Графики функций y ax b. ГИА. Квадратичная функция. Сбор и использование персональной информации

ИСХОДНЫЕ ДАННЫЕ

ОЦЕНКА ДОСТОВЕРНОСТИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

Коэффициент линейной корреляции, исчисленный по выборочным данным является случайной величиной. Полученный из выборки коэффициент корреляции r является оценкой коэффициента корреляцииr в генеральной совокупности. С уменьшением числа наблюдений надежность коэффициента корреляции падает. Оценка существенности (значимости) линейного коэффициента корреляции основана на сопоставлении значения r с его средней квадратической ошибкой :

При оценке значимости коэффициента корреляции обычно рассматриваются следующие ситуации.

1. Если число наблюдений достаточно велико (обычно свыше 30), а значение коэффициента корреляции не превышает 0.9, распределение коэффициента корреляции r можно считать приближенно нормальным со средней квадратической ошибкой

При достаточно большом числе наблюдений r должен превышать свою среднюю ошибку не менее, чем в три раза: . Если это неравенство не выполняется, то существование связи между признаками нельзя считать доказанным.

Задавшись определенной вероятностью, можно построить доверительные границы r:

Так, например, при вероятности 0,95, для которой t = 1,96, доверительные границы составят

,

При вероятности 0,997, для которой коэффициент доверия t = 3, доверительные границы составят

Поскольку значение r не может превышать единицу, то в случае, если > 1, следует указать только нижний предел, то есть утверждать, что реальный r не меньше, чем .

2. Для малого объема выборки, с распределением r далеким от нормального, применяются другие методы оценки значимости коэффициента корреляции. При небольшом числе наблюдений (n< 30), средняя ошибка линейного коэффициента корреляции находится по формуле:

а значимость проверяется на основе t критерия Стьюдента. При этом выдвигается гипотеза о равенстве коэффициента корреляции нулю, то есть об отсутствии связи между y и x в генеральной совокупности. Для этого используется статистика:

,

расчетное значение которой сопоставляется с табличным, из таблиц распределения Стьюдента. Если нулевая гипотеза верна, то есть r =0, то распределение t - критерия подчиняется закону распределения Стьюдента сn-2 степенями свободы и принятым уровнем значимости (обычно 0,05). В каждом конкретном случае по таблице распределения t -критерия Стьюдента находится табличное (критическое) значение t , которое допустимо при справедливости нулевой гипотезы, и с ним сравнивается фактическое (расчетное) значение t . Если t расч. > t табл . , то нулевая гипотеза отклоняется и линейный коэффициент считается значимым, а связь между x и y – существенной. И наоборот.



3. При малом числе наблюдений в выборке и высоком коэффициенте корреляции (распределение r отличается от нормального) для проверки гипотезы о наличии корреляционной связи, а также построения доверительного интервала применяется z-преобразование Фишера.

Для этого рассчитывается величина

Распределение z приближается к нормальному. Вариация z выражается формулой

Рассчитаем zкритерий для примера 1, поскольку в этом случае мы имеем небольшое число наблюдений и высокий коэффициент корреляции.

.

Чтобы не вычислять значения логарифмов, можно воспользоваться специальными таблицами Z-преобразований (Ефимова М.Р. стр. 402, Шмойлова Р.А. стр.446, Елисеева И.И. стр.473). Находим, что коэффициенту корреляции 0,94 соответствуетZ=1,74.

Отношение Z к средней квадратической ошибке равно 3. Таким образом, мы можем полагать действительное наличие связи между величиной выпуска продукции и расходом электроэнергии для всей совокупности предприятий.

Расчет коэффициентов корреляции произведем в программе STATISTICA.

Рисунок 1 – Корреляционная матрица.

Корреляция определяет степень, с которой значения двух переменных «пропорциональны» друг другу. Пропорциональность означает просто линейную зависимость . Корреляция высокая, если на графике зависимость «можно представить» прямой линией (с положительным или отрицательным углом наклона). Таким образом, это простейшая регрессионная модель, описывающая зависимость одной переменной от одного фактора.

Отметим основные характеристики этого показателя.

Он может принимать значения от –1 до +1. Знак «+» означает, что связь прямая (когда значения одной переменной возрастают, значения другой переменной также возрастают), «–» означает, что связь обратная.

Чем ближе коэффициент к 1, величине коэффициента корреляции менее 0,3 связь оценивается как слабая, от 0,31 до 0,5 – умеренная, от 0,51 до 0,7 – значительная, от 0,71 до 0,9 – тесная, 0,91 и выше – очень тесная.

Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится.

Коэффициент корреляции – это показатель, оценивающий тесноту линейной связи между признаками.

При r = ±1 корреляционная связь представляет линейную функциональную зависимость. При этом все наблюдаемые значения располагаются на общей прямой. Ее еще называют линией регрессии. При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общими средними, а линии регрессии параллельны осям координат.

Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелированности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Основываясь на коэффициентах корреляции, мы не можем строгодоказать причинной зависимости между переменными, однако можетеопределить ложные корреляции, т. е. корреляции, которые обусловленывлияниями «других», остающихся вне вашего поля зрения переменных.

Основная проблема ложной корреляции состоит в том, что мы не знаем,

кто является еѐ носителем. Тем не менее, если мы знаем, где искать, то

можно воспользоваться частные корреляции, чтобы контролировать (частично исключѐнное) влияние определѐнных переменных.


Рисунок 2 – Диаграммы рассеяния.

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции , который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции , который вычисляется как математическое ожидание произведений отклонений СВ
иот их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю
не следует, что теоретический коэффициент также
(т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции . Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при
; и
при
.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза
о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е.в генеральной совокупности отсутствует корреляция . Альтернативной является гипотеза
.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

.

Которая имеет распределение Стьюдента с
степенями свободы 1 .

По таблицам распределения Стьюдента определяется критическое значение
.

Если рассчитанное значение критерия
, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью
.

Если же
, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1 . В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

Тема 4. Парная линейная регрессия. Метод наименьших квадратов

Коэффициент корреляции указывает на степень тесноты взаимосвязи между двумя признаками, но он не дает ответа на вопрос, как изменение одного признака на одну единицу его размерности влияет на изменение другого признака. Для того чтобы ответить на этот вопрос, пользуются методами регрессионного анализа.

Регрессионный анализ устанавливает форму зависимости между случайной величиной и значениями переменной величины
, причем, значения
считаются точно заданными.

Уравнение регрессии – это формула статистической связи между переменными.

Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией (нескольких переменных – множественной ).

Выбор формулы зависимости называется спецификацией уравнения регрессии. Оценка значений параметров выбранной формулы называется параметризацией .

Как же оценить значения параметров и проверить надёжность сделанных оценок?

Рассмотрим рисунок

    На графике (а) взаимосвязь х и у близка к линейной, прямая линия 1 здесь близка к точкам наблюдений и последние отклоняются от неё лишь в результате сравнительно небольших случайных воздействий.

    На графике (б) реальная взаимосвязь величин х и у описывается нелинейной функцией 2, и какую бы мы ни провели прямую линию (например, 1), отклонения точек от неё будут неслучайными.

    На графике (в) взаимосвязь между переменными х и у отсутствует, и результаты параметризации любой формулы зависимости будут неудачными.

Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Всегда можно попытаться провести такую прямую линию, которая будет «ближайшей» к точкам наблюдений по их совокупности (например, на рисунке (в) лучшей будет прямая 1, чем прямая 2).

Теоретическое уравнение парной линейной регрессии имеет вид:


,

где
называютсятеоретическими параметрами (теоретическими коэффициентами ) регрессии; -случайным отклонением (случайной ошибкой ).

В общем виде теоретическую модель будем представлять в виде:

.

Для определения значений теоретических коэффициентов регрессии необходимо знать все значения переменных Х и Y , т.е. всю генеральную совокупность, что практически невозможно.

Задача состоит в следующем: по имеющимся данным наблюдений
,
необходимо оценить значения параметров
.

Пусть а оценка параметра
,b оценка параметра .

Тогда оценённое уравнение регрессии имеет вид:
,

где
теоретические значения зависимой переменнойy , - наблюдаемые значения ошибок. Это уравнение называетсяэмпирическим уравнением регрессии . Будем его записывать в виде
.

В основе оценки параметров линейной регрессии лежит Метод Наименьших Квадратов (МНК) – это метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.

Функция Q является квадратичной функцией двух параметров a и b . Т.к. она непрерывна, выпукла и ограничена снизу (
), поэтому она достигает минимума. Необходимым условием существования минимума является равенство нулю её частных производных поa и b :


.

Разделив оба уравнения системы на n , получим:


или

Иначе можно записать:

и  средние квадратические отклонения значений тех же признаков.

Т.о. линия регрессии проходит через точку со средними значениями х и у
, акоэффициент регрессии b пропорционален показателю ковариации и коэффициенту линейной корреляции.

