличение числа ординат на 1 и сравнение полученных значений интеграла. Преимущество формулы Гаусса – высокая точность при сравнительно малом числе ординат. Недостатки: неудобна при расчетах вручную; необходимо держать в памяти ЭВМ значения t i , A i для различных n .

Погрешность квадратурной формулы Гаусса на отрезке будет при этом Для формула остаточного члена будет причем коэффициент α N быстро убывает с ростом N . Здесь

Формулы Гаусса обеспечивают высокую точность уже при небольшом количестве узлов (от 4 до 10) В этом случае В практических же вычислениях число узлов составляет от нескольких сотен до нескольких тысяч. Отметим также, что веса квадратур Гаусса всегда положительны, что обеспечивает устойчивость алгоритма вычисления сумм

Дифференцирование. При решении задач часто бывает необходимо найти производную определенного порядка от функции f(x), заданной таблично. Кроме того, иногда в силу сложности аналитического выражения функции f(x) ее непосредственное дифференцирование слишком затрудненно, а также при численном решении дифференциальных уравнений. В этих случаях используют численное дифференцирование.

Которое находит самое широкое применение в различных областях науки и практической деятельности. Это может быть физика, химия, биология, экономика, социология, психология и так далее, так далее. Волею судьбы мне часто приходится иметь дело с экономикой, и поэтому сегодня я оформлю вам путёвку в удивительную страну под названием Эконометрика =) …Как это не хотите?! Там очень хорошо – нужно только решиться! …Но вот то, что вы, наверное, определённо хотите – так это научиться решать задачи методом наименьших квадратов . И особо прилежные читатели научатся решать их не только безошибочно, но ещё и ОЧЕНЬ БЫСТРО;-) Но сначала общая постановка задачи + сопутствующий пример:

Пусть в некоторой предметной области исследуются показатели , которые имеют количественное выражение. При этом есть все основания полагать, что показатель зависит от показателя . Это полагание может быть как научной гипотезой, так и основываться на элементарном здравом смысле. Оставим, однако, науку в сторонке и исследуем более аппетитные области – а именно, продовольственные магазины. Обозначим через:

– торговую площадь продовольственного магазина, кв.м.,
– годовой товарооборот продовольственного магазина, млн. руб.

Совершенно понятно, что чем больше площадь магазина, тем в большинстве случаев будет больше его товарооборот.

Предположим, что после проведения наблюдений/опытов/подсчётов/танцев с бубном в нашем распоряжении оказываются числовые данные:

С гастрономами, думаю, всё понятно: – это площадь 1-го магазина, – его годовой товарооборот, – площадь 2-го магазина, – его годовой товарооборот и т.д. Кстати, совсем не обязательно иметь доступ к секретным материалам – довольно точную оценку товарооборота можно получить средствами математической статистики . Впрочем, не отвлекаемся, курс коммерческого шпионажа – он уже платный =)

Табличные данные также можно записать в виде точек и изобразить в привычной для нас декартовой системе .

Ответим на важный вопрос: сколько точек нужно для качественного исследования?

Чем больше, тем лучше. Минимально допустимый набор состоит из 5-6 точек. Кроме того, при небольшом количестве данных в выборку нельзя включать «аномальные» результаты. Так, например, небольшой элитный магазин может выручать на порядки больше «своих коллег», искажая тем самым общую закономерность, которую и требуется найти!

Если совсем просто – нам нужно подобрать функцию , график которой проходит как можно ближе к точкам . Такую функцию называют аппроксимирующей (аппроксимация – приближение) или теоретической функцией . Вообще говоря, тут сразу появляется очевидный «претендент» – многочлен высокой степени, график которого проходит через ВСЕ точки. Но этот вариант сложен, а зачастую и просто некорректен (т.к. график будет всё время «петлять» и плохо отражать главную тенденцию) .

Таким образом, разыскиваемая функция должна быть достаточно простА и в то же время отражать зависимость адекватно. Как вы догадываетесь, один из методов нахождения таких функций и называется методом наименьших квадратов . Сначала разберём его суть в общем виде. Пусть некоторая функция приближает экспериментальные данные :


Как оценить точность данного приближения? Вычислим и разности (отклонения) между экспериментальными и функциональными значениями (изучаем чертёж) . Первая мысль, которая приходит в голову – это оценить, насколько великА сумма , но проблема состоит в том, что разности могут быть и отрицательны (например, ) и отклонения в результате такого суммирования будут взаимоуничтожаться. Поэтому в качестве оценки точности приближения напрашивается принять сумму модулей отклонений:

или в свёрнутом виде: (вдруг кто не знает: – это значок суммы, а – вспомогательная переменная-«счётчик», которая принимает значения от 1 до ) .

