Как рельеф Земли изменяется во времени? Основные формы земного рельефа. Измененные ландшафты. основные формы и возраст рельефных форм

В ходе эволюции Земли изменение облика ландшафтов суши являлось реакцией на трансформацию природных условий. Все многообразие географической оболочки, известное как геосистемы, ландшафты илиприродные комплексы, отражает результаты различных проявлений температуры и увлажнения, которые в свою очередь подчинены радиационному балансу.

Эти динамические системы разного ранга, характеризующиеся целостностью, особым взаимодействием составляющих их элементов и функционированием, продуктивностью и внешним обликом, в совокупности формируют географическую оболочку и соотносятся с ней как части целого. Они обладают собственным природным (природно-ресурсным) потенциалом, измерения которого позволяют ранжировать геосистемы и изучать их изменения. Объединяющим началом указанных структур является обмен потоками вещества и энергии, их частичная аккумуляция и расходование. Таким образом, энерго- и массообмен в пределах географической оболочки служит основой ее дифференциации, а его изменения отражаются в облике земной поверхности. Этим процессом обеспечивается современная географическая зональность и поясность Земли и многообразие конкретных ландшафтов разной степени организации.

Однако в ходе эволюции географической оболочки изменения ее наземных систем были связаны также с глубинными процессами и явлениями, отчасти выраженными на поверхности (зоны вулканизма, сейсмичности, горообразования и др.). При этом, наряду с непосредственными изменениями литогенного основания ландшафтов и географической оболочки в целом, последняя получала дополнительное вещество и энергию, что отражалось в функционировании ее отдельных компонентов и системы в целом. Эта «дополнительность» (в отдельные времена, вероятно, существенная) проявилась не только количественно, в глобальном круговороте вещества и энергии, но и в качественных изменениях отдельных компонентов. Роль процессов дегазации Земли и их энерго-массо-обмена с атмосферой и гидросферой изучена пока недостаточно. Лишь с середины XXв. появились сведения о вещественном составе мантийного вещества и его количественных характеристиках.

Исследованиями В.И.Бгатова установлено, что кислород атмосферы имеет не столько фотосинтетическое, сколько глубинное происхождение. Общепринятая схема круговорота углерода в природе должна быть скорректирована поступлением его соединений из земных недр, в частности при извержениях вулканов. Видимо, не меньшие количества вещества поступают в водную оболочку при подводных извержениях, особенно в зонах спрединга, вулканических островных дуг и в отдельных горячих точках. Суммарное годовое количество углеродных соединений, поступающих из недр в океан и атмосферу, соизмеримо с массой годового карбонатообразования в водоемах и, по-видимому, превосходит объем накопления органического углерода растениями суши.

Естественное потепление климата и его антропогенное усиление должны вызывать смещение границ географических зон и поясов и способствовать видоизменению отдельных ландшафтов.

Однако развитие человеческого общества и расширение его потребностей и возможностей ведут к искусственной перестройке природных комплексов разных масштабов и формированию культурных ландшафтов, которые воздействуют на функционирование географической оболочки, нарушая естественный ход. Среди таких воздействий наиболее очевидны следующие:

Заметим, что суммирование годовых выбросов загрязнителей, теоретически и практически не вполне аргументировано, так как по мере поступления в географическую среду они ассимилируются, трансформируются под воздействием друг друга и функционируют уже по-другому. Важно анализировать каждый серьезный антропогенный выброс, учитывая его реакции с уже имеющимися соединениями.

Изменение энергетики географической оболочки или ее частей обусловливает перестройку внутренней структуры и процессов функционирования геосистемы и связанных с ними явлений. Процесс этот сложный и регулируется множественными прямыми и обратными связями (рис. 9.4). Антропогенные воздействия на географическую оболочку обусловливают изменение состава и состояния окружающей среды, нарушают количественный и качественный состав живого вещества (вплоть до мутаций), видоизменяют сложившиеся системы энерго-, массо- и влагообмена. Однако имеющиеся в настоящее время фактические данные свидетельствуют о том, что антропогенные изменения кардинально не отражаются на географической оболочке. Относительная уравновешенность ее существования и устойчивость развития в основном обеспечиваются естественными причинами, масштаб которых превосходит воздействие человека. Из этого не следует, что географическая оболочка сама и всегда преодолеет возрастающий антропогенный пресс. Вмешательства в природу должны быть регламентированы с точки зрения целесообразности их проявлений - с пользой для человечества и без существенного вреда для природной среды. Разрабатываемые в этом направлении концепции получили название устойчивого (сбалансированного) развития. В их основу должны быть заложены общие землеведческие закономерности и особенности современного состояния и развития географической оболочки.

В заключение коснемся появившегося утверждения о том, что современная географическая оболочка становится антропосферой, или частью возникающейноосферы. Заметим, что понятие «ноосфера» носит во многом философский характер. Воздействия человека на окружающую среду и вовлечение в нее продуктов жизнедеятельности явления несомненные. Важно понимать, что чаще всего человек изменяет среды своего обитания не сознательно, а через непредвиденные последствия. Причем эти внедрения направлены не на все составляющие географической оболочки, а только на необходимые людям компоненты (лес, почву, сырье и др.). Таким образом, существуют только очаги изменений, хотя подчас очень значительные и серьезные, и, несмотря на то, что активность людей возрастает, природа все еще развивается главным образом под воздействием естественных процессов. Поэтому в настоящее время следует говорить об отдельных участках географической оболочки, где естественная среда в значительной степени изменена и развивается под воздействием регулируемых человеком процессов.

Рис. 9.4. Некоторые обратные связи, регулирующие глобальный климат

Поверхность Земли не остается неизменной. В течение тех миллионов лет, что существует наша планета, на ее внешний облик постоянно оказывали влияние различные природные силы. Изменения, которые происходят на поверхности Земли, вызваны как действием внутренних сил, так и тем, что происходит в атмосфере.

Так, горы образовались в результате передвижения земной коры. Толщи пород выталкивались на поверхность, сминаясь и разбиваясь, в результате чего образовались различные типы гор. Шло время, дождь и мороз дробили горы, создавая отдельные утесы и долины.

Некоторые горы образовались в результате извержения вулканов. Расплавленная порода, пузырясь, изливалась на поверхность Земли через отверстия в коре слой за слоем, пока в конце концов не возникала гора. Везувий в Италии — гора вулканического происхождения.

Вулканические горы могут формироваться и под водой. Например, Гавайские острова - это вершины вулканических гор.

Солнце, ветер и вода вызывают постоянное разрушение горных пород. Этот процесс называется эрозией. Но он может затрагивать не только горные породы. Так, эрозия с помощью льда, ветра и воды вымывает земную почву.

Ледники в местах сползания в море разрезают равнины, образуя долины и фьорды — узкие и извилистые морские заливы.

Фиорды образовались во время ледникового периода, когда континенты были покрыты толстым слоем льда и снега.

Эти льды, в свою очередь, вызвали образование ледников, которые представляют собой медленно движущиеся реки льда.

Сползая с гор в долины, ледники, толщина льда в которых иногда доходила до нескольких десятков метров, пробивали себе пути. Сила их движения была очень велика.

Сначала по пути ледников образовывались узкие ущелья, затем чудовищная сила ледника увеличивала их, открывая себе путь вниз. Постепенно это пространство становилось все глубже и шире.

После окончания ледникового периода лед и снег начали таять. По мере таяния льда ширина рек увеличивалась. Одновременно уровень моря поднимался. Так на месте рек образовались фиорды.

Берега фиордов обычно представляют собой скалистые откосы, иногда достигающие высоты в 1000 метров (3000 футов).

Некоторые фиорды так глубоки, что в них возможно движение судов.

Большое количество фиордов расположены на побережьях Финляндии и Гренландии. Но самые красивые фиорды находятся в Норвегии. Самый длинный фиорд также находится в Норвегии. Он называет ся Согне-фьорд. Его длина - 180 километ ров (113 миль).

После таяния льда остаются морены — скопления обломков горных пород — и формируются зигзагообразные вершины гор. Реки пробивают в рыхлых породах овраги, а в некоторых местах и огромные каньоны (глубокие речные долины с крутыми ступенчатыми склонами), такие, например, как Великий Каньон в Аризоне (США). Он простирается на 349 километров в длину.

Дожди и ветры являются подлинными скульпторами и высекают настоящие скульптурные группы, различные фигуры. В Австралии находятся так называемые Ветряные скалы, а недалеко от Красноярска находятся каменные столбы. И те, и другие образовались в результате ветровой эрозии.

Эрозия земной поверхности — процесс далеко не безвредный. Ежегодно благодаря ей исчезают многие десятки гектаров пахотных земель. В реки уносится большое количество плодородной почвы, на образование которой в естественных условиях уходят сотни лет. Поэтому человек старается всеми возможными способами бороться с эрозией.

Главное направление этой борьбы — предотвращение размывания почвы. Если на почве отсутствует растительный покров, то ветер и вода легко уносят плодородный слой и земля становится бесплодной. Поэтому в районах с интенсивными ветрами применяют сохраняющие способы обработки земли, например безотвальную пахоту.

Кроме того, ведется и борьба с оврагами. Для этого берега рек засаживают различными растениями, укрепляют склоны. На морских и речных побережьях, где происходит сильное размывание берега, делают специальную отсыпку гравия и устанавливают защитные дамбы, предотвращающие перенос песка.

В ходе эволюции Земли изменение облика ландшафтов суши являлось реакцией на трансформацию природных условий. Все многообразие географической оболочки, известное как геосистемы, ландшафты или природные комплексы, отражает результаты различных проявлений температуры и увлажнения, которые в свою очередь подчинены радиационному балансу.

Эти динамические системы разного ранга, характеризующиеся целостностью, особым взаимодействием составляющих их элементов и функционированием, продуктивностью и внешним обликом, в совокупности формируют географическую оболочку и соотносятся с ней как части целого. Они обладают собственным природным (природно-ресурсным) потенциалом, измерения которого позволяют ранжировать геосистемы и изучать их изменения. Объединяющим началом указанных структур является обмен потоками вещества и энергии, их частичная аккумуляция и расходование. Таким образом, энерго- и массообмен в пределах географической оболочки служит основой ее дифференциации, а его изменения отражаются в облике земной поверхности. Этим процессом обеспечивается современная географическая зональность и поясность Земли и многообразие конкретных ландшафтов разной степени организации.

Однако в ходе эволюции географической оболочки изменения ее наземных систем были связаны также с глубинными процессами и явлениями, отчасти выраженными на поверхности (зоны вулканизма, сейсмичности, горообразования и др.). При этом, наряду с непосредственными изменениями литогенного основания ландшафтов и географической оболочки в целом, последняя получала дополнительное вещество и энергию, что отражалось в функционировании ее отдельных компонентов и системы в целом. Эта «дополнительность» (в отдельные времена, вероятно, существенная) проявилась не только количественно, в глобальном круговороте вещества и энергии, но и в качественных изменениях отдельных компонентов. Роль процессов дегазации Земли и их энерго-массо-обмена с атмосферой и гидросферой изучена пока недостаточно. Лишь с середины XX в. появились сведения о вещественном составе мантийного вещества и его количественных характеристиках.

Исследованиями В.И.Бгатова установлено, что кислород атмосферы имеет не столько фотосинтетическое, сколько глубинное происхождение. Общепринятая схема круговорота углерода в природе должна быть скорректирована поступлением его соединений из земных недр, в частности при извержениях вулканов. Видимо, не меньшие количества вещества поступают в водную оболочку при подводных извержениях, особенно в зонах спрединга, вулканических островных дуг и в отдельных горячих точках. Суммарное годовое количество углеродных соединений, поступающих из недр в океан и атмосферу, соизмеримо с массой годового карбонатообразования в водоемах и, по-видимому, превосходит объем накопления органического углерода растениями суши.

Естественное потепление климата и его антропогенное усиление должны вызывать смещение границ географических зон и поясов и способствовать видоизменению отдельных ландшафтов.

Однако развитие человеческого общества и расширение его потребностей и возможностей ведут к искусственной перестройке природных комплексов разных масштабов и формированию культурных ландшафтов, которые воздействуют на функционирование географической оболочки, нарушая естественный ход. Среди таких воздействий наиболее очевидны следующие:

1) Создание водохранилищ и оросительных систем изменяет альбедо поверхности, режим тепло- и влагообмена, что, в свою очередь, влияет на температуру воздуха и облачность.

2) Перевод земель в сельскохозяйственные угодья или уничтожение растительности (массовые вырубки лесов) изменяют альбедо и тепловой режим, нарушают круговорот веществ из-за сокращения активных поверхностей для фотосинтеза. Наиболее значительным по масштабам воздействия явилось массовое освоение целинных и залежных земель, когда многие миллионы гектаров зеленых пастбищ и залежей были распаханы и засеяны. Увеличение поглощаю щей способности земной поверхности, нарушение ее шероховатости и сплошности почвенно-растительного покрова изменили радиационный баланс, вызвали трансформацию циркуляции воздушных масс и усиление ветров, что привело к пыльным бурям и уменьшению прозрачности атмосферы. Итогом преобразований явился перевод устойчивых продуктивных ландшафтов в неустойчивые с усилением процессов опустынивания и риска в землепользовании.

3) Перераспределение поверхностного стока (зарегулирование стока, создание подпруд и водохранилищ) приводит чаще всего к заболачиванию окружающих территорий. При этом изменяется альбедо подстилающей поверхности, увеличивается увлажнение, частота туманов, облачность и проницаемость воздуха, что нарушает естественный тепло-массообмен между земной поверхностью и атмосферой. Подпруживание водного стока и образование болотистых пространств изменяют характер разложения растительного опада, что вызывает поступление в атмосферу дополнительных количеств парниковых газов (диоксида углерода, метана и др.), изменение ее состава и прозрачности.