Если кроме регрессии Y на X для тех же эмпирических значений найдено уравнение регрессии X на Y (
, где
), то произведение коэффициентов
:

.

Коэффициент регрессии  это величина, показывающая, на сколько единиц размерности изменится величина при изменении величинына одну единицу ее размерности. Аналогично определяется коэффициент.

Алгебра и начала анализа.

1. Линейная функция y = ax + b, её свойства и график.

2. Квадратичная функция y = ax2 + bx + c, её свойства и график.

3. Функция y = k/x, её свойства и график, график дробно-линейной функции (на конкретном приме-ре).

4. Показательная функция y = ax, её свойства и график.

5. Логарифмическая функция y = loga x, её свойства и график.

6. Функция y = sin(x), её свойства и график.

7. Функция y = cos(x), её свойства и график.

8. Функция y = tg(x), её свойства и график.

9. Функция y = ctg(x), её свойства и график.

10. Арифметическая прогрессия, сумма первых n членов арифметической прогрессии.

11. Геометрическая прогрессия, сумма первых n членов геометрической прогрессии. Сумма бесконечно убывающей геометрической прогрессии.

12. Решение уравнения sin(x) = a, неравенств sin(x) > a, sin(x) < a.

13. Решение уравнения cos(x) = a, неравенств cos(x) > a, cos(x) < a.

14. Решение уравнения tg(x) = a, неравенств tg(x) > a, tg(x) < a.

15. Формулы приведения (с выводом).

16. Формулы синуса и косинуса суммы и разности двух аргументов (с доказательством).

17. Тригонометрические функции двойного аргумента.

18. Тригонометрические функции половинного аргумента.

19. Формулы суммы и разности синусов, косинусов (с доказательством).

20. Вывод формулы корней квадратного уравнения, теорема Виета.

21. Логарифм произведения, степени, частного.

22. Понятие производной, ее геометрический смысл и физический смысл.

23. Правила вычисления производной.

  1. Функция заданная формулой y = kx + b, где k и b - некоторые числа, называется линейной.
  2. Областью определения линейной функции служит множество R всех действительных чисел, т.к. выражение kx + b имеет смысл при любых значениях х.
  3. График линейной функции y = kx + b есть прямая. Для построения графика, очевидно, достаточно двух точек, если k 0.
  4. Коэффициент k характеризует угол, который образует прямая y = kx с положительным направлением оси Ох, поэтому k называется угловым коэффициентом. Если k > 0, то этот угол острый; если k < 0 - тупой; если k = 0, то прямая совпадает с осью Ох.
  5. График функции y = kx + b может быть постпоен с помощью параллельного переноса графика функции y = kx.

Ответ №2. Опр . Квадратичной функцией называется функция, которую можно задать формулой вида y = ax2 + bx + c, где х - независимая переменная, а, b и с - некоторые числа, причем а 0.

Графиком квадратичной функции является парабола.

Свойства функции y = ax2(частный случай) при а > 0.


2. Если х 0, то y > 0. График функции расположен в верхней полуплоскости.

4. Функция убывает в промежутке (- ; 0] и возрастает в промежутке .
5. Наименьшее значение функция принимает при х = 0. Область значений функции (- ; 0].

И, так, график функции y = ax2 + bx + c есть парабола, вершиной которой является точка (m; n), где m = , n= . Осью симметрии параболы служит прямая х = m, параллельная оси y. При а > 0 ветви параболы направлены вверх, при a < 0 - вниз.

Если переменная у обратно пропорциональна переменной х, то эта зависимость выражается формулой, где - коэффициент обратной пропорциональности.

  1. Область определения функции - есть множество всех чисел, отличных от нуля, т. е. .
  2. Графиком обратной пропорциональности у=k/x является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Такая кривая называется гиперболой. Если k>0, то ветви гиперболы расположены в I и III координатных четвертях; если же k<.0, то во II и IV координатных четвертях.
  3. Заметим, что гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко к ним приближается.

№ 4. Опр. Функция, заданная формулой y = ax, где а - некоторое положительное число, не равное еденице, называется показательной.

1. Функция y = ax при а>1


в) функция возрастает;

д) если х > 0, то ax > 1;
е) если х < 0, то 0< ax <1;

2. Функция y = ax при 0< а <1
а)
б) множество значений - множество всех положительных чисел;
в) функция убывает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то 0< ax <1;
е) если х < 0, то ax > 1.

№5.Опр . Функцию, заданную формулой y = loga x называют логарифмической функцией с основанием а.
Свойства функции y = loga x при a>1:
а) D(f) = R+;
б) E(f) = R;
в) функция возрастает;

д) если 0 е) если x > 1, то loga x > 0.
Свойства функции y = loga x при 0 а) D(f) = R+;
б) E(f) = R;
в) функция убывает;
г) если x = 1, то loga x = 0;
д) если 0 < x < 1, то loga x > 0;
е) если x > 1, то loga x < 0.

№6. Опр . Отношение катета прямоугольного треугольника, противолежащего острому углу, к гипотенузе называется синусом этого угла (обозначается sin ).

  1. область определения - множество всех действительных чисел;
  2. множество значений - [-1; 1];
  3. функция нечетная: sin(-x) = -sin(x) для всех;
  4. sin(x) = 0 при x = ;
  5. sin(x) > 0 для всех;
  6. sin(x) < 0 для всех;
  7. функция возрастает на;
  8. функция убывает на.

№ 7.Опр . Отношение катета прямоугольного треугольника, прилежащего к острому углу, к гипотенузе называется косинусом этого угла (обозначается cos )

  1. область определения - множество всех действительных чисел;
  2. множество значений - [-1; 1];
  3. функция четная: cos(-x) = cos(x) для всех;
  4. функция периодическая с наименьшим положительным периодом;
  5. cos(x) = 0 при;
  6. cos(x) > 0 для всех;
  7. cos(x) > 0 для всех;
  8. функция возрастает на;
  9. функция убывает на

№8.Опр . Отношение катета, противолежащего острому углу прямоугольного треугольника, к катету, прилежащему к этому углу, называется тангенсом (обозначается tg ).

  1. функция нечетная: tg(-x) = -tg(x) для всех х из области определения;
  2. функция периодическая с наименьшим положительным периодом;
  3. tg(x) = 0 при х = ;
  4. tg(x) > 0 для всех;
  5. tg(x) < 0 для всех;
  6. функция возрастает на.

№9.Опр . Отношение катета, прилежащего острому углу прямоугольного треугольника, к катету, противолежащему к этому углу, называется котангенсом (обозначается ctg )

  1. область определения - множество всех действительных чисел, кроме чисел вида;
  2. множество значений - вся числовая прямая;
  3. функция нечетная: ctg(-x) = -ctg(x) для всех х из области определения;
  4. функция периодическая с наименьшим положительным периодом;
  5. ctg(x) = 0 при x = ;
  6. ctg(x) > 0 для всех;
  7. ctg(x) < 0 для всех;
  8. функция убывает на.

Ответ № 10

  1. Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией.
  2. Из определения арифметической прогрессии следует, что разность между любым ее членом и ему предшествующим равна одному и тому же числу, т. е. а2 - а1 = а3 - а2 =… = ak - ak-1 =…. Это число называется разностью арифметической прогрессии и обычно обозначается буквой d .
  3. Для того чтобы задать арифметическую прогрессию (аn), достаточно знать ее первый член а1 и разность d .
  4. Если разность арифметической прогрессии - положительное число, то такая прогрессия является возрастающей; если отрицательное число, то убывающей. Если разность арифметической прогрессии равна нулю, то все ее члены равны между собой и прогрессия является постоянной последовательностью.
  5. Характеристическое свойство арифметической прогрессии. Последовательность (аn) является арифметической прогрессией тогда и только тогда, когда любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, т. е. (1)
  6. Формула n-го члена арифметической прогрессии имеет вид: an = a1 + d(n-1) . (2)
  7. Формула суммы n первых членов арифметической прогрессии имеет вид: (3)
  8. Если в формулу (3) подставить вместо аn его выражение по формуле (2), то получим соотношение
  9. Из определения разности арифметической прогрессии следует, что a1 + an = a2 + an-1 = ..., т. е. сумма членов, равноудаленных от концов прогрессии, есть величина постоянная.

