Условия стоячей волны применение в технике. Что такое стоячая волна? Как она возникает? В чем отличие стоячей волны от бегущей? Медные духовые инструменты

Стоячие волны образуются при наложении двух одина-ковых волн, бегущих навстречу друг другу. Все, наверное, ви-дели стоячие волны в гитарных струнах. Когда в каком-либо месте оттягивают и отпускают струну, в разные стороны на-чинают разбегаться упругие поперечные волны, которые за-тем отражаются от концов струны и, накладываясь друг на друга, образуют стоячие волны (если при распространении и отражении нет затухания). Как это происходит?

При сложе-нии двух синусоидальных волн с одинаковыми частотой и ам-плитудой, но распространяющихся в разных направлениях оси x, получаем возмущение, которое описывается функцией

F(x, t) = f 0 sin(ωt kx + φ 1) + f 0 sin(ωt + kx + φ 2) = 2 f 0 cos(kx + (φ 2 — φ 1) / 2) + (φ 1 + φ 2) / 2).

Это и есть уравнение стоячей волны . В каждой точке стоя-чей волны колебания осуществляются по гармоническому закону:

F(x, t) = F 0 sin (ωt + (φ 1 + φ 2) / 2.

Амплитуда колеба-ний

| F 0 | = 2 f 0 | cos(kx + (φ 2 — φ 1) / 2)|

зависит от координа-ты x . В точках, где kx + Δφ / 2 = (n + 1 / 2)π (n — целое чис-ло, Δφ = φ 1 — φ 2), амплитуда F 0 = 0. Такие точки называют узлами стоячей волны , колебания в них отсутствуют. Точ-ки, для которых амплитуда колебаний | F 0 | = 2 f 0 максималь-на, называют пучностями стоячей волны . Расстояние Δx между соседними узлами (или соседними пучностями) рав-но половине длины бегущих волн, из которых образовалась стоячая волна:

Δx = π / k = λ / 2.

В точках между двумя соседними узлами колебания проис-ходят в одинаковой фазе, а амплитуда изменяется от нуля до максимума (в пучности, которая расположена посереди-не между узлами) и опять до нуля. Материал с сайта

При переходе через узел фаза колебаний изменяется на π, так как меняется знак F 0 . В стоячей волне возмущение сре-ды обращается в нуль одновременно во всех точках, и одно-временно во всех точках возмущение достигает максималь-ного по величине значения. Так, звучащая струна через каждый полупериод выпрямляется, а через четверть перио-да после выпрямления принимает «наиболее изогнутую» форму.

Если наблюдать колебания только в одной точке, то невозможно сказать, какая волна — бегущая или стоя-чая — вызвала эти колеба-ния. Но если следить за ко-лебаниями в нескольких точках, то картины колеба-ний в бегущей и стоячей волнах будут совершенно различны. В плоской бегу-щей волне колебания в разных точках происхо-дят с одинаковой амплиту-дой, но в различных фазах. В стоячей волне колебания в разных точках происхо-дят с разными амплитуда-ми, но в одинаковой фазе. Поэтому при наблюдении «целой картины» спутать бегущую и стоячую волны, конечно, невозможно.

Стоячие волны могут образовываться при различных условиях. Этот феномен легче всего продемонстрировать в условиях ограниченного пространства. Такого эффекта можно добиться с помощью комбинирования двух колебаний с одинаковой длиной волны, распространяющихся в противоположных направлениях. Интерференция двух сигналов дает результирующую волну, которая, на первый взгляд, не движется (то есть стоячая).

Важным условием является то, что энергия должна поступать в систему с определенной скоростью. Это означает, что частота возбуждения должна быть приблизительно равной собственной частоте колебаний. Такое понятие также известно как резонанс. Стоячие волны всегда связаны с . Возникновение резонанса можно определить по резкому увеличению амплитуды результирующих колебаний. На создание стоячих волн затрачивается гораздо меньше энергии, по сравнению с бегущими волнами, имеющими такие же амплитуды.

Не стоит забывать и о том, что в любой системе, где есть стоячие волны, есть и многочисленные собственные частоты. Многообразие всех возможных стоячих волн известно как гармоники системы. Простейшая из гармоник называется фундаментальной или первой. Последующие стоячие волны называются второй, третья и т.д. Гармоники, которые отличаются от фундаментальной, иногда называют подтекстовыми.

Виды стоячих волн

В зависимости от физических характеристик существуют несколько видов стоячих волн. Все их можно условно разделить на три большие группы: одномерные, двумерные и трехмерные.

Одномерные стоячие волны появляются тогда, когда имеется плоское замкнутое пространство. В этом случае волна может распространяться только в одном направлении: от источника к границе пространства. Существуют три подгруппы одномерных стоячих волн: с двумя узлами на концах, с одним узлом посередине и с узлом на одном из концов волны. Узел – это точка с наименьшей амплитудой и энергией сигнала.

Двумерные стоячие волны возникают в случае, когда колебания распространяются в двух направлениях от источника. После отражения от преграды возникает стоячая волна.

Трехмерные стоячие волны – это сигналы, распространяющиеся в пространстве с конечной скоростью. Узлы при таком виде колебаний будут представлять собой двумерные поверхности. Это значительно осложняет их исследование. Примером таких волн может служить орбита движения электрона в атоме.

Практическое значение стоячих волн

Стоячие волны имеют большое значение , так как звук является комбинацией нескольких колебаний. Правильный расчет длины и жесткости струн позволяет добиться наилучшего звучания того или иного инструмента.

Стоячие волны также очень важны . В методе исследования частиц с помощью рентгеновской спектроскопии обработка отраженного сигнала позволяет выяснить приблизительный количественный и качественный состав объекта.

Лекция № 14

Очень важный случай интерференции наблюдается при наложении плоских волн с одинаковой амплитудой. Возникающий в результате этого колебательный процесс принято называть стоячей волной .

Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну.

Рассмотрим результат интерференции двух синусоидальных плоских волн одинаковой амплитуды, распространяющихся в противоположных направлениях.

Для простоты рассуждений допустим, что обе волны вызывают в начале координат колебания в одинаковой фазе. Уравнения этих колебаний имеют вид:

;

.

Складывая оба уравнения и преобразовывая результат, по формуле для суммы синусов получим:

- уравнение стоячей волны .

Сравнивая это уравнение с уравнением гармонических колебаний, мы видим, что амплитуда результирующих колебаний равна

.

Так как , а , то . Тогда

.

В точках среды, где , колебания отсутствуют, ᴛ.ᴇ. . Эти точки называются узлами стоячей волны .

В точках, где , амплитуда колебаний имеет наибольшее значение, равное . Эти точки называются пучностями стоячей волны . Координаты пучностей находятся из условия , т.к. , то .

Аналогично координаты узлов находятся из условия

.

.

Из формул координат узлов и пучностей следует, что расстояние между сосœедними пучностями, также как и расстояния между сосœедними узлами, равно . Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Сравним характер колебаний в стоячей и бегущей волне. В бегущей волне каждая точка совершает колебания, амплитуда которых не отличается от амплитуды других точек. Но колебания различных точек происходят с различными фазами .

В стоячей волне всœе частицы среды, находящиеся между двумя сосœедними узлами колеблются в одной и той же фазе, но с разными амплитудами. При переходе через узел фаза колебаний скачкообразно изменяется на , т.к. изменяется знак .

Графически стоячая волна должна быть изображена следующим образом:

В момент времени, когда , всœе точки среды имеют макси-мальные смещения, на-правление которых опре-деляется знаком . Эти смещения показаны на рисунке сплошными стрелками.

Спустя четверть периода, когда , смещения всœех точек равны нулю. Частицы проходят через линию с различными скоростями.

Спустя еще четверть периода, когда , частицы опять будут иметь максимальные смещения, но противоположного направления (пунктирные стрелки).

При описании колебательных процессов в упругих системах за колеблющуюся величину можно принять не только смещение, но и скорость частиц, а также и величину относительной деформации среды.

Стоит сказать, что для нахождения закона изменения скорости стоячей волны продифференцируем по уравнение смещения стоячей волны и для нахождения закона изменения деформации продифференцируем по уравнение стоячей волны.

.

Анализируя эти уравнения, мы видим, что узлы и пучности скорости совпадают с узлами и пучностями смещения; узлы и пучности деформации совпадают соответственно с пучностями и узлами скорости и смещения.

Колебания струны

В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. По этой причине в струне возбуждаются только такие колебания, половина длины которых укладывается на длинœе струны целое число раз.

Отсюда вытекает условие

где - длина струны.

Или иначе . Этим длинам волн соответствуют частоты , где - фазовая скорость волны. Величина ее определяется силой натяжения струны и ее массой.

При - основная частота.

При - собственные частоты колебаний струны или обертоны .

Эффект Допплера

Пусть в упругой среде на некотором расстоянии от источника колебаний располагается приемник колебаний. Когда источник колебаний и приемник неподвижны относительно среды, то частота колебаний, воспринимаемых приемником, будет равна частоте колебаний источника. В случае если же источник колебаний или приемник, или оба одновременно, движутся относительно среды, то частота колебаний, воспринимаемых приемником, может оказаться отличной от частоты колебаний источника. Это явление принято называть эффектом Допплера .

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние рав-ное .

В случае если источник удалять от приемника, ᴛ.ᴇ. двигать в направлении обратном направлению распространения волны, то длина волны .

В случае если источник звука приближать к приемнику, ᴛ.ᴇ. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна

Подставим вместо их значения для обоих случаев:

С учетом того, что , где - частота колебаний источника, равенство примет вид:

Разделим и числитель и знаменатель этой дроби на , тогда

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением

Подставив вместо его выражение из равенства (1), поучим

.

Т.к. , где - частота колебаний источника, а , то

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим

Звуковые волны

В случае если упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 20 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука. По этой причине волны лежащие в данном диапазоне частот называются звуковыми. Упругие волны с частотой менее 20 Гц называются инфразвуком . Волны с частотой более 20000 Гц называются ультразвуком . Ультразвуки и инфразвуки человеческое ухо не слышит.

Звуковые ощущения характеризуются высотой звука, тембром и громкостью. Высота звука определяется частотой колебаний. При этом источник звука испускает не одну, а целый спектр частот. Набор частот колебаний, присутствующих в данном звуке, принято называть его акустическим спектром . Энергия колебания распределяется между всœеми частотами акустического спектра. Высота звука определяется по одной – основной частоте, в случае если на долю этой частоты приходится значительно большее количество энергии, чем на долю других частот.

В случае если спектр состоит из множества частот, находящихся в интервале частот от до , то такой спектр принято называть сплошным (пример - шум).

В случае если спектр состоит из набора колебаний дискретных частот, то такой спектр принято называть линœейчатым (пример – музыкальные звуки).

Акустический спектр звука исходя из своего характера и от распределœения энергии между частотами определяет своеобразие звукового ощущения, называемое тембром звука. Различные музыкальные инструменты имеют различный акустический спектр, ᴛ.ᴇ. отличаются тембром звука.

Интенсивность звука характеризуется раз-личными величинами: колебаниями частиц среды, их скоростями, силами давления, напряжениями в них и др.

Она характеризует амплитуду колебаний каждой из этих величин. При этом, поскольку эти величины взаимосвязаны, целœесообразно ввести единую энергетическую характеристику. Такая характеристика для волн любого типа была предложена в 1877 году. Н.А. Умовым.

Вырежем мысленно из фронта бегущей волны площадку . За время эта площадка переместится на расстояние , где - скорость волны.

Обозначим через энергию единицы объёма колеблющейся среды. Тогда энергия всœего объёма будет равна .

Эта энергия была перенесена за время волной, распространяющейся через площадку .

Разделив это выражение на и , получим энергию, переносимую волной через единицу площади в единицу времени. Эта величина обозначается буквой и носит название вектора Умова

Для звукового поля вектор Умова носит название силы звука.

Сила звука является физической характеристикой интенсивности звука. Мы оцениваем ее субъективно, как громкость звука. Человеческое ухо воспринимает звуки, сила которых превышает неĸᴏᴛᴏᴩᴏᴇ минимальное значение, различное для различных частот. Это значение принято называть порогом слышимости звука. Важно заметить, что для средних частот порядка Гц порог слышимости порядка .При очень большой силе звука порядка звук воспринимается кроме уха органами осязания, а в ушах вызывает болевое ощущение.

Значение интенсивности, при котором это происходит, принято называть порогом болевого ощущения . Порог болевого ощущения, также как и порог слышимости, зависит от частоты.

Человек обладает довольно сложным аппаратом для восприятия звуков. Звуковые колебания собираются ушной раковиной и через слуховой канал воздействуют на барабанную перепонку. Колебания ее передаются в небольшую полость, называемую улиткой. Внутри улитки расположено большое количество волокон, имеющих различную длину и натяжение и, следовательно, различные собственные частоты колебаний. При действии звука каждое из волокон резонирует на тот тон, частота которого совпадает с собственной частотой волокна. Набор резонансных частот в слуховом аппарате и определяет область воспринимаемых нами звуковых колебаний.

Субъективно оцениваемая нашим ухом громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. В то время, как интенсивность возрастает в геометрической прогрессии – громкость возрастает в арифметической прогрессии. На этом основании уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности, принятой за исходную

Единица уровня громкости принято называть белом . Используют и более мелкие единицы – децибелы (в 10 раз меньше бела).

Значение уровня громкости в децибелах определяется выражением

В архитектурной акустике для больших помещений существенную роль играет реверберация или гулкость помещений. Звуки, испытывая многократные отражения от ограждающих поверхностей, воспринимаются слушателœем в течении некоторого довольно большого промежутка времени. Это увеличивает силу доходящего до нас звука, однако, при чересчур длительной реверберации отдельные звуки накладываются друг на друга и речь перестает восприниматься членораздельно. По этой причине стены залов покрывают специальными звукопоглощающими материалами для уменьшения реверберации.

Источником звуковых колебаний может служить любое колеблющееся тело: язычок звонка, камертон, струна скрипки, столб воздуха в духовых инструментах и т.д. эти же тела могут служить и приемниками звука, когда они приходят в движение под действием колебаний окружающей среды.

Ультразвук

Чтобы получить направленную, ᴛ.ᴇ. близко к плоской, волну размеры излучателя должны быть во много раз больше длины волны. Звуковые волны в воздухе имеют длину до 15 м, в жидких и твердых телах длина волны еще больше. По этой причине построить излучатель, который создавал бы направленную волну подобной длины, практически не представляется возможным.

Ультразвуковые колебания имеют частоту свыше 20000 Гц, в связи с этим длина волны их очень мала. С уменьшением длины волны уменьшается также роль дифракции в процессе распространения волн. По этой причине ультразвуковые волны бывают получены в виде направленных пучков, подобных пучкам света.

Для возбуждения ультразвуковых волн используют два явления: обратный пьезоэлектрический эффект и магнитострикцию .

Обратный пьезоэлектрический эффект состоит в том, что пластинка некоторых кристаллов (сегнетовой соли, кварца, титаната бария и др.) под действием электрического поля слегка деформируется. Поместив ее между металлическими обкладками, на которые подается переменное напряжение, можно вызвать вынужденные колебания пластинки. Эти колебания передаются окружающей среде и порождают в ней ультразвуковую волну.

Магнитострикция состоит по сути в том, что ферромагнитные вещества (желœезо, никель, их сплавы и т.д.) под действием магнитного поля деформируются. По этой причине, поместив ферромагнитный стержень в переменное магнитное поле, можно возбудить механические колебания.

Высокие значения акустических скоростей и ускорений, а также хорошо разработанные методы изучения и приема ультразвуковых колебаний, позволили использовать их для решения многих технических задач. Перечислим некоторые из них.

В 1928 ᴦ. советский ученый С.Я.Соколов предложил использовать ультразвук для целœей дефектоскопии, ᴛ.ᴇ. для обнаружения скрытых внутренних дефектов типа раковин, трещин, рыхлот, шлаковых включений и др.
Размещено на реф.рф
в металлических изделиях. В случае если размеры дефекта превышают длину волны ультразвука, то ультразвуковой импульс отражается от дефекта и возвращается обратно. Посылая в изделие ультразвуковые импульсы, и регистрируя отраженные эхосигналы, можно не только обнаруживать наличие дефектов в изделиях, но и судить о размерах и месте расположения этих дефектов. Сегодня данный метод широко используется в промышленности.

Направленные ультразвуковые пучки нашли широкое применение для целœей локации, ᴛ.ᴇ. для обнаружения в воде предметов и определœения расстояния до них. Впервые идея ультразвуковой локации была выказана выдающимся французским физиком П.Ланжевеном и разработана им во время первой мировой войны для обнаружения подводных лодок. Сегодня принципы гидролокации используются для обнаружения айсбергов, косяков рыбы и т.д. этими методами должна быть также определœена глубина моря под днищем корабля (эхолот).

Ультразвуковые волны большой амплитуды широко применяются в настоящее время в технике для механической обработки твердых материалов, очистки мелких предметов (деталей часовых механизмов, трубопроводов и т.д.), помещенных в жидкость, обезгаживания и т.д.

Создавая при своем прохождении сильные пульсации давления в среде, ультразвуковые волны обуславливают целый ряд специфических явлений: измельчение (диспергирование) частиц, взвешенных в жидкости, образование эмульсий, ускорение процессов диффузии, активацию химических реакций, воздействие на биологические объекты и т.д.

Стоячие волны - понятие и виды. Классификация и особенности категории "Стоячие волны" 2017, 2018.

Стоячие волны образуются в результате интерференции двух встречных плоских волн одинаковой частоты ω и амплитуды А.

Представим себе, что в точке S (рис.7.4) находится вибратор, от которого вдоль луча SO распространяется плоская волна. Достигнув преграды в точке О, волна отразится и пойдёт в обратном направлении, т.е. вдоль луча распространяются две бегущие плоские волны: прямая и обратная. Эти две волны когерентны, так как рождены одним и тем же источником и, накладываясь друг на друга, будут интерферировать между собой.

Возникающее в результате интерференции колебательное состояние среды и называется стоячей волной.

Запишем уравнение прямой и обратной бегущей волны:

прямая -
;обратная -

где S 1 и S 2 – смещение произвольной точки на луче SO. С учётом формулы для синуса суммы результирующее смещение равно

Таким образом, уравнение стоячей волны имеет вид

(7.17)

Множитель cosωt показывает, что все точки среды на луче SО совершают простые гармонические колебания с частотой
. Выражение
называется амплитудой стоячей волны. Как видно, амплитуда определяется положением точки на лучеSO (х).

Максимальное значение амплитуды будут иметь точки, для которых

или
(n = 0, 1, 2,….)

откуда
, или
(7.18)

пучностями стоячей волны .

Минимальное значение , равное нулю, будут иметь те точки для которых

или
(n = 0, 1, 2,….)

откуда
или
(7.19)

Точки, имеющие такие координаты, называют узлами стоячей волны . Сопоставляя выражения (7.18) и (7.19), видим, что расстояние между соседними пучностями и соседними узлами равно λ/2.

На рисунке сплошной линией изображено смещение колеблющихся точек среды в некоторый момент времени, пунктирной кривой – положение этих же точек через Т/2. Каждая точка совершает колебания с амплитудой, определяемой её расстоянием от вибратора (х).

В отличие от бегущей волны в стоячей волне не происходит переноса энергии. Энергия просто переходит из потенциальной (при максимальном смещении точек среды от положения равновесия) в кинетическую (при прохождении точками положения равновесия)в пределах между узлами, остающимися неподвижными.

Все точки стоячей волны в пределах между узлами колеблются в одинаковой фазе, а по разные стороны от узла – в противофазе.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Примеры решения задач

Пример . Определите скорость распространения звука в воде, если длина волны равна 2м, а частота колебаний источника ν=725Гц. Определите также наименьшее расстояние между точками среды, колеблющимися в одинаковой фазе.

Дано : λ=2м; ν=725Гц.

Найти : υ; х.

Решение . Длина волны равна расстоянию, на которое распространяется определённая фаза волны за период Т, т.е.

,

где υ – скорость волны; ν - частота колебаний.

Тогда искомая скорость

Длина волны – расстояние между ближайшими частицами среды, колеблющимися в одинаковой фазе. Следовательно, искомое наименьшее расстояние между точками среды, колеблющимися в одинаковой фазы, равно длине волны, т.е.

Ответ: υ=1450 м/с; х=2м.

Пример . Определите, во сколько раз изменится длина ультразвуковой волны при переходе её из меди в сталь, если скорость распространения ультразвука в меди и стали соответственно равны υ 1 =3,6км/с и υ 2 =5,5 км/с.

Дано : υ 1 =3,6км/с=3,6∙10 3 м/с. и υ 2 =5,5 км/с =5,5∙10 3 м/с.

Найти :.

Решение . При распространении волн частота колебаний не изменяется при переходе их одной среды в другую (она зависит только от свойств источника волн), т.е. ν 1 = ν 2 = ν.

Связь длины волны с частотой ν:

, (1)

где υ – скорость волны.

Искомое отношение, согласно (1),

.

Вычисляя, получаем
(увеличится в 1.53 раза).

Ответ :

Пример . Один конец упругого стержня соединён с источником гармонических колебаний, подчиняющихся закону
, а другой конец жёстко закреплён. Учитывая, то отражение в месте закрепления стержня происходит от более плотной среды, определите: 1) уравнение стоячей волны; 2) координаты узлов; 3) координаты пучностей.

Дано :
.

Найти : 1) ξ (x, t); 2) х у; 3) х n .

Решение . Уравнение падающей волны

, (1)

где А – амплитуда волны; ω - циклическая частота; υ - скорость волны.

Согласно условию задачи, отражение в месте закрепления стержня происходит от более плотной среды, поэтому волна меняет фазу на противоположную, и уравнение отражённой волны

Сложив уравнения (1) и (2), получим уравнение стоячей волны

(учли
; λ=υТ).

В точках среды, где

(m=0, 1, 2,….) (3)

Амплитуда колебаний обращается в нуль (наблюдаются узлы), в точках среды, где

(m=0, 1, 2,….) (4)

Амплитуда колебаний достигает максимального значения, равного 2А (наблюдаются пучности). Искомые координаты узлов и пучностей находим из выражений (3) и (4):

координаты узлов
(m=0, 1, 2,….);

координаты пучностей
(m=0, 1, 2,….).

Ответ : 1)
;
(m=0, 1, 2,….);
(m=0, 1, 2,….).

Пример . Расстояние между соседними узлами стоячей волны, создаваемый камертоном в воздухе ℓ =42см. Принимая скорость звука в воздухе υ=332 м/с, определите частоту колебаний ν камертона.

Дано : ℓ =42см=0,42м; υ=332 м/с.

Найти : ν.

Решение . В стоячеё волне расстояние между двумя соседними узлами равно . Следовательно, ℓ=, откуда длина бегущей волны

Связь между длиной волны и частотой
. Подставив в эту формулу значение (1), получим искомую частоту колебаний камертона

.

Ответ : ν=395 Гц.

Пример . Труба длиной ℓ = 50см заполнена воздухом и открыта с одного конца. Принимая скорость υ звука равной 340 м/с, определите, при какой наименьшей частоте в трубе будет возникать стоячая звуковая волна. Принимая скорость звука в воздухе υ=332 м/с, определите частоту колебаний ν камертона.

Дано : ℓ =50см=0,5м; υ=340 м/с.

Найти : ν 0 .

Решение. Частота будет минимальной при условии, что длина стоячей волны максимальна.

В открытой с одного конца трубе на открытой части будет пучность (отражение от менее плотной среды), а на закрытой части – узел (отражение от более плотной среды). Поэтому в трубе уложится четверть длины волны:

Учитывая, что длина волны
, можем записать

,

Откуда искомая наименьшая частота

.

Ответ : ν 0 =170 Гц.

Пример . Два электропоезда движутся навстречу друг другу со скоростями υ 1 =20 м/с и υ 2 =10 м/с. Первый поезд даёт свисток, высота тона которого соответствует частоте ν 0 =600 Гц. Определите частоту, воспринимаемую пассажиром второго перед встречей поездов и после их встречи. Скорость звука принять равной υ=332 м/с.

Дано : υ 1 =20 м/с; υ 2 =10 м/с; ν 0 =600 Гц; υ=332 м/с.

Найти: ν ; ν".

Решение. Согласно общей формуле, описывающей эффект Доплера в акустике, частота звука, воспринимаемая движущимся приёмником,

, (1)

где ν 0 - частота звука, посылаемая источником; υ пр - скорость движения приёмника; υ ист - скорость движения источника. Если источник и приёмник приближаются друг к другу, то берётся верхний знак, если удаляются – нижний знак.

Согласно обозначениями, данным в задаче (υ пр =υ 2 и υ ист =υ 1) и приведённым выше пояснениями, из формулы (1) искомые частоты, воспринимаемые пассажиром второго поезда:

Перед встречей поездов (электропоезда сближаются):

;

После встречи поездов (поезда удаляются друг от друга):

Ответ: ν=658 Гц; ν" =549 Гц.

§4 Интерференция волн.

Принцип суперпозиции. Понятие о когерентности волн

Если в среде распространяется несколько волн одновременно, то колебания частиц среды равны геометрической сумме колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны просто накладываются, не возмущая друг друга - принцип суперпозиции (наложения) волн.

Две волны называются когерентными, если разность их фаз не зависит от времени


-
условие когерентности.

Источники когерентных волн называются когерентными источниками.

т.к. для когерентных источников разность начальных фаз , то амплитуда А рез в различных точках зависит от величины , называемой разностью хода. Если

то наблюдается максимум.

При

наблюдается минимум.

При наложении волн от когерентных источников наблюдаются минимумы и максимумы, результирующей амплитуды, т.е. взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих, волн - суть явления интерференции.

§5 Стоячие волны

Частным случаем интерференции являются стоячие волны - волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу волн с одинаковыми амплитудами н частотами.

Для вывода уравнения стоячей волны примем: 1) волны распространяются в среде без затухания; 2) А 1 = А 2 =А - имеют равные амплитуды; 3) ω 1 = ω 2 = ω - равные частоты; 4)φ 10 = φ 20 = 0.

Уравнение бегущей волны, распространяющейся вдоль положительного направления оси х (т.е. уравнение падающей волны):

(1)

Уравнение бегущей волны, распространяющейся в отрицательном направлении оси х (т.е. уравнение отраженной волны):

(2)

Сложив (1) и (2) получим уравнение стоячей волны:


Особенностью стоячей волны является то, что амплитуда зависит от координаты х . При перемещении от одной точки к другой амплитуда меняется по закону:

Амплитуда стоячей волны.

Те точки среды, в которых амплитуда стоячей волны максимальна и равна 2А , называются пучностями. Координаты пучностей можно найти из условия, что

отсюда

Расстояние между двумя соседними пучностями равно .

Точки, в которых амплитуда стоячей волны минимальна и равна 0 , называются узлами. Координата узлов можно найти из условия

отсюда

Расстояние между двумя соседними узлами равно .

В отличие от бегущей волна, все точки которой колеблются с одинаковой амплитудой, но с разными фазами, зависящими от координаты х точки (), точки стоячей волны между двумя узлами колеблется с разными амплитудами, но с одинаковыми фазами(). При переходе через узел множитель меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на π, т.е. точки лежащие по разные стороны от узла колеблются в противофазе.

Стоячая волна получается в результате интерференции падающей и отраженной волн. На характере отражения сказывается граница раздела двух сред, от которой происходит отражение. Если волна отражается от среды менее плотной (рис. а), то фаза волны на границе раздела не меняется и на границе раздела двух сред будет пучность. Если волна отражается от более плотной среды, то её фаза изменяет-ся на противоположную, т.е. отражение от более плотной среды происходит с потерей половины длины волны (λ/2). Бегущая волна переносит энергию колебательного движения в направлении распространения волны. Стоячая волна энергию не переносит, т.к. падаюшая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узлами остается постоянной. Лишь в пределах расстояний равных λ/2 происходит превращение кинетической энергии в потенциальную.