4) Создание гидроэнергетических сооружений на реках, подпруживание с образованием каскадов круглогодично падающей воды изменяют годовой режим рек, нарушают ледовую обстановку, распределение влекомых наносов и трансформируют систему река-атмосфера. Незамерзающие водоемы с постоянными туманами и испарениями с водной поверхности (даже в зимнее время) влияют на ход температур, циркуляцию водных масс, ухудшая погодные условия и изменяя среду обитания живых организмов. Влияние ГЭС на крупных реках (Енисее, Ангаре, Колыме, Волге и др.) ощущается на десятки километров вниз по течению и на всех подпруженных частях водохранилищ, а общие изменения климатической обстановки охватывают сотни квадратных километров. Замедленное поступление речных наносов и их перераспределение приводят к нарушению геоморфологических процессов и разрушению устьевых участков рек и берегов водных бассейнов (например, разрушение дельты Нила и юго-восточной части средиземноморского побережья после сооружения Асуанской плотины и перехвата ею значительной части переносимых рекой твердых наносов).

5) Мелиоративные работы, сопровождающиеся осушением больших пространств, нарушают существующий режим тепло-, влаго-обмена и способствуют развитию обратных отрицательных связей при трансформации ландшафтов. Так, переосушение болотистых систем ряда регионов (Полесье, Новгородчина, Прииртышье) повлекло за собой гибель естественного растительного покрова и возникновение процессов дефляции, которые даже на территориях достаточного увлажнения сформировали сыпучие пески. В результате усилилась запыленность атмосферы, возросла шероховатость поверхности, изменился ветровой режим.

6) Увеличение шероховатости земной поверхности при возведении различных сооружений (постройки, горные выработки и отвалы, промышленное складирование и др.) приводит к изменению ветрового режима, запыленности и погодно-климатических характеристик.

7) Различные загрязнения, поступающие в огромных количествах во все природные среды, изменяют, прежде всего, вещественный состав и энергетические емкости воздуха, вод, поверхностных образований и др. Это изменение природных агентов обусловливает трансформацию осуществляемых ими природных процессов, а также разнообразных взаимодействий с окружающей средой и другими природными факторами.

Заметим, что суммирование годовых выбросов загрязнителей, теоретически и практически не вполне аргументировано, так как по мере поступления в географическую среду они ассимилируются, трансформируются под воздействием друг друга и функционируют уже по-другому. Важно анализировать каждый серьезный антропогенный выброс, учитывая его реакции с уже имеющимися соединениями.

Изменение энергетики географической оболочки или ее частей обусловливает перестройку внутренней структуры и процессов функционирования геосистемы и связанных с ними явлений. Процесс этот сложный и регулируется множественными прямыми и обратными связями (рис. 9.4). Антропогенные воздействия на географическую оболочку обусловливают изменение состава и состояния окружающей среды, нарушают количественный и качественный состав живого вещества (вплоть до мутаций), видоизменяют сложившиеся системы энерго-, массо- и влагообмена. Однако имеющиеся в настоящее время фактические данные свидетельствуют о том, что антропогенные изменения кардинально не отражаются на географической оболочке. Относительная уравновешенность ее существования и устойчивость развития в основном обеспечиваются естественными причинами, масштаб которых превосходит воздействие человека. Из этого не следует, что географическая оболочка сама и всегда преодолеет возрастающий антропогенный пресс. Вмешательства в природу должны быть регламентированы с точки зрения целесообразности их проявлений - с пользой для человечества и без существенного вреда для природной среды. Разрабатываемые в этом направлении концепции получили название устойчивого (сбалансированного) развития. В их основу должны быть заложены общие землеведческие закономерности и особенности современного состояния и развития географической оболочки.

В заключение коснемся появившегося утверждения о том, что современная географическая оболочка становится антропосферой, или частью возникающей ноосферы. Заметим, что понятие «ноосфера» носит во многом философский характер. Воздействия человека на окружающую среду и вовлечение в нее продуктов жизнедеятельности явления несомненные. Важно понимать, что чаще всего человек изменяет среды своего обитания не сознательно, а через непредвиденные последствия. Причем эти внедрения направлены не на все составляющие географической оболочки, а только на необходимые людям компоненты (лес, почву, сырье и др.). Таким образом, существуют только очаги изменений, хотя подчас очень значительные и серьезные, и, несмотря на то, что активность людей возрастает, природа все еще развивается главным образом под воздействием естественных процессов. Поэтому в настоящее время следует говорить об отдельных участках географической оболочки, где естественная среда в значительной степени изменена и развивается под воздействием регулируемых человеком процессов.

Рис. 9.4. Некоторые обратные связи, регулирующие глобальный климат

Контрольные вопросы

Какие явления относят к глобальным изменениям географической оболочки?

В чем специфика глобальных изменений конца XX-начала XXI в.?

Что такое парниковый эффект и каковы его последствия?

В чем заключается общая проблема антропогенизации географической оболочки?

В чем состоит проблема потепления климата?

В чем опасность нефтяного загрязнения?

Что такое глобальный экологический кризис, как и где он проявляется?

В чем смысл оптимистических и пессимистических взглядов на развитие планеты Земля?

Какое влияние полярные льды оказывают на географическую оболочку?

В чем заключаются наземные изменения ландшафтов?

ЛИТЕРАТУРА

Алпатьев А. М. Развитие, преобразование и охрана природной среды. - Л., 1983.

Баландин Р. К., Бондарев Л. Г. Природа и цивилизация. - М., 1988.

Биологическая индикация в антропоэкологии. - Л., 1984.

Биткаева Л.Х., Николаев В. А. Ландшафты и антропогенное опустынивание Терских песков. - М., 2001.

Боков В.А., Лущик А. В. Основы экологической безопасности. - Симферополь, 1998.

Вернадский В. И. Биосфера и ноосфера. - М., 1989.

Географические проблемы конца XX века / Отв. ред. Ю. П. Селиверстов. - СПб., 1998.

География и окружающая среда / Отв. ред. Н. С. Касимов, С. М. Малха-зова. - М., 2000.

Глобальные изменения природной среды (климат и водный режим)/ Отв. ред. Н.С.Касимов. - М., 2000.

Глобальные и региональные изменения климата и их природные и социально-экономические последствия / Отв. ред. В.М.Котляков. - М., 2000.

Глобальные экологические проблемы на пороге XXI века / Отв. ред. Ф.Т.Яншина. - М., 1998.

Говорушко С. М. Влияние природных процессов на человеческую деятельность. - Владивосток, 1999.

Голубев Г.Н. Геоэкология. - М., 1999.

Горшков В. Г. Физические и биологические основы устойчивости жизни. - М., 1995.

Горшков СП. Концептуальные основы геоэкологии. - Смоленск, 1998.

Григорьев А. А. Экологические уроки прошлого и современности. - Л., 1991.

Григорьев А. А., Кондратьев К. Я. Экодинамика и геополитика. - Т. 11. Экологические катастрофы. - СПб., 2001.

Гумилев Л. Н. Этногенез и биосфера Земли. - Л., 1990.

Данилов А.Д., Король И.Л. Атмосферный озон - сенсации и реальность. - Л., 1991.

Дотто Л. Планета Земля в опасности. - М., 1988.

Залетаев В. С. Экологически дестабилизованная среда. Экосистемы аридных зон в изменяющемся гидрологическом режиме. - М., 1989.

Земля и человечество. Глобальные проблемы / Страны и народы. - М., 1985.

Зубаков В. А. Экогея - Дом Земля. Кратко о будущем. Контуры экогейской концепции выхода из глобального экологического кризиса. - СПб., 1999.

Зубаков В. А. Дом Земля. Контуры экогеософского мировоззрения. (Научное развитие стратегии поддерживания). - СПб., 2000.

Исаченко А. Г. Оптимизация природной среды. - М., 1980.

Исаченко А. Г. Экологическая география России. - СПб., 2001.

Кондратьев К. Я. Глобальный климат. - М., 1992.

Котляков В. М. Наука. Общество. Окружающая среда. - М., 1997.

Котляков В.М., Гросвальд М.Г., Лориус К. Климаты прошлого из глубины ледниковых щитов. - М., 1991.

Лавров СБ., Сдасюк Г.В. Этот контрастный мир. - М., 1985.

Окружающая среда / Под ред. А. М. Рябчикова. - М., 1983.

Основы геоэкологии / Под ред. В. Г. Морачевского. - СПб., 1994.

Петров К. М. Естественные процессы восстановления опустошенных земель. - СПб., 1996.

Проблемы экологии России / Отв. ред. В. И. Данилов-Данильян, В. М. Котляков. - М., 1993.

Россия в окружающем мире: 1998. Аналитический сборник / Под общ. ред. Н.Н.Моисеева, С.А.Степанова. - М., 1998.

Роун Ш. Озоновый кризис. Пятнадцатилетняя эволюция неожиданной глобальной опасности. - М., 1993.

Русское географическое общество: новые идеи и пути / Отв. ред. А.О.Бринкен, С.Б.Лавров, Ю.П.Селиверстов. - СПб., 1995.

Селиверстов Ю. П. Проблема глобального экологического риска // Известия РГО. - 1994. - Вып. 2.

Селиверстов Ю. П. Антропогенизация природы и проблема экологического кризиса // Вестник СПб. Университета. - 1995. - Сер. 7. - Вып. 2.

Селиверстов Ю. П. Планетарный экологический кризис: причины и реальности // Вестник СПб. Университета. - 1995. - Сер. 7. - Вып. 4.

Фортескью Дж. Геохимия окружающей среды. - М., 1985.

Экологическая альтернатива / Под общ. ред. М.Я.Лемешева. - М., 1990.

Экологические императивы устойчивого развития России / Под ред. В.Т.Пуляева.-Л., 1996.

Экологические проблемы: что происходит, кто виноват и что делать? / Под ред. В.И.Данилова-Данильяна. - М., 1997.

Яншин А.Л., Мелуа А.И. Уроки экологических кризисов. - М., 1991.

Планеты, относящиеся к земной группе, -- Меркурий, Венера, Земля, Марс -- имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз превосходит плотность воды; они медленно вращаются вокруг своих осей; у них мало спутников (у Меркурия и Венеры их вообще нет, у Марса -- два крохотных, у Земли -- один).

Черты сходства и различия обнаруживаются также при изучении атмосфер планет земной группы Хорошавина С.Г. Концепции современного естествознания. Курс лекций -- Ростов-на-Дону, 2006.

Меркурий

Меркурий -- четвертая по блеску планета: в максимуме блеска она почти так же ярка, как Сириус, ярче нее бывают только Венера, Марс и Юпитер. Тем не менее, Меркурий - очень трудный объект для наблюдений из-за малости его орбиты и, следовательно, близости к Солнцу. Для невооруженного глаза Меркурий - светлая точка, а в сильный телескоп у него вид серпика или неполного круга. Изменения вида (фаз) планеты с течением времени показывают, что Меркурий - это шар, с одной стороны освещенный Солнцем, а с другой - совершенно темный. Диаметр этого шара - 4870 км.

Меркурий медленно вращается вокруг своей оси, будучи всегда обращенным, к Солнцу одной стороной. Таки образом период обращения вокруг Солнца (меркурианский год) составляет около 88 земных суток, а период вращения вокруг своей оси -- 58 суток. Получается, что от восхода Солнца до его захода на Меркурии проходит год, то есть 88 земных суток. И правда, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Меркурий обладает относительно большой плотностью среди планет Солнечной системы -- около 5,44 г/см3. Ученые предполагают, что это обусловлено наличием массивного металлического ядра (предположительно из расплавленного железа плотностью до 10 г/см3, имеющего температуру около 2000 К), содержащего более 60% массы планеты и окруженного силикатной мантией и, вероятно, корой 60 -- 100 км толщиной.

Венера

Венера наблюдается и как «вечерняя звезда» и как «утренняя звезда» - Hesperus и Phosphorus, так называли ее в античном мире. После солнца и Луны Венера - самое яркое небесное светило, а ночью освещенные ею предметы могут отбрасывать тени. Так же Венера -- ближайшая к Земле планета. Ее даже называют "сестрой Земли". И вправду -- радиус Венеры почти равен земному (0,95), ее масса -- 0,82 массы Земли. Венера довольно хорошо изучена людьми -- к планете приближались как советские АМС серии "Венера", таки американские Маринеры. Венера обращается вокруг Солнца за 224,7 земных суток, но с этой цифрой, в отличие от Меркурия, ничего интересного не связано. Весьма интересный факт связан с периодом вращения самой планеты вокруг своей оси -- 243 земных суток (в обратном направлении) и периодом вращения мощной венерианской атмосферы, которая совершает полный оборот вокруг планеты за... 4 дня! Это соответствует скорости ветра у поверхности Венеры в 100 м/с или 360 км/ч! Она имеет атмосферу, впервые открытую М. В. Ломоносовым в 1761 г. во время прохождения планеты по диску солнца. Планета окутана густым слоем белых облаков, скрывающих ее поверхность. Наличие в атмосфере Венеры густых облаков, вероятно, состоящих из ледяных кристаллов, объясняет высокую отражательную способность планеты - 60% падающего солнечного света отражается от нее. Современные ученые установили, что венерианская атмосфера на 96% состоит из углекислого газа СО2. Присутствуют здесь также азот (почти 4%), кислород, водяные пары, благородные газы и др. (всех меньше 0,1%). Основой густого облачного слоя, расположенного на высоте 50 -- 70 км, являются мелкие капли серной кислоты с концентрацией 75-80% (остальное -- вода, активно "впитываемая" капельками кислоты). На Венере существуют действующие вулканы, так, как достоверно известно, что сейсмическая и тектоническая деятельность на Венере была очень активна сравнительно недавно. Внутреннее строение этого псевдоблизнеца Земли также сходно со строением нашей планеты.