Ответ № 11

  1. Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же не равное нулю число, называется геометрической прогрессией.
  2. Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2 :b1 = b3 :b2 =… = bn :bn-1 = bn+1 :bn =…. Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q .
  3. Для того, чтобы задать геометрическую прогрессию (bn ), достаточно знать ее первый член b1 и знаменатель q .
  4. Если q > 0 (), то прогрессия является монотонной последовательностью. Пусть, например, b1 = -2, q = 3, тогда геометрическая прогрессия -2, -6, -18,… есть монотонно убывающая последовательность. Если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.
  5. Характеристическое свойство геометрической прогрессии. Последовательность (bn ) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е. (1)
  6. Формула n-го члена геометрической прогрессии имеет вид: (2)
  7. Формула суммы п первых членов геометрической прогрессии имеет вид: , (3)
  8. Если в формулу (3) подставить вместо bn его выражение по формуле (2), то получится соот-ношение. , (4)
  9. Из определения знаменателя геометрической прогрессии следует, что b1 bn = b2 bn-1 = …, т.е. произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.

Сумма бесконечной геометрической прогрессии при

  1. Пусть (xn) - геометрическая прогрессия со знаменателем q , где и. Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию, называется предел суммы n первых ее членов при.
  2. Обозначим сумму бесконечной геометрической прогрессии через S . Тогда верна формула.

Решение тригонометрических уравнений вида sin(x) = a

  1. формула для корней уравнения sin(x) = a, где, имеет вид:
    Частные случаи:
  2. sin(x) = 0, x =
  3. sin(x) = 1, x =
  4. sin(x) = -1, x =
  5. формула для корней уравнения sin2 (x) = a, где, имеет вид: x=

Решение тригонометрических неравенств вида sin(x) > a, sin(x) < a

  1. Неравенства, содержащие переменную только под знаком тригонометрической функции, называются тригонометрическими.
  2. При решении тригонометрических неравенств используют свойство монотонности триго-нометрических функций, а также промежутки их знакопостоянства.
  3. Для решения простейших тригонометрических неравенств вида sin(x) > a (sin(x) < а) используют единичную окружность или график функции y = sin(x).
    sin(x) = 0 если х = ;
    sin(x) = -1, если x = >;
    sin(x) > 0, если;
    sin(x) < 0, если.

Ответ № 13

Решение тригонометрического уравнения cos(x) = a

  1. Формула для корней уравнения cos(x) = a, где, имеет вид: .
  2. Частные случаи:
    cos(x) = 1, x = ;
    cos(x) = 0, ;
    cos(x) = -1, x =
  3. Формула для корней уравнения cos2 (x) = a, где, имеет вид: .

Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a

  1. Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x);
  2. Важным моментом является знание, что:
    cos(x) = 0, если;
    cos(x) = -1, если x = ;
    cos(x) = 1, если x = ;
    cos(x) > 0, если;
    cos(x) > 0, если.

Решение тригонометрического уравнения tg(x) = a

  1. Формула для корней уравнения tg(x) = a имеет вид: .
  2. Частные случаи:
    tg(x) = 0, x = ;
    tg(x) = 1, ;
    tg(x) = -1, .
  3. Формула для корней уравнения tg2 (x) = a, где, имеет вид:

Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a

  1. Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x).
  2. Важно знать, что:
    tg(x) > 0, если;
    tg(x) < 0, если;
    Тангенс не существует, если.
  1. Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов, выражаются через значения sin , cos , tg и ctg .
  2. Все формулы приведения можно свести в следующую таблицу:

Аргумент

  1. Для облегчения запоминания приведенных формул нужно использовать следующие правила:
    a) при переходе от функций углов, к функциям угла название функции изменяют: синус на косинус, тангенс на котангенс и наоборот;
    при переходе от функций углов, к функциям угла название функции сохраняют;
    б) считая острым углом (т. е.), перед функцией угла ставят такой знак, какой имеет приводимая функ-ция углов, .

Все вышеприведенные формулы можно получить, пользуясь следующим правилом:
Любая тригонометрическая функция угла 90°n + по абсолютной величине равна той же функции угла, если число n - четное, и дополнительной функции, если число n - нечетное. При этом, если функция угла 90°n + . положительна, когда - острый угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

  1. Формулы косинуса суммы и разности двух аргументов:

    Рис.1 Рис.2
    Повернем радиус ОА, равный R, около точки О на угол и на угол (рис.1). Получим радиусы ОВ и ОС. Найдем скалярное произведение векторов и. Пусть координаты точки В равны х1 и y1, координаты точки С равны х2 и y2. Эти же координаты имеют соответственно и векторы и. По определению скалярного произведения векторов:
    = х1 х2 + y1 y2. (1)
    Выразим скалярное произведение через тригонометрические функции углов и. Из определения косинуса и синуса следует, что
    х1 = R cos , y1 = R sin , х2 = R cos , y2 = R sin .
    Подставив значения х1, х2, y1, y2 в правую часть равенства (1), получим:
    = R2 coscos+ R2 sinsin= R2 (coscos+ sinsin).
    С другой стороны, по теореме о скалярном произведении векторовимеем:
    = cos BOC = R2 cos BOC.
    Угол ВОС между векторами и может быть равен - (рис.1), - (-) (рис.2) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos BOC = cos (-). Поэтому
    = R2 cos (-).
    Т.к. равно также R2 (coscos+ sinsin), то
    cos(-) = coscos+ sinsin.