Приближая экспериментальные точки различными функциями, мы будем получать разные значения , и очевидно, где эта сумма меньше – та функция и точнее.

Такой метод существует и называется он методом наименьших модулей . Однако на практике получил гораздо бОльшее распространение метод наименьших квадратов , в котором возможные отрицательные значения ликвидируются не модулем, а возведением отклонений в квадрат:

, после чего усилия направлены на подбор такой функции , чтобы сумма квадратов отклонений была как можно меньше. Собственно, отсюда и название метода.

И сейчас мы возвращаемся к другому важному моменту: как отмечалось выше, подбираемая функция должна быть достаточно простА – но ведь и таких функций тоже немало: линейная , гиперболическая , экспоненциальная , логарифмическая , квадратичная и т.д. И, конечно же, тут сразу бы хотелось «сократить поле деятельности». Какой класс функций выбрать для исследования? Примитивный, но эффективный приём:

– Проще всего изобразить точки на чертеже и проанализировать их расположение. Если они имеют тенденцию располагаться по прямой, то следует искать уравнение прямой с оптимальными значениями и . Иными словами, задача состоит в нахождении ТАКИХ коэффициентов – чтобы сумма квадратов отклонений была наименьшей.

Если же точки расположены, например, по гиперболе , то заведомо понятно, что линейная функция будет давать плохое приближение. В этом случае ищем наиболее «выгодные» коэффициенты для уравнения гиперболы – те, которые дают минимальную сумму квадратов .

А теперь обратите внимание, что в обоих случаях речь идёт о функции двух переменных , аргументами которой являются параметры разыскиваемых зависимостей :

И по существу нам требуется решить стандартную задачу – найти минимум функции двух переменных .

Вспомним про наш пример: предположим, что «магазинные» точки имеют тенденцию располагаться по прямой линии и есть все основания полагать наличие линейной зависимости товарооборота от торговой площади. Найдём ТАКИЕ коэффициенты «а» и «бэ», чтобы сумма квадратов отклонений была наименьшей. Всё как обычно – сначала частные производные 1-го порядка . Согласно правилу линейности дифференцировать можно прямо под значком суммы:

Если хотите использовать данную информацию для реферата или курсовика – буду очень благодарен за поставленную ссылку в списке источников, такие подробные выкладки найдёте мало где:

Составим стандартную систему:

Сокращаем каждое уравнение на «двойку» и, кроме того, «разваливаем» суммы:

Примечание : самостоятельно проанализируйте, почему «а» и «бэ» можно вынести за значок суммы. Кстати, формально это можно проделать и с суммой

Перепишем систему в «прикладном» виде:

после чего начинает прорисовываться алгоритм решения нашей задачи:

Координаты точек мы знаем? Знаем. Суммы найти можем? Легко. Составляем простейшую систему двух линейных уравнений с двумя неизвестными («а» и «бэ»). Систему решаем, например, методом Крамера , в результате чего получаем стационарную точку . Проверяя достаточное условие экстремума , можно убедиться, что в данной точке функция достигает именно минимума . Проверка сопряжена с дополнительными выкладками и поэтому оставим её за кадром (при необходимости недостающий кадр можно посмотреть ) . Делаем окончательный вывод:

Функция наилучшим образом (по крайне мере, по сравнению с любой другой линейной функцией) приближает экспериментальные точки . Грубо говоря, её график проходит максимально близко к этим точкам. В традициях эконометрики полученную аппроксимирующую функцию также называют уравнением пАрной линейной регрессии .

Рассматриваемая задача имеет большое практическое значение. В ситуации с нашим примером, уравнение позволяет прогнозировать, какой товарооборот («игрек») будет у магазина при том или ином значении торговой площади (том или ином значении «икс») . Да, полученный прогноз будет лишь прогнозом, но во многих случаях он окажется достаточно точным.