Земля

Наша земля кажется нам такой большой и прочной и столь важной для нас, что мы склонны забывать о том скромном положении, которое оно занимает в семье планет солнечной системы. Правда у Земли все же есть довольно толстая атмосфера, прикрывающая тонкий неоднородный слой воды, и даже титулованный спутник диаметром примерно в ј ее диаметра. Однако эти особые приметы Земли едва ли могут служить достаточным основанием нашему космическому «эгоцентризму». Но, будучи небольшим астрономическим телом, Земля является самой знакомой нам планетой. Радиус земного шара R=6378 км. Вращение земного шара самым естественным образом объясняет смену дня и ночи, восход и заход светил. Некоторые греческие ученые догадывались и о годичном движении Земли вокруг Солнца. Годичное движение Земли перемещает наблюдателя и этим вызывает видимое смещение более близких звезд относительно более далеких. Строго же говоря, вокруг Солнца движется центр тяжести системы Земля - Луна, так называемый барицентр; вокруг этого центра Земля и Луна описывают в течение месяца свои орбиты.

Наши представления о внутреннем строении и физическом состоянии недр земного шара основаны на разнообразных данных, среди которых существенное значение имеют данные сейсмологии (наука о землетрясениях и законах распространения упругих волн в земном шаре). Изучение распространения в земном шаре упругих волн, возникающих при землятресениях или при мощных взрывах, позволило открыть и изучить слоистое строение земных недр.

Воздушный океан, окружающий Землю, - ее атмосфера, - является ареной, на которой разыгрываются разнообразные метеорологические явления. В основном земная атмосфера состоит из азота и кислорода.

Атмосферу земли условно делят на пять слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Большое влияние на многие процессы, происходящие на нашей планете, оказывает гидросфера, или Мировой океан, поверхность которого в 2,5 раза больше площади суши. Земной шар обладает магнитным полем. За пределами плотных слоев атмосферы он опоясан невидимыми тучами из очень быстродвижущихся частиц высокой энергии. Это так называемые пояса радиации. Строение и свойства поверхности нашей планеты, ее оболочек и недр, магнитного поля и поясов радиации исследуются комплексом геофизических наук.

Марс

Когда в 1965 году американская станция Маринер-4 с малого расстояния впервые получила снимки Марса, эти фотографии вызвали сенсацию. Астрономы были готовы увидеть что угодно, только не лунный ландшафт. Именно на Марс возлагали особые надежды те, кто хотел найти жизнь в космосе. Но эти чаяния не оправдались --Марс оказался безжизненным. По современным данным радиус Марса почти вдвое меньше земного (3390 км), а по массе Марс уступает Земле в десять раз. Обращается вокруг Солнца эта планета за 687 земных суток (1,88 года). Солнечные сутки на Марсе практически равны земным --24 ч 37 мин, а ось вращения планеты наклонена к плоскости орбиты на 25), что позволяет сделать вывод о сходной с земной смене(для Земли -- 23 времен года.

Но все мечты ученых о наличии жизни на Красной планете растаяли после того, как был установлен состав атмосферы Марса. Для начала следует указать, что давление у поверхности планеты в 160 раз меньше давления земной атмосферы. А состоит она на 95% из углекислого газа, содержит почти 3% азота, более 1,5% аргона, около 1,3% кислорода, 0,1% водяного пара, присутствует также угарный газ, найдены следы криптона и ксенона. Разумеется, в такой разреженной и негостеприимной атмосфере никакой жизни существовать не может.

Среднегодовая температура на Марсе составляет примерно -60 перепады температур в течение суток вызывают сильнейшие пылевые бури, во время которых густые облака песка и пыли поднимаются до высот в 20 км. Состав марсианской почвы был окончательно выявлен при исследованиях спускаемых американских аппаратов Викинг-1 и Викинг-2. Красноватый блеск Марса вызван обилием в его поверхностных породах оксида железа III (охры). Рельеф Марса весьма интересен. Здесь присутствуют темные и светлые области, как и на Луне, но в отличие от Луны, на Марсе смена цвета поверхности не связана со сменой высот: на одной высоте могут находиться как светлые, так и темные области.

До сих пор ученым не известна природа катаклизма, вызвавшего глобальные изменения климата на Марсе, приведшие к современным условиям.

Рельеф нашей планеты поражает своим многообразием и незыблемым величием. Широкие равнины, глубокие речные долины и остроконечные шпили высочайших вершин - все это, казалось бы, украшало и будет украшать наш мир всегда. Но это вовсе не так. На самом деле рельеф Земли изменяется.

Но чтобы заметить эти изменения, недостаточно и нескольких тысяч лет. Что уж говорить о жизни обычного человека. Развитие земной поверхности - это сложный и многогранный процесс, который длится вот уже несколько миллиардов лет. Итак, почему и как рельеф Земли изменяется во времени? И что лежит в основе этих изменений?

Рельеф - это…

Данный научный термин происходит от латинского слова relevo, что значит «поднимаю вверх». В геоморфологии под ним подразумевают совокупность всех существующих неровностей земной поверхности.

Среди ключевых элементов рельефа выделяется три: точка (например, горная вершина), линия (например, водораздел) и поверхность (например, плато). Эта градация очень схожа с выделением основных фигур в геометрии.

Рельеф может быть разным: горным, равнинным или же холмистым. Он представлен самыми разнообразными формами, которые могут отличаться друг от друга не только своим внешним видом, но и происхождением, возрастом. В географической оболочке нашей планеты рельеф играет крайне важную роль. Прежде всего, он является основой любого природно-территориального комплекса, подобно фундаменту жилого дома. Помимо этого, он принимает непосредственное участие в перераспределении влаги по а также участвует в формировании климата.

Как изменяется рельеф Земли? И какие его формы известны современным ученым? Об этом пойдет речь далее.

основные формы и возраст рельефных форм

Форма рельефа - фундаментальная единица в геоморфологической науке. Если говорить простыми словами, то это конкретная неровность земной поверхности, которая может быть простой или сложной, положительной или отрицательной, выпуклой или же вогнутой.

К основным относятся следующие формы земного рельефа: гора, котловина, лощина, хребет, седловина, овраг, каньон, плато, долина и прочие. По своему генезису (происхождению) они могут быть тектоническими, эрозионными, эоловыми, карстовыми, антропогенными и т. д. По масштабу принято выделять планетарные, мега-, макро-, мезо-, микро- и наноформы рельефа. К планетарным (самым крупным) относятся материки и океаническое ложе, геосинклинали и срединно-океанические хребты.

Одной из главных задач ученых-геоморфологов является определение возраста тех или иных форм рельефа. Причем этот возраст может быть как абсолютным, так и относительным. В первом случае он определяется при помощи специальной Во втором случае его устанавливают относительно возраста какой-либо другой поверхности (здесь уместно применять слова «моложе» или «древнее»).

Известный исследователь рельефа В. Девис сравнивал процесс его формирования с человеческой жизнью. Соответственно, он выделял четыре стадии развития любой формы рельефа:

  • детство;
  • юность;
  • зрелость;
  • дряхлость.

Как и почему рельеф Земли изменяется во времени?

В нашем мире ничто не вечно и не статично. Точно так же и рельеф Земли изменяется с течением времени. Вот только заметить эти изменения практически невозможно, ведь они длятся сотни тысяч лет. Правда, они проявляются в землетрясениях, вулканической деятельности и прочих земных явлениях, которые мы привыкли называть катаклизмами.

Главные первопричины рельефообразования (как, впрочем, и любых других процессов на нашей планете) - это энергия Солнца, Земли, а также космоса. Изменение рельефа Земли происходит постоянно. И в основе любых таких изменений лежат всего два процесса: денудация и аккумуляция. Эти процессы очень тесно взаимосвязаны, подобно известному принципу «инь-янь» в древнекитайской философии.

Аккумуляция - это процесс накопления рыхлого геологического материала на суше или дне водоемов. В свою очередь денудация - это процесс разрушения и переноса разрушенных фрагментов горных пород на другие участки земной поверхности. И если аккумуляция стремится накопить геологический материал, то денудация пытается его разрушить.

Главные факторы рельефообразования

Рисунок формируется вследствие постоянного взаимодействия эндогенных (внутренних) и экзогенных (внешних) сил Земли. Если сравнивать процесс рельефообразования со строительством здания, то тогда эндогенные силы можно назвать «строителями», а экзогенные силы - «скульпторами» земного рельефа.

К внутренним (эндогенным) относят вулканизм, землетрясения и К внешним (экзогенным) - работу ветра, текучей воды, ледников и т. д. Последние силы занимаются своеобразным оформлением рельефных форм, иногда придавая им причудливые очертания.

В целом геоморфологи выделяют всего четыре фактора рельефообразования:

  • внутренняя энергия Земли;
  • всемирная сила тяготения;
  • солнечная энергия;
  • энергия космоса.