    Cos(+) = cos(- (-)) = coscos(-) + sinsin(-) = coscos - sinsin.
    Значит,
    cos(+) = coscos - sinsin.

  2. Формулы синуса суммы и разности двух аргументов:

    Sin(+) = cos(/2 - (+)) = cos((/2 -) -) = cos(/2 -) cos+ sin(/2 -) sin= sincos+ cossin.
    Значит,
    sin(+) = sincos+ cossin.

    Sin(-) = sin(+ (-)) = sincos(-) + cossin(-) = sincos - cossin.
    Значит,
    sin(-) = sincos - cossin.

Формулы двойных углов

Формулы сложения позволяют выразить sin 2, cos 2, tg 2, ctg 2через тригонометрические функции угла.
Положим в формулах
sin(+) = sincos+ cossin,
cos(+) = coscos - sinsin,
,
.
равным. Получим тождества:

sin 2= 2 sin cos ;
cos 2= cos2 - sin2 = 1 - sin2 = 2 cos2 - 1;
; .

Формулы половинного аргумента

  1. Выразив правую часть формулы cos 2= cos2 - sin2 через одну тригонометрическую функцию (синус или косинус), придем к соотношениям
    cos 2= 1 - sin2 , cos 2= 2 cos2 - 1.
    Если в данных соотношениях положить = /2, то получим:
    cos = 1 - 2 sin2 /2, cos 2= 2 cos2 /2 - 1. (1)
  2. Из формул (1) следует, что
    (2), (3).
  3. Разделив почленно равенство (2) на равенство (3), получим
    (4).
  4. В формулах (2), (3) и (4) знак перед радикалом зависит от того, в какой координатной четверти находится угол /2.
  5. Полезно знать следующую формулу:
    .

Формулы суммы и разности синусов, косинусов

Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения.
Чтобы представить в виде произведения сумму sin + sin , положим = x + y и = x - y и воспользуемся формулами синуса суммы и синуса разности. Получим:
sin + sin = sin (x + y) + sin (x - y) = sinx cosy + cosx siny + sinx cosy - cosx siny = 2sinx cosy.
Решив теперь систему уравнений = x + y, = x - y относительно x и y, получим х = , y = .
Следовательно,
sin + sin = 2 sincos.
Аналогичным образом выводят формулы:
sin -sin = 2 cossin ;
cos + cos = 2 coscos;
cos + cos = -2 sinsin .

Чтобы найти решение приведенного квадратного уравнения x2 + p x + q = 0, где, достаточно перенести свободный член в правую часть и к обеем частям равенства прибавить. Тогда левая часть станет полным квадратом, и мы получаем равносильное уравнение = - q .
Оно отличается от простейшего уравнения x2 = m только внешним видом: стоит вместо x и - q - вместо m . Находим = . Отсюба х = - . Эта формула показывает, что всякое квадратное уравнение имеет два корня. Но эти корни могут быть и мнимыми, если < q . Может также оказаться, что оба корня квадратного уравнения равны между собой, если = q . Возращаемся к обычному виду.
1. Сумма корней приведенного квадратного уравнения x2 + p x + q = 0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену, т.е. х1 + х2 = -р , а х1 х2 = q .
2. Теорема, обратная теореме Виета. Если р , q , х1, х2 таковы, что х1 + х2 = -р и х1 х2 = q , то х1 и х2 - корни уравнения x2 + p x + q = 0.

Опр . Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести основание а, чтобыполучить число b.
Формулу (где b > 0, a > 0 и a 1) называют основным логарифмическим тождеством.
Свойства логарифмов:

  1. Логарифм произведения равен сумме логарифмов сомножителей:
    .
    Для доказательства воспользуемся основным логарифмическим тождеством:
    x = , y = .
    Перемножим почленно эти равенства, получаем:
    xy = = .
    Следовательно, по определению логарифма (п.3) доказан.
  2. Логарифм частного равен логарифму делимого без логарифма делителя:
    .
    Ход доказательства аналогичен доказательству п.3
  3. Логарифм степени равен произведению показателя степени на логарифм ее основания:
    .
    При доказательстве, также необходимо воспользоваться основным логарифмическим тождеством.
  1. Производной функции f(x) в точке х0называется предел отношения приращения функции в точке х0к приращению аргумента, когда последнее стремится к нулю. Это можно записать так: .
  2. Из определения производной следует, что функция может иметь производную в точке х0только в том случае, если она определена в некоторой окрестности точки х0, включая эту точку.
  3. Необходимым условием существования производной функции в данной точке является непрерывность функции в этой точке.
  4. Существование производной функции f в точке х0эквивалентно существованию (невертикальной) касательной в точке (х0 ; f(х0)) графика, при этом угловой коэффициент касательной равен. В этом состоит геометрический смысл производной .
  5. Механический смысл производной f "(x) функции у = f(x) - это скорость изменения функции в точке х. Поэтому при решении прикладных задач следует помнить, что какой бы процесс ни описывался изучаемой функцией у = f(x) производную с физической точки зрения можно представить как скорость, с которой протекает процесс.
  1. Производная суммы равна сумме производных, если они существуют:
    .
  2. Если функция u и v дифференцируемы в точке х0то их производные дифференцируемы в этой точке и
    .
  3. Если функция u и v дифференцируемы в точке х0, а С - постоянная, то функция Cu дифференцируема в этой точке и
    .
  4. Если функция u и v дифференцируемы в точке х0и функция v не равна нулю в этой точке, то частное двух функций тоже дифференцируемо в точке х0и
    .

Понятие числовой функции. Способы задания функции. Свойства функций.

Числовая функция - функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество).

Три главных способа задания функции: аналитический, табличный и графический.

1. Аналитический.

Способ задания функции при помощи формулы называется аналитическим. Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции.

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции.

Функция у=f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями.

Свойства функции, которые необходимо учитывать при построении её графика:

1)Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4)Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения



у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5)Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).


Линейная функция, её свойства и график.

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел.

k – угловой коэффициент (действительное число)

b – свободный член (действительное число)

x – независимая переменная.

· В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

· Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

o Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

o Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось.

Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

Замечание. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞),

y = kx + b – отрицательна при x из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k),

y = kx + b – отрицательна при x из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

11. Функция у = ах 2 + bх + с, её свойства и график.

Функция у = ах 2 + bх + с (а, b, с - постоянные величины, а ≠ 0) называется квадратичной. В простейшем случае у = ах 2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции у = ах 2 , есть парабола. Каждая парабола имеет ось симметрии, называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы .
График можно строить по следующей схеме: 1) Находим координаты вершины параболы х 0 = -b/2a; у 0 = у(х 0). 2) Строим еще несколько точек, которые принадлежат параболе, при построении можно использовать симметрии параболы относительно прямой х = -b/2a. 3) Соединяем обозначены точки плавной линией. Пример. Построить график функции в = х 2 + 2х - 3. Решения. Графиком функции является парабола, ветви которой направлены вверх. Абсцисса вершины параболы х 0 = 2/(2 ∙1) = -1, ее ординаты y(-1) = (1) 2 + 2(-1) - 3 = -4. Итак, вершина параболы - точка (-1; -4). Составим таблицу значений для нескольких точек, которые размещены справа от оси симметрии параболы - прямой х = -1.

Свойства функции.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 3 Линейные функции и их графики

Рассмотрим равенство

у = 2х + 1. (1)

Каждому значению буквы х это равенство ставит в соответствие вполне определенное значение буквы у . Если, например, x = 0, то у = 2 0 + 1 = 1; если х = 10, то у = 2 10 + 1 = 21; при х = - 1 / 2 имеем у = 2 (- 1 / 2) + 1= 0 и т. д. Обратимся к еще к одному равенству:

у = х 2 (2)

Каждому значению х это равенство, как и равенство (1), ставит в соответствие вполне определенное значение у . Если, например, х = 2, то у = 4; при х = - 3 получаем у = 9 и т. д. Равенства (1) и (2) связывают между собой две величины х и у так, что каждому значению одной из них (х ) ставится в соответствие вполне определенное значение другой величины (у ).

Если каждому значению величины х соответствует вполне определенное значение величины у , то эта величина у называется функцией от х . Величина х при этом называется аргументом функции у .

Таким образом, формулы (1) и (2) определяют две различные функции аргумента х .

