Каково биологическое значение реакций матричного синтеза. Какие реакции, происходящие в клетке, относят к реак­циям матричного синтеза? Что служит матрицами таких реакций? Что будем делать с полученным материалом

ДНК -линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных цепей. Мономерами ДНК являются нуклеотиды.

Каждый нуклеотид ДНК состоит из пуринового (А - аденин или Г - гуанин) или пиримидинового (Т - тимин или Ц - цитозин) азотистого основания, пятиуглеродного сахара - дезоксирибозы и фосфатной группы.

Молекула ДНК имеет следующие параметры: ширина спирали около 2 нм, шаг, или полный оборот спирали, - 3,4 нм. В одном шаге содержится 10 комплементарных пар нуклеотидов.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина - цитозин. Пара А-Т соединена двумя водородными связями, а пара Г-Ц - тремя.

Остов цепей ДНК образован сахарофосфатными остатками.

Репликация ДНК - это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов.

На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Синтез дочерних молекул на соседних цепях идет с разной скоростью. На одной цепи новая молекула собирается непрерывно, на другой - с некоторым отставанием и фрагментарно. После завершения процесса фрагменты новых молекул ДНК сшиваются ферментом ДНК-лигазой. Так, из одной молекулы ДНК возникает две, являющиеся точной копией друг друга и материнской молекулы. Такой способ репликации называют полуконсервативным.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что и происходит при делении соматических клеток.

Репарация ДНК - механизм, обеспечивающий способность к исправлению нарушенной последовательности нуйлеотидов в молекуле ДНК.

Если при репликации ДНК последовательность нуклеотидов в ее молекуле нарушается в силу каких-либо причин, то в большинстве случаев эти повреждения устраняются клеткой самостоятельно. Изменение обычно происходит в одной из цепей ДНК. Вторая цепь остается неизмененной. Поврежденный участок первой цепи может «вырезаться» с помощью ферментов - ДНК репарирующих нуклеаз. Другой фермент - ДНК-полимераза копирует информацию с неповрежденной цепи, вставляя необходимые нуклеотиды в поврежденную цепь. Затем ДНК-лигаза «сшивает» молекулу ДНК, и поврежденная молекула восстанавливается.

РНК - линейный полимер, состоящий, как правило, из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар - рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Матричная, или информационная, РНК синтезируется в ядре при участии фермента РНК-полимеразы, комплементарна участку ДНК, на котором происходит синтез, составляет 5% РНК клетки. Рибосомная РНК синтезируется в ядрышке и входит в состав рибосом, составляет 85% РНК клетки. Транспортная РНК (более 40 видов) переносит аминокислоты к месту синтеза белка, имеет форму клеверного листа и состоит из 70-90 нуклеотидов.

К реакциям матричного синтеза относят репликацию ДНК, синтез РНК на ДНК (транскрипцию), синтез белка на мРНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

При транскрипции фермент РНК-полимераза присоединяется к группе нуклеотидов ДНК - промотору. Промотор указывает место, с которого должен начаться синтез мРНК. Она строится из свободных нуклеотидов комплементарно молекуле ДНК. Фермент работает до тех пор, пока не встретит еще одну группу нуклеотидов ДНК - стоп-сигнал, возвещающий о конце синтеза мРНК.

Молекула мРНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей. Процесс перевода информации, содержащейся в последовательности нуклеотидов мРНК, в последовательность аминокислот в полипептиде называется трансляцией.

Определенная аминокислота доставляется к рибосомам определенным видом тРНК.

Матричный синтез представляет собой образование биополимера, последовательность звеньев в котором определяется первичной структурой другой молекулы. Последняя как бы выполняет роль матрицы, "диктующей" нужный порядок сборки цепи. В живых клетках известны три биосинтетических процесса, основанных на этом механизме.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на "размножении" генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем "ДНК-РНК-белок" и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с "исходным образцом". Основой такого сопряжения является фундаментальный принцип комплементарности.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент "дочерней" цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину - цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции - УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза - расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза - "зашивает" разрывы между фрагментами Оказаки;
  • праймаза - синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки - стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы - синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) - в обратном направлении и отдельными фрагментами, названными "Оказаки".

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого "списывается" последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Трансляция

Матричный синтез белка и у прокариот, и у эукариот осуществляется в специализированных органоидах - рибосомах. Последние состоят из двух субъединиц, одна из которых (малая) служит для связывания тРНК и матричной РНК, а другая (большая) принимает участие в образовании пептидных связей.

Началу трансляции предшествует активация аминокислот, т. е. присоединение их к соответствующим транспортным РНК с образованием макроэргической связи, за счет энергии которых впоследствии осуществляются реакции транспептидирования (присоединения к цепи очередного звена).

В процессе синтеза также принимают участие белковые факторы и ГТФ. Энергия последнего необходима для продвижения рибосомы по матричной цепи РНК.

Репликация

Процесс редупликации ДНК идет в ядре под действием ферментов и специальных белковых комплексов. Принципы удвоения ДНК:

  • * Антипараллельность : дочерняя цепь синтезируется в направлении от 5" к 3" концу.
  • * Комплиментарность : строение дочерней нити ДНК определяется последовательностью нуклеотидов материнской нити, подбираются по принципу комплиментарности.
  • * Полунепрерывность : одна из двух цепей ДНК - лидирующая , синтезируется непрерывно, а другая - запаздывающая , прерывисто с образованием коротких фрагментов Оказаки . Это происходит из-за свойства антипараллельности.
  • * Полуконсервативность : молекулы ДНК, полученные в ходе редупликации, содержат одну консервативную материнскую нить и одну синтезированную дочернюю.
  • 1) Инициация

Начинается с репликативной точки , к которой присоединяются белки, инициирующие репликацию. Под действием ферментов ДНК-топоизомеразы и ДНК-геликазы цепь раскручивается, и разрываются водородные связи. Далее идет фрагментарное разъединение двойной цепи ДНК с образованием репликационной вилки . Ферменты предотвращают повторное соединение цепей ДНК.

2) Элонгация

Синтез дочерней цепи ДНК идет за счет фермента ДНК-полимеразы , который движется в направлении 5" 3" , подбирая нуклеотиды по принципу комплиментарности. Лидирующая цепь синтезируется непрерывно, а запаздывающая - прерывисто. Фермент ДНК-лигаза соединяет между собой фрагменты Оказаки . Специальные корректирующие белки распознают ошибки и устраняют неправильные нуклеотиды.

3) Терминация

Окончание репликации происходит, если встречаются две репликационные вилки. Белковые компоненты снимаются, молекулы ДНК спирализуются.

Свойства генетического кода

  • * Триплетен - каждую аминокислоту кодирует код из 3 нуклеотидов.
  • * Однозначен - каждый триплет кодирует лишь определенную кислоту.
  • * Вырожден - каждая аминокислота кодируется несколькими триплетами (2-6). Лишь две из них кодируются одним триплетом: триптофан и метионин.
  • * Неперекрываем - каждый кодон является самостоятельной единицей, а генетическая инф считывается только одним способом в одном направлении
  • * Универсален - един для всех организмов. Одни и те же триплеты кодируют одни и те же аминокислоты у разных организмов.

Генетический код

Реализация наследственной информации идет по схеме ген-белок-признак.

Ген - участок молекулы ДНК, который несет информацию о первичной структуре одной молекулы белка и отвечает за ее синтез.

Генетический код - принцип кодирования наследственной инф в клетке. Представляет собой последовательность триплетов нуклеотидов в НК, которая задает определенный порядок аминокислот в белках. Инфа, заключенная в линейной последовательности нуклеотидов, используется для создания другой последовательности.

Из 4 нуклеотидов можно составить 64 триплета , 61 из которых кодируют аминокислоты. Стоп-кодоны - триплеты УАА, УАГ, УГА прекращают синтез полипептидной цепи.

Старт-кодон - триплет АУГ определяет начало синтеза полипептидной цепи.

Биосинтез белка

Один из основных процессов пластического обмена веществ. Часть реакций протекает в ядре, другая - в цитоплазме. Необходимые компоненты: АТФ, ДНК, и-РНК, т-РНК, р-РНК, Mg 2+ , аминокислоты, ферменты. Состоит из 3 х процессов:

  • - транскрипция : синтез иРНК
  • - процессинг : превращение иРНК в мРНК
  • - трансляция : синтез белка

ДНК содержит информацию о структуре белка в виде последовательности аминокислот, но поскольку гены не покидают ядра, то непосредственного участия в биосинтезе белковой молекулы не принимают. И-РНК синтезируется в ядре клетки по ДНК и переносит инф от ДНК к месту синтеза белка (рибосомам). Затем, с помощью т-РНК из цитоплазмы выбираются комплиментарные и-РНК аминокслоты. Таким образом синтезируются полипептидые цепи.

Транскрипция

1) Инициация

Синтез молекул иРНК по ДНК может протекать в ядре, митохондриях и пластидах. Под действием ферментов ДНК-геликазы и ДНК-топоизомеразы участок молекулы ДНК раскручивается , разрываются водородные связи. Считывание информации идет только с одной нити ДНК, которая называется кодирующей кодогенной . Фермент РНК-полимераза соединяется с промотером - зоной ДНК, которая содержит старт-сигнал ТАТА.

2) Элонгация

Процесс выстраивания нуклеотидов по принципу комплиментарности . РНК-полимераза продвигается по кодирующей цепи и соединяет между собой нуклеотиды, образуя полинуклеотидную цепь. Процесс продолжается до стоп-кодона .

3) Терминация

Окончание синтеза: фермент и синтезированная молекула РНК отделяеются от ДНК, двойная спираль ДНК восстанавливается.

Процессинг

Превращение молекулы иРНК в мРНК в ходе сплайсинга в ядре под действием ферментов. Идет удаление интронов -участков, не несущих инф об аминокислотной последовательности и сшивание экзонов - участков, кодирующих последовательность аминокислот. Далее идет присоединение стоп-кодона АУГ, кэпирование для 5" конца и полиаденилирование для защиты 3" конца. Образуется зрелая м-РНК, она короче и идет к рибосомам.

Трансляция

Процесс перевода нуклеотидной последовательности триплетов м-РНК в аминокислотную последовательность полипептидной цепи. Идет в цитоплазме на рибосомах.

1) Инициация

Синтезированная мРНК через ядерные поры идет в цитоплазму, где с помощью ферментов и энергии АТФ соединяется с малой субъединицей рибосом. Затем инициаторная тРНК с аминокислотой метианин соединяется с пептидильным центром. Далее в присутствии Mg 2+ идет присоединение большой субъединицы.

2) Элонгация

Удлинение белковой цепи. Аминокислоты с помощью собственной тРНК доставляются к рибосомам. По форме молекулы т-РНК напоминают трилистник, на среднем из которых имеется антикодон , комплиментарный нуклеотидам кодона м-РНК. К противоположному основанию молекулы тРНК присоединяется соответствующая аминокислота.

Первая т-РНК закрепляется в пептидильном центре, а вторая - в аминоациальном . Затем аминокислоты сближаются и между ними образуется пептидная связь, возникает дипептид, первая т-РНК уходит в цитоплазму. После этого, рибосома делает 1 трехнуклеотидный шаг по м-РНК. В результате чего, вторая т-РНК оказывается в пептидильном центре, освобождая аминоацильный. Процесс присоединения аминокислокты идет с затратой энергии АТФ и требует наличия фермента аминоацил-т-РНК-синтетаза .

3) Терминация

Когда в аминоациальный центр попадает стоп-кодон, синтез завершается, и к последней аминокислоте присоединяется вода. Рибосома снимается с м-РНК и распадается на 2 субъединицы, т-РНК возвращается в цитоплазму.

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Конец работы -

Эта тема принадлежит разделу:

Строение и функции нуклеиновых кислот АТФ

К нуклеиновым кислотам относят высокополимерные соединения распадающиеся при гидролизе на пуриновые и пиримидиновые основания пентозу и фосфорную.. клеточная теория типы клеточной.. эукариотическая клетка строение и функции органоидов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Строение и функции ДНК
ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф.

Репликация (редупликация) ДНК
Репликация ДНК - процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферменто

Строение и функции РНК
РНК - полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК,

Строение и функции АТФ
Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в сре

Создание и основные положения клеточной теории
Клеточная теория - важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. Впервые

Типы клеточной организации
Выделяют два типа клеточной организации: 1) прокариотический, 2) эукариотический. Общим для клеток обоих типов является то, что клетки ограничены оболочкой, внутреннее содержимое представлено цитоп

Эндоплазматическая сеть
Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), - одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и кана

Аппарат Гольджи
Аппарат Гольджи, или комплекс Гольджи, - одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелк

Лизосомы
Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховат

Вакуоли
Вакуоли - одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС

Митохондрии
Строение митохондрии: 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - матрикс; 4

Пластиды
Строение пластид: 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - строма; 4 - тилакоид; 5

Рибосомы
Строение рибосомы: 1 - большая субъединица; 2 - малая субъединица. Рибос

Цитоскелет
Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки - цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр состав

Клеточный центр
Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из т

Органоиды движения
Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибр

Строение и функции ядра
Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утр

Хромосомы
Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный

Обмен веществ
Обмен веществ - важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом. Метаболизм состоит из р

Биосинтез белков
Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования огра

Генетический код и его свойства
Генетический код - система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считае

Строение гена эукариот
Ген - участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одно

Транскрипция у эукариот
Транскрипция - синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой. РНК-полимераза может присоединиться только к промотору, который находится на 3"-конце матричной цепи ДНК

Трансляция
Трансляция - синтез полипептидной цепи на матрице иРНК. Органоиды, обеспечивающие трансляцию, - рибосомы. У эукариот рибосомы находятся в некоторых органоидах - митохондриях и пластидах (7

Митотический цикл. Митоз
Митоз - основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материал

Мутации
Мутации - это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма

Генные мутации
Генные мутации - изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участ

Хромосомные мутации
Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами - ме

Геномные мутации
Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза. Гаплоидия - у

1. Объясните последовательность передачи генетической информации: ген - белок - признак.

2. Вспомните, какая структура белка определяет его строение и свойства. Как закодирована эта структура в молекуле ДНК?

3. Что представляет собой генетический код?

4. Охарактеризуйте свойства генетического кода.

7. Реакции матричного синтеза. Транскрипция

Информация о белке записана в виде нуклеотидной последовательности в ДНК и находится в ядре. Собственно синтез белка происходит в цитоплазме на рибосомах. Следовательно, для синтеза белка необходима структура, которая переносила бы информацию от ДНК к месту синтеза белка. Таким посредником является информационная, или матричная, РНК, которая передает информацию с определенного гена молекулы ДНК к месту синтеза белка на рибосомы.

Кроме переносчика информации необходимы вещества, которые обеспечивали бы доставку аминокислот к месту синтеза и определение их места в полипептидной цепи. Такими веществами являются транспортные РНК, которые обеспечивают кодирование и доставку аминокислот к месту синтеза. Синтез белка протекает на рибосомах, тело которых построено из рибосомальных РНК. Значит, необходим еще один вид РНК - рибосомальные.

Генетическая информация реализуется в трех типах реакций: синтезе РНК, синтезе белка, репликации ДНК. В каждом из них информация, заключенная в линейной последовательности нуклеотидов, используется для создания другой линейной последовательности: либо нуклеотидов (в молекулах РНК или ДНК), либо аминокислот (в молекулах белка). Экспериментально было доказано, что именно ДНК служит матрицей для синтеза всех нуклеиновых кислот. Эти реакции биосинтеза носят название матричного синтеза. Достаточная простота матричных реакций и их одномерность позволили подробно изучить и понять их механизм, в отличие от других процессов, протекающих в клетке.

Транскрипция

Процесс биосинтеза РНК на ДНК называется транскрипцией. Этот процесс протекает в ядре. На матрице ДНК синтезируются все виды РНК - информационная, транспортная и рибосомальная, которые впоследствии участвуют в синтезе белка. Генетический код на ДНК в процессе транскрипции переписывается на информационную РНК. В основе реакции лежит принцип комплементарности.

Синтез РНК имеет ряд особенностей. Молекула РНК значительно короче и является копией только небольшого участка ДНК. Поэтому матрицей служит только определенный участок ДНК, где находится информация о данной нуклеиновой кислоте. Вновь синтезированная РНК никогда не остается связанной с исходной ДНК-матрицей, а освобождается после окончания реакции. Процесс транскрипции протекает в три этапа.

Первый этап - инициация - начало процесса. Синтез РНК-копий начинается с определенной зоны на ДНК, которая называется промотором. Эта зона содержит определенный набор нуклеотидов, которые являются старт-сигналами. Процесс катализируется ферментами РНК-полимеразами. Фермент РНК-полимераза соединяется с промотором, раскручивает двойную спираль и разрушает водородные связи между двумя цепями ДНК. Но только одна из них служит матрицей для синтеза РНК.

Второй этап - элонгация. В эту стадию происходит основной процесс. На одной цепи ДНК, как на матрице, по принципу комплементарности выстраиваются нуклеотиды (рис. 19). Фермент РНК-полимераза, шаг за шагом продвигаясь по цепи ДНК, соединяет нуклеотиды между собой, одновременно постоянно раскручивая дальше двойную спираль ДНК. В результате такого движения синтезируется РНК-копия.

Третий этап - терминация. Это завершающая стадия. Синтез РНК продолжается до стоп-сигнала - определенной последовательности нуклеотидов, которая прекращает движение фермента и синтез РНК. Полимераза отделяется от ДНК и синтезированной РНК-копии. Одновременно с матрицы снимается и молекула РНК. ДНК восстанавливает двойную спираль. Синтез завершен. В зависимости от участка ДНК таким способом синтезируются рибосомальные, транспортные, информационные РНК.

Матрицей для транскрипции молекулы РНК служит только одна из цепей ДНК. Однако матрицей двух соседних генов могут служить разные цепи ДНК. Какая из двух цепей будет использоваться для синтеза, определяется промотором, который направляет фермент РНК-полимеразу в том или ином направлении.

После транскрипции молекула информационной РНК эукариотических клеток подвергается перестройке. В ней вырезаются нуклеотидные последовательности, которые не несут информацию о данном белке. Этот процесс называется сплайсингом. В зависимости от типа клетки и стадии развития могут быть убраны разные участки молекулы РНК. Следовательно, на одном участке ДНК синтезируются разные РНК, которые несут информацию о различных белках. Это обеспечивает передачу значительной генетической информации с одного гена, а также облегчает генетическую рекомбинацию.

Рис. 19. Синтез информационной РНК. 1 - цепь ДНК; 2 - синтезируемая РНК

Вопросы и задания для самоконтроля

1. Какие реакции относятся к реакциям матричного синтеза?

2. Что является исходной матрицей для всех реакций матричного синтеза?

3. Как называется процесс биосинтеза иРНК?

4. Какие виды РНК синтезируются на ДНК?

5. Установите последовательность фрагмента иРНК, если соответствующий фрагмент на ДНК имеет последовательность: ААГЦТЦТГАТТЦТГАТЦГГАЦЦТААТГА.

8. Биосинтез белка

Белки являются необходимыми компонентами всех клеток, поэтому наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов. Это единственные компоненты клетки (кроме нуклеиновых кислот), синтез которых осуществляется под прямым контролем генетического материала клетки. Весь генетический аппарат клетки - ДНК и разные виды РНК - настроен на синтез белков.

Ген - это участок молекулы ДНК, ответственный за синтез одной молекулы белка. Для синтеза белка необходимо, чтобы определенный ген с ДНК был скопирован в виде молекулы информационной РНК. Этот процесс был рассмотрен ранее. Синтез белка представляет собой сложный многоэтапный процесс и зависит от деятельности различных видов РНК. Для непосредственного биосинтеза белка необходимы следующие компоненты:

1. Информационная РНК - переносчик информации от ДНК к месту синтеза. Молекулы иРНК синтезируются в процессе транскрипции.

2. Рибосомы - органоиды, где происходит синтез белка.

3. Набор необходимых аминокислот в цитоплазме.

4. Транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы.

5. АТФ - вещество, обеспечивающее энергией процессы кодирования аминокислот и синтеза полипептидной цепи.

Строение транспортной РНК и кодирование аминокислот

Транспортные РНК (тРНК) представляют собой небольшие молекулы с количеством нуклеотидов от 70 до 90. На долю тРНК приходится примерно 15 % всех РНК клетки. Функция тРНК зависит от ее строения. Изучение структуры молекул тРНК показало, что они свернуты определенным образом и имеют вид клеверного листа (рис. 20). В молекуле выделяются петли и двойные участки, соединенные за счет взаимодействия комплементарных оснований. Наиболее важной является центральная петля, в которой находится антикодон - нуклеотидный триплет, соответствующий коду определенной аминокислоты. Своим антикодоном тРНК способна соединяться с соответствующим кодоном на иРНК по принципу комплементарности.

Рис. 20. Строение молекулы тРНК: 1 - антикодон; 2 - место присоединения аминокислоты

Каждая тРНК может переносить только одну из 20 аминокислот. Значит, для каждой аминокислоты имеется по меньшей мере одна тРНК. Так как аминокислота может иметь несколько триплетов, то и количество видов тРНК равно числу триплетов аминокислоты. Таким образом, общее число видов тРНК соответствует числу кодонов и равно 61. Трем стоп-кодам не соответствует ни одна тРНК.

На одном конце молекулы тРНК всегда находится нуклеотид гуанин (5"-конец), а на другом (3"-конце) всегда три нуклеотида ЦЦА. Именно к этому концу идет присоединение аминокислоты (рис. 21). Каждая аминокислота присоединяется к своей специфической тРНК с соответствующим антикодоном. Механизм этого присоединения связан с работой специфических ферментов - аминоацил-тРНК-синтетазами, которые присоединяют каждую аминокислоту к соответствующей тРНК. Для каждой аминокислоты имеется своя синтетаза. Соединение аминокислоты с тРНК осуществляется за счет энергии АТФ, при этом макроэргическая связь переходит в связь между тРНК и аминокислотой. Так происходит активирование и кодирование аминокислот.

Этапы биосинтеза белка. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называется трансляцией. Информационная РНК (иРНК) является посредником в передаче информации о первичной структуре белка, тРНК переносит закодированные аминокислоты к месту синтеза и обеспечивает последовательность их соединений. В рибосомах осуществляется сборка полипептидной цепи.