Краткий курс процессов и аппаратов химической технологии. Основные процессы и аппараты химической технологии литература. Аппараты мокрой очистки

Предисловие
Введение
1. Предмет химической технологии и задачи курса
2. Классификация процессов
3. Материальные и энергетические расчеты
Общие понятия о материальном балансе. Выход. Производительность. Интенсивность производственных процессов. Энергетический баланс. Мощность и коэффициент полезного действия.
4. Размерность физических величин
ЧАСТЬ ПЕРВАЯ. ГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ
Глава первая. Основы гидравлики
А. Гидростатика Инженерная графика Начертательная геометрия Основы безопасности жизнедеятельности Производственная практика Физическая культура (Физкультура) Психология и педагогика Политология Социология Кондиционирование и вентиляция Строительная механика и прочность Термодинамика Физика Философия Общая химическая технология Процессы и аппараты химической технологии Химия Оценка воздействия на окружающую среду и экологическая экспертиза Промышленная экология Экологический аудит и экологический менеджмент Экологический мониторинг Экология Экономика и прогнозирование промышленного природопользования Энергосбережение и ресурсосбережение Бухгалтерский учет Внутрифирменное планирование и контроллинг Генеральное планирование Маркетинг Менеджмент Организация и планирование производства Экономика Экономика и организация предприятия Электротехника Правоведение Хозяйственное право Экологическое право Английский язык Французский язык

Современная химическая технология связана с измельчением, дроблением, перевозкой различных материалов. Часть их превращается в процессе обработки в аэрозольную форму, образующаяся пыль вместе с вентиляционными и технологическими газами попадает в атмосферу. Рассмотрим основы химической технологии, применяемой в настоящее время в производстве.

Аппараты для очистки от пыли газообразных веществ

У пылевых частичек высокая суммарная поверхность, в результате они проявляют повышенную биологическую и химическую активность. У части веществ, находящихся в аэродисперсном виде, появляются новые свойства, к примеру, они способны самопроизвольно взрываться. Существуют различные аппараты химической технологии, применяемые для очистки образующихся в производстве газообразных веществ от разнообразных по размерам и форме частичек пыли.

Несмотря на существенные различия в оформлении, принцип их действия базируется на задержке взвешенной фазы.

Циклон и пылеосадительные камеры

Анализируя разнообразные процессы и аппараты химической технологии, остановимся на группе пылеулавливающих аппаратов, к которым относятся:

  • ротационные пылеулавливатели;
  • циклоны;
  • жалюзные модели;
  • пылеосадительные камеры.

Среди достоинств подобных аппаратов отметим простоту их конструкции, благодаря чему их производят на неспециализированных предприятиях.

В качестве минуса подобных аппаратов профессионалы отмечают недостаточную эффективность, необходимость проведения повторной очистки. Все виды пылеулавливающих аппаратов функционируют на основе центробежных сил, отличаются мощностью и скоростью осаждения частичек пыли.

Например, классическая химическая технология производства серной кислоты предполагает применение циклона для очистки от примесей печного газа, образующегося при обжиге пирита. Газ, в котором присутствуют частички огарка (смешанного оксида железа), входит в циклон через специальный тангенциальный патрубок, затем вращается вдоль внутренних стенок аппарата. Накопление и осаждение пыли осуществляется в пылесборном бункере, а очищенный газ поднимается вверх, уходит в следующий аппарат через центральную трубу.

Химическая технология связана с применением циклона в тех случаях, когда к получаемому газообразному веществу не выдвигают высоких требований.

Аппараты мокрой очистки

Мокрый способ в современном производстве считается одним из самых результативных и простых видов очистки промышленных газов от разнообразных взвешенных частичек. Процессы и аппараты химической технологии, связанные с мокрой очисткой газов, в настоящее время востребованы не только в отечественной, но и в зарубежной промышленности. Помимо взвешенных частиц, они способны улавливать газообразные и парообразные компоненты, снижающие качество выпускаемой продукции.

Существует подразделение таких аппаратов на насадочные полые, пенные и барботажные, турбулентные и центробежные виды.

Дезинтегратор состоит из ротора и статора, снабженного специальными направляющими лопатками. Жидкость подают во вращающийся ротор через сопла. Благодаря газовому потоку, движущемуся между кольцами статора и ротора, осуществляется измельчение ее на отдельные капли, в результате чего повышается контакт газов с улавливаемыми частичками жидкости. Благодаря центробежным силам пыль отбрасывается к стенкам аппарата, потом выводится из него, а очищенные газообразные вещества попадают в следующий аппарат, либо выбрасываются в атмосферу.

Пористые фильтры

Часто химическая технология предполагает осуществление фильтрации веществ через специальные пористые перегородки. Данный способ предполагает высокую степень очистки от разнообразных взвешенных частичек, поэтому пористые фильтры востребованы в химическом производстве.

Их основными недостатками считают необходимость проведения систематической замены фильтрующих компонентов, а также большие габариты аппаратов.

Промышленные фильтры подразделяют на зернистые и тканевые классы. Они предназначены для очистки промышленных газообразных веществ, имеющих высокую концентрацию дисперсной фазы. Для осуществления периодического удаления накопляющихся частиц в аппаратах установлены специальные регенерирующие устройства.

Особенности нефтепереработки

Тонкие химические технологии, связанные с очисткой продуктов нефтепереработки от механических примесей и повышенной влажности, основываются именно на процессах фильтрации.

Среди тех процессов и аппаратов, которые применяются в настоящее время в нефтехимической отрасли, выделяют фильтрование через коалесцирующие перегородки, ультразвук. С помощью центробежных сепараторов, коалесцентных фильтров, систем отстаивания, проводится предварительная ступень очистки.

Для того чтобы осуществлять комплексную очистку нефтепродуктов, в настоящее время применяют пористые полимерные композиции в качестве

Они подтвердили свою эффективность, прочность, надежность, поэтому их все больше использует общая химическая технология.

Электрические фильтры

В технологии производства серной кислоты предполагают использование именно этого аппарата. Эффективность очистки в них составляет от 90 до 99,9 процента. Электрофильтры способны улавливать жидкие и твердые частицы разных размеров, функционируют приборы в диапазоне температур 400-5000 градусов по Цельсию.

Благодаря незначительным эксплуатационным затратам эти аппараты получили существенное распространение в современном химическом производстве. Среди основных недостатков, характерных для подобного оборудования, выделим существенные первоначальные затраты на их сооружение, а также необходимость выделения большого пространства для установки.

С экономической точки зрения их целесообразно использовать при проведении очистки существенных объемов, в противном случае применение электрофильтров будет затратным мероприятием.

Контактный аппарат

Химия и химическая технология предполагает применение разнообразных аппаратов и устройств. Такое изобретение как контактный аппарат предназначено для осуществления каталитических процессов. В качестве примера можно привести реакцию окисления оксида серы (4) в сернистый ангидрид, являющуюся одним из этапов технологического производства серной кислоты.

Благодаря радиально-спиральному году газ проходит через слой с катализатором, расположенным на специальных перегородках. Благодаря контактному аппарату существенно повышается экономичность каталитических окислений, упрощается обслуживание прибора.

Специальная съемная корзина, имеющая защитный слой катализатора, позволяет без особых проблем осуществлять его замену.

Печь для обжига

Этот аппарат применяется при производстве серной кислоты из Химическая реакция протекает при температуре 700 °С. Благодаря принципу противотока, предполагающего подачу в противоположных направлениях кислорода воздуха и железного колчедана, образуется так называемый кипящий слой. Суть в том, что частички минерала располагаются равномерно по объему кислорода, что гарантирует качественное прохождение процесса окисления.

После завершения процесса окисления, образующийся «огарок» (оксид железа) попадает в специальный бункер, из которого он периодически удаляется. Образующийся печной газ (оксид серы 4) направляется на очистку от пыли, затем осушается.