Функция аргумента х , имеющая вид

у = ах + b , (3)

где а и b - некоторые заданные числа, называется линейной . Примером линейной функции может служить любая из функций:

у = х + 2 (а = 1, b = 2);
у = - 10 (а = 0, b = - 10);
у = - 3х (а = - 3, b = 0);
у = 0 (а = b = 0).

Как известно из курса VIII класса, графиком функции у = ах + b является прямая линия . Поэтому-то данная функция и называется линейной.

Напомним, как строится график линейной функции у = ах + b .

1. График функции у = b . При a = 0 линейная функция у = ах + b имеет вид у = b . Ее графиком служит прямая, параллельная оси х и пересекающая ось у в точке с ординатой b . На рисунке 1 вы видите график функции у = 2 (b > 0), а на рисунке 2- график функции у = - 1 (b < 0).

Если не только а , но и b равно нулю, то функция у= ах+ b имеет вид у = 0. В этом случае ее график совпадает с осью х (рис. 3.)

2. График функции у = ах . При b = 0 линейная функция у = ах + b имеет вид у = ах .

Если а =/= 0, то графиком ее является прямая, проходящая через начало координат и наклоненная к оси х под углом φ , тангенс которого равен а (рис. 4). Для построения прямой у = ах достаточно найти какую-нибудь одну ее точку, отличную от начала координат. Полагая, например, в равенстве у = ах х = 1, получим у = а . Следовательно, точка М с координатами (1; а ) лежит на нашей прямой (рис. 4). Проводя теперь прямую через начало координат и точку М, получаем искомую прямую у = аx .

На рисунке 5 для примера начерчена прямая у = 2х (а > 0), а на рисунке 6 - прямая у = - х (а < 0).

3. График функции у = ах + b .

Пусть b > 0. Тогда прямая у = ах + b у = ах на b единиц вверх. В качестве примера на рисунке 7 показано построение прямой у = x / 2 + 3.

Если b < 0, то прямая у = ах + b получается посредством параллельного сдвига прямой у = ах на - b единиц вниз. В качестве примера на рисунке 8 показано построение прямой у = x / 2 - 3

Прямую у = ах + b можно построить и другим способом.

Любая прямая полностью определяется двумя своими точками. Поэтому для построения графика функции у = ах + b достаточно найти какие-нибудь две его точки, а затем провести через них прямую линию. Поясним это на примере функции у = - 2х + 3.

При х = 0 у = 3, а при х = 1 у = 1. Поэтому две точки: М с координатами (0; 3) и N с координатами (1;1) - лежат на нашей прямой. Отметив эти точки на плоскости координат и соединив их прямой линией (рис. 9), получим график функции у = - 2х + 3.

Вместо точек М и N можно было бы взять, конечно, и другие две точки. Например, в качестве значений х мы могли бы выбрать не 0 и 1, как выше, а - 1 и 2,5. Тогда для у мы получили бы соответственно значения 5 и - 2. Вместо точек М и N мы имели бы точки Р с координатами (- 1; 5) и Q с координатами (2,5; - 2). Эти две точки, так же как и точки М и N, полностью определяют искомую прямую у = - 2х + 3.

Упражнения

15. На одном и том же рисунке построить графики функций:

а) у = - 4; б) у = -2; в) у = 0; г) у = 2; д) у = 4.

Пересекаются ли эти графики с осями координат? Если пересекаются, то укажите координаты точек пересечения.

16. На одном и томже рисунке построить графики функций:

а) у = x / 4 ; б) у = x / 2 ; в) у = х ; г) у = 2х ; д) у = 4х .

17. На одном и том же рисунке построить графики функций:

а) у = - x / 4 ; б) у = - x / 2 ; в) у = - х ; г) у = - 2х ; д) у = - 4х .

Построить графики данных функций (№ 18-21) и определить координаты точек пересечения этих графиков с осями координат.

18. у = 3+ х . 20. у = - 4 - х .

19. у = 2х - 2. 21. у = 0,5(1 - 3х ).

22. Построить график функции

у = 2x - 4;

используя этот график, выяснить: а) при каких значениях х y = 0;

б) при каких значениях х значения у отрицательны и при каких - положительны;

в) при каких значениях х величины х и у имеют одинаковые знаки;

г) при каких значениях х величины х и у имеют разные знаки.

23. Написать уравнения прямых, представленных на рисунках 10 и 11.

24. Какие из известных вам физических законов описываются с помощью линейных функций?

25. Как построить график функции у = - (ах + b ), если задан график функции у = ах + b ?