Я разберу всего лишь одну задачу с «реальными» числами, поскольку никаких трудностей в ней нет – все вычисления на уровне школьной программы 7-8 класса. В 95 процентов случаев вам будет предложено отыскать как раз линейную функцию, но в самом конце статьи я покажу, что ничуть не сложнее отыскать уравнения оптимальной гиперболы, экспоненты и некоторых других функций.

По сути, осталось раздать обещанные плюшки – чтобы вы научились решать такие примеры не только безошибочно, но ещё и быстро. Внимательно изучаем стандарт:

Задача

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические (опытные) данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции . Найти сумму квадратов отклонений между эмпирическими и теоретическими значениями. Выяснить, будет ли функция лучше (с точки зрения метода наименьших квадратов) приближать экспериментальные точки.

Заметьте, что «иксовые» значения – натуральные, и это имеет характерный содержательный смысл, о котором я расскажу чуть позже; но они, разумеется, могут быть и дробными. Кроме того, в зависимости от содержания той или иной задачи как «иксовые», так и «игрековые» значения полностью или частично могут быть отрицательными. Ну а у нас дана «безликая» задача, и мы начинаем её решение :

Коэффициенты оптимальной функции найдём как решение системы:

В целях более компактной записи переменную-«счётчик» можно опустить, поскольку и так понятно, что суммирование осуществляется от 1 до .

Расчёт нужных сумм удобнее оформить в табличном виде:


Вычисления можно провести на микрокалькуляторе, но гораздо лучше использовать Эксель – и быстрее, и без ошибок; смотрим короткий видеоролик:

Таким образом, получаем следующую систему :

Тут можно умножить второе уравнение на 3 и из 1-го уравнения почленно вычесть 2-е . Но это везение – на практике системы чаще не подарочны, и в таких случаях спасает метод Крамера :
, значит, система имеет единственное решение.

Выполним проверку. Понимаю, что не хочется, но зачем же пропускать ошибки там, где их можно стопроцентно не пропустить? Подставим найденное решение в левую часть каждого уравнения системы:

Получены правые части соответствующих уравнений, значит, система решена правильно.

Таким образом, искомая аппроксимирующая функция: – из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

В отличие от прямой зависимости товарооборота магазина от его площади, найденная зависимость является обратной (принцип «чем больше – тем меньше») , и этот факт сразу выявляется по отрицательному угловому коэффициенту . Функция сообщает нам о том, что с увеличение некоего показателя на 1 единицу значение зависимого показателя уменьшается в среднем на 0,65 единиц. Как говорится, чем выше цена на гречку, тем меньше её продано.

Для построения графика аппроксимирующей функции найдём два её значения:

и выполним чертёж:


Построенная прямая называется линией тренда (а именно – линией линейного тренда, т.е. в общем случае тренд – это не обязательно прямая линия) . Всем знакомо выражение «быть в тренде», и, думаю, что этот термин не нуждается в дополнительных комментариях.

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически – это сумма квадратов длин «малиновых» отрезков (два из которых настолько малы, что их даже не видно) .

Вычисления сведём в таблицу:


Их можно опять же провести вручную, на всякий случай приведу пример для 1-й точки:

но намного эффективнее поступить уже известным образом:

Еще раз повторим: в чём смысл полученного результата? Из всех линейных функций у функции показатель является наименьшим, то есть в своём семействе это наилучшее приближение. И здесь, кстати, не случаен заключительный вопрос задачи: а вдруг предложенная экспоненциальная функция будет лучше приближать экспериментальные точки?

Найдем соответствующую сумму квадратов отклонений – чтобы различать, я обозначу их буквой «эпсилон». Техника точно такая же:


И снова на всякий пожарный вычисления для 1-й точки:

В Экселе пользуемся стандартной функцией EXP (синтаксис можно посмотреть в экселевской Справке) .

Вывод : , значит, экспоненциальная функция приближает экспериментальные точки хуже, чем прямая .

Но тут следует отметить, что «хуже» – это ещё не значит , что плохо. Сейчас построил график этой экспоненциальной функции – и он тоже проходит близко к точкам – да так, что без аналитического исследования и сказать трудно, какая функция точнее.

На этом решение закончено, и я возвращаюсь к вопросу о натуральных значениях аргумента. В различных исследованиях, как правило, экономических или социологических, натуральными «иксами» нумеруют месяцы, годы или иные равные временнЫе промежутки. Рассмотрим, например, такую задачу.