Современные печи для обжига, используемые в химическом производстве, позволяют существенно снизить потери продуктов реакции, одновременно увеличив качество получаемого печного газа.

Для того чтобы ускорить процесс окисления пирита в печи для обжига, в производстве серной кислоты исходное сырье предварительно измельчают.

Шахтенные печи

К таким реакторам относят доменные печи, составляющие основу черной металлургии. Шихта попадает внутрь печи, контактирует с подаваемым через специальные отверстия кислородом, затем осуществляется охлаждение полученного чугуна.

Разнообразные модификации таких аппаратов нашли свое применение в переработке не только железных, но и медных руд, обработке соединений кальция.

Заключение

Трудно представить полноценную жизнь современного человека без использования им продуктом химического производства. Химическая отрасль, в свою очередь, не может полноценно работать без использования автоматизированных и механических технологий, применения специального оборудования. В настоящее время химическое производство представляет собой сложнейший комплекс оборудования и машин, которые предназначены для химико-физических и химических процессов, автоматизированного оборудования для фасовки и транспортировки готовой продукции.

Среди основных машин и аппаратов, востребованных в подобном производстве, выделяют те, которые позволяют увеличивать рабочую поверхность процесса, осуществлять качественную фильтрацию, полноценный теплообмен, повышать выход продуктов реакции, снижать энергозатраты.

Предисловие.

Дисциплина «Процессы и аппараты химической технологии» (ПАХТ) является одной из фундаментальных общеинженерных дисциплин. Она является завершающей в общеинженерной подготовке студента и основополагающей в специальной подготовке.

Технология производства разнообразия химических продуктов и материалов включает ряд однотипных физических и физико-химических процессов, характеризуемых общими закономерностями. Эти процессы в различных производствах проводятся в аналогичных по принципу действия аппаратах. Процессы и аппараты, общие для разных отраслей химической промышленности, получили название основных процессы и аппаратов химической технологии.

Дисциплина ПАХТ состоит из двух частей:

· теоретические основы химической технологии;

· типовые процессы и аппараты химической технологии;

В первой части излагаются общие теоретические закономерности типовых процессов; основы методологии подхода к решению теоретических и прикладных задач; анализ механизма основных процессов и выявление общих закономерностей их протекания; формулируются обобщенные методы физического и математического моделирования и расчета процессов и аппаратов.

Вторая часть состоит из трех основных разделов, содержание которых раскрывает прикладные инженерные вопросы основ химической технологии:

· гидромеханические процессы и аппараты;

· тепловые процессы и аппараты;

· массообменные процессы и аппараты.

В этих разделах даются теоретические обоснования каждого типового технологического процесса, рассматриваются основные конструкции аппаратов и методика их расчета. Лекции, лабораторные и практические занятия, курсовое проектирование, самостоятельная работа студентов и общеинженерская производственная практика обеспечивают приобретение знаний, навыков и умений, необходимых как для дальнейшего обучения, так и для работы на производстве.

Введение.

1.1 Предметы и задачи курса.

Технология (techne-искусство, мастерство)- совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката в процессе производства.

Изучение технологических процессов составляет предмет курса. Технология, как наука, определяет условия практического применения законов естественных наук (физики, химии, механики и др.) для наиболее эффективного проведения разнообразных технологических процессов. Технология непосредственно связана с производством, а производство постоянно находиться в состоянии изменения и развития.

Основная задача курса: выявление общих закономерностей процессов переноса и сохранения различных субстанций; разработка методов расчета технологических процессов и аппаратов для их проведения; ознакомление с конструкциями аппаратов и машин, их характеристиками.


В результате освоения дисциплины студенты должны знать:

1. Теоретические основы процессов химической технологии; законы; их описывающие; физическую сущность процессов, схемы установок; конструкции аппаратов и принцип их работы; методику расчета процессов и аппаратов, в том числе, с использованием ЭВМ.

2. Принципы моделирования и масштабного перехода, правильного выбора аппаратуры для проведения соответствующих процессов и возможности их интенсификации.

3. Современные достижения науки и техники в области химической технологии.

Умения, которыми должны овладеть студенты:

1. Правильно применять теоретические знания при решении конкретных задач обоснованного выбора:

а) конструкции аппаратов для проведения определенных процессов;

б) режимных параметров работы аппаратов;

в) схемы проведения процессов.

2. Самостоятельно проводить расчеты аппаратов.

3. Самостоятельно работать на лабораторных исследовательских установках, обрабатывать экспериментальные данные, получать эмпирические зависимости, анализировать расчетные методики.

4. Проектировать типовые процессы и аппараты, пользоваться технической литературой и ГОСТами, заполнять техническую документацию в соответствии с ЕСКД.

1.2 Классификация основных процессов химической технологии.

Современная химическая технология изучает процессы производства различных кислот, щелочей, солей, минеральных удобрений, продуктов переработки нефти и каменного угля, органических соединений, полимеров и др. Однако, несмотря на огромное разнообразие химических продуктов, получение их связано с проведением ряда однотипных процессов (перемещение жидкостей и газов, нагревание и охлаждение, сушка, химическое взаимодействие и.т.д.). Итак, в зависимости от законов, определяющих скорость протекания процессов, они могут быть объединены в следующие группы:

1. Гидромеханические процессы, скорость которых определяется законами гидромеханики. Сюда относятся транспортирование жидкостей и газов, получение и разделение неоднородных систем и др.

2. Тепловые процессы, скорость которых определяется законами переноса теплоты (охлаждение и нагревание жидкостей и газов, конденсация паров, кипение жидкостей и т.п.).

3. Массообменные процессы, скорость которых определяется законами переноса массы из одной фазы в другую через поверхность раздела фаз (абсорбция, адсорбция, экстракция, перегонка жидкостей, сушка и др.)

4. Химические процессы, скорость которых определяется законами химической кинетики.

5. Механические процессы, которые описываются законами механики твердых тел (измельчение, сортировка, смешение твердых материалов и др.).

Перечисленные процессы составляют основу большинства химических производств и поэтому называются основными (типовыми) процессами химической технологии.

ПАХТ изучает первые три группы, четвертую группу изучает дисциплина ОХТ, пятая группа – предмет специальных дисциплин профилирующих кафедр.

В зависимости от того, изменяются или не изменяются во времени параметры процессов (скорости движения потока, температура, давление и.т.д.) их подразделяют на стационарные (установившиеся) и нестационарные (неустановившиеся). Если обозначить какой-нибудь параметр через U , тогда:

Стационарный процесс U(x,y,z)

Нестационарный процесс U(x,y,z,t)

Периодический процесс характеризуется единством места проведения его отдельных стадий. Процесс нестационарный.

Непрерывный процесс характеризуется единством времени протекания всех его стадий. Процесс установившийся (стационарный).

Встречаются комбинированные процессы - отдельные стадии проводятся непрерывно, отдельные периодически.

Однако курс ПАХТ построен не как изложение отдельных вышеперечисленных групп. Общетеоретические основы химической технологии изучаются отдельно, далее излагаются типовые процессы и аппараты химической технологии.

1.3 Гипотеза сплошности среды .

Жидкая среда заполняет тот или иной объем без каких-либо свободных промежутков, сплошным образом, или является сплошной средой. При описании таких сред предполагают, что они состоят из частиц. Причем под частицей сплошной среды подразумевают не любую сколь угодно малую часть ее объема, а весьма небольшую его часть, содержащую внутри себя миллиарды молекул. В общем случае минимальная цена деления макроскопического масштаба пространственной Δl или временной Δt координаты должна быть достаточно малой, чтобы пренебречь изменением макроскопических физических величин в пределах Δl или Δt, и достаточно большой, чтобы, пренебречь флуктуациями микроскопических величин, полученных осреднением этих величин по времени Δt или объему частицы Δl 3 . Выбор минимальной цены деления макроскопического масштаба определяется характером решаемой задачи.

Движение макроскопических объемов среды приводит к переносу массы, импульса и энергии.