Исходные вещества активный комплекс продукты реакции. Химические реакции в природе и быту. Равновесие химической реакции

Из неочищенной нефти, добываемой из недр земли, получают путем перегонки различные нефтяные и воскообразные продукты. В косметике используют, прежде всего, жидкое текучее парафиновое (или белое) масло, вязкий плотный вазелин, твердый, воскообразный горный воск (или озокерит) и более чистый парафин.

Парафиновое масло - прозрачное маслообразное вещество без запаха и вкуса, которое может быть различной плотности.

Вазелин представляет собой белое, вязкое, липкое маслообразное вещество, не имеющее запаха. В таком виде его применяют в качестве мази для массажа, а также в качестве основы для приготовления различных лекарственных мазей.

Озокерит и парафин - твердые переменной плотности белые вещества.

Все эти сырьевые продукты, получаемые из нефти, находят широкое применение в косметической промышленности благодаря их дешевой цене и хорошей устойчивости при хранении. Они не могут с легкостью впитываться в кожу, но являются прекрасным исходным материалом для изготовления, например, геля и косметического молочка, а также и для декоративной косметики.

Природные масла благодаря наличию в них ненасыщенных связей менее вязки и более текучи, чем жиры. И масла, и жиры - это сложные эфиры жирных кислот и глицерина; в природе они всегда встречаются в виде различных смесей. Природные жиры быстро портятся из-за своей химической ненасыщенности. Поэтому их часто гидрируют, присоединяя по ненасыщенным связям атомы водорода. В таком виде жир становится твердым и лучше сохраняется, зато одновременно становится менее пригодным для использования в косметике Вилламо Х. Косметическая химия. - М.: Мир, 1990..

Жиры растительного и животного происхождения еще используются для изготовления косметических веществ, хотя по вышеупомянутым причинам они все более уступают место синтетическим веществам, жирным кислотам, жирным спиртам и др. Важнейшими растительными и животными маслами и жирами являются следующие (табл.1) Химия в быту и в производстве. / Под ред. Селиванова М.И. - М.: Химия, 2000..

Таблица 1 Растительные и животные масла и жиры

Помимо приведенных выше находят применение также и некоторые другие природные масла, поскольку в них содержатся определенные дополнительные вещества. В качестве примера можно привести следующие.

Черепаховое масло в сыром виде желтого цвета и имеет очень неприятный запах (его получают путем экстрагирования из половых органов и мышц одного из видов черепах). В нем содержатся, в частности, витамины А, О, К и Н, а также линолевая и линоленовая кислоты. После очистки оно становится пригодным к употреблению косметическим сырьем.

Норковое масло, подобно предыдущему, является животным маслом, насыщенным витаминами (его получают из мышц норки).

В масле из проросших пшеничных семян помимо масел всегда содержится еще 2-12% жирных кислот. Оно хорошо сохраняется и богато, в частности, витамином Е, каротином, линолевой и линоленовой кислотами, эргостерином, а также содержит в небольшом количестве витамин К.

Важнейшим натуральным воском, применяемым в изготовлении гелей, является пчелиный воск. Это твердое желтое или (будучи отбеленным) белое вязкое вещество. В пчелином воске содержится 72% различных натуральных восков (восковых эфиров), около 14% свободных высокомолекулярных жирных кислот, свободных жирных спиртов и др.

Карнаубский воск получают из листьев карнаубской пальмы. Это самый твердый из натуральных восков. Он хорошо смешивается со многими жирами, маслами, восками и т. п., повышая их температуру плавления и увеличивая твердость композиции.

Шерстяной жир - это жироподобное вещество, получаемое из овечьей шерсти в результате ее мытья. Когда к шерстяному жиру добавляют 25% воды, то получают вещество, называемое ланолином. Сырой ланолин по цвету желто-коричневый, а в очищенном виде почти белый. В нем содержится большое количество холестерина (в значительной мере этерифицированного различными жирными кислотами), различных восков, а также свободных высокомолекулярных жирных кислот и жирных спиртов.

Таким образом, очищенный ланолин вполне пригоден в качестве исходного сырья. Кроме того, из него изготавливают для различных целей всевозможные продукты, как, например, ланолиновое масло, разнообразные фракции ланолина.

Все природные жиры и масла являются триглицеридами, т. е. эфирами трехосновного спирта глицерина. В природе нет жиров и масел, в которых глицерин был бы этерифицирован только одной жирной кислотой; природные жиры всегда являются эфирами двух или нескольких жирных кислот.

Животные жиры (такие, как сало) и растительные жиры можно при высокой температуре и давлении гидролизовать с помощью воды на жирные кислоты и глицерин. В результате этого получают главным образом стеариновую кислоту, пальмитиновую кислоту и миристиновую кислоту. Все три кислоты - твердые воскообразные вещества без цвета и запаха. В таком виде они представляют собой прекрасное сырье для приготовления кремов, гелей и различных эмульсий.

В натуральных маслах, помимо приведенных выше кислот, содержатся также ненасыщенные жирные кислоты, такие, например, как олеиновая кислота с одной двойной связью, линолевая кислота с двумя двойными связями и линоленовая кислота с тремя двойными связями. Ненасыщенные жирные кислоты и их эфиры являются жидкими при комнатной температуре. Благодаря наличию в них двойных связей они весьма чувствительны к реакциям разложения, например, к действию микробов, и легко распадаются на более мелкие молекулы, имеющие зачастую неприятный запах. Таким образом, они быстро портятся. Поэтому их обычно гидрируют по двойным связям, и из всех трех вышеназванных ненасыщенных жирных кислот образуется стеариновая кислота; одновременно все они становятся твердыми, почему этот метод и называется отверждением жиров.

Воск образуется из эфира низкомолекулярной карбоновой кислоты, например уксусной, и макромолекулярного так называемого жирного спирта; жирные спирты получают, в частности, путем разложения натуральных восков. Для приготовления гелей важнейшими сырьевыми веществами являются стеариновый спирт и цетиловый спирт.

Эти сравнительно высокомолекулярные соединения, получаемые в результате переработки натуральных жиров и восков, широко используются в косметике. Они представляют собой воскообразные или жироподобные вещества, хорошо ложащиеся на кожу. Они легко смешиваются с кожным салом и создают прекрасное дополнение к основе кремов, гелей и других средств, улучшая их свойства.

Как было отмечено ранее, натуральные жиры, масла и воски всегда представляют собой смеси, содержащие большое количество различных органических соединений. Поэтому в зависимости от места происхождения и других факторов среды они различаются по своему составу и свойствам. Современная промышленность стремится, однако, производить косметические изделия постоянного качества, поэтому устойчивые синтетические вещества заметно потеснили собственно натуральные продукты.

Путем переработки натуральных жиров и восков получают, как было изложено выше, необходимые для промышленного производства жирные кислоты, жирные спирты и, конечно, глицерин. Соединяя их вновь синтетическим способом, получают чистые и с устойчивыми характеристиками жиры и воски. В соответствии с происхождением и способом изготовления их называют полусинтетическими продуктами.

Из синтетических восков можно назвать эфиры стеариновой, пальмитиновой и миристиновой кислот, получаемые в большом количестве из природных веществ. Вторым компонентом в них является чаще всего изопропиловый спирт.

Силиконы представляют собой весьма важную группу синтетических жировых и воскообразных сырьевых веществ. Эти вещества имеют в своей основе цепь чередующихся атомов кремния и кислорода, к которой присоединены боковые органические группы. В качестве примера силиконов можно привести силиконовое масло, являющееся относительно низкомолекулярным производным метилсилоксана.

Говоря о свойствах силиконов, необходимо отметить, что они устойчивы при хранении и, кроме того, отлично переносятся организмом. Они не размягчаются с ростом температуры (это очень важно для использования их в качестве жидкого компонента плотной косметики), хорошо смешиваются с кожным салом и при обильном употреблении образуют водоотталкивающую пленку.

Полиспирт (полиол) - это органическое соединение, в молекуле которого содержится более одной гидроксильной группы ОН. Этиленгликоль и глицерин, имеющие соответственно две и три группы ОН, являются самыми простыми полиспиртами. К этой группе относятся также и все сахара и различные производные гликоля, такие, как, полиэтиленгликоли, которые уже рассматривались выше. В гелях полиспирты используются в качестве увлажнителей; в этом смысле наиболее важными являются глицерин, пропиленгликоль, сорбит и фруктоза.

К коллоидам можно отнести разнообразные вещества растительного и животного происхождения, которые образуют с водой коллоидные растворы; многие из них являются полисахаридами. Из коллоидов, имеющих полисахаридную основу, можно упомянуть следующие (табл. 2).

Таблица 2 Коллоиды, имеющие полисахаридную основу

Клеи являются обычно продуктами растительного происхождения. Здесь указана лишь незначительная часть растительных клеев. Хорошо известен агар-агар, относящийся к группе альгинатов; его получают из морских водорослей и используют для производства сладостей мармеладного типа.

Декстран изготовляется с помощью некоторых микроорганизмов из тростникового сахара. Это полимер, молекулярная масса которого колеблется между 75 000 и 1 000 000. Помимо того, что он используется в качестве заменителя плазмы крови, его можно применять, например, для регулирования вязкости растворов.

Целлюлозы представляют собой широко употребляемую и довольно разнообразную группу веществ, из которой выше приведены лишь три примера. Из многообразных форм применения для целей косметики важны их функции регулятора вязкости растворов и стабилизатора эмульсий.

Коллоидами, имеющими белковую основу, являются, в частности, желатин, получаемый из костей и кож, соевые и кукурузные белки, казеин - белковое вещество молока, а также альбумин, который получают из яичного белка.

Для коллоидов характерно то, что они пригодны для образования гелей и увеличения вязкости растворов и эмульсий.

В современной эмульсионной технике используют различные типы целлюлозы, главным образом в качестве стабилизаторов. Их применяют также в качестве основного компонента масок для лица, а также в различных препаратах для ухода за волосами.

Помимо того, белковые коллоиды применяются в препаратах для ухода за кожей, поскольку они построены из аминокислотных цепей различной длины и, в зависимости от способа обработки, могут также содержать свободные аминокислоты; таким образом, их вполне можно сравнивать с белковыми гидролизатами Химия для косметической продукции. / Под ред. Ованесяна П.Ю. - Красноярск: Марта, 2001. .

2. Исходные вещества и методы экспериментов

2.1. Исходные вещества и их анализ

Фосфор, фтор и литий вводили в виде дигидрофосфата аммония, высушенного при 100 °С, фторида и карбоната лития, высушенных при 200 °С. Реактивный оксид никеля (серый, нестехиометрический) прокаливали при 900 °C для превращения в зеленый стехиометрический NiO. Реактивный оксид кобальта (+2) использовали в непрокаленном виде (рентгенофазовым анализом проверено, что это действительно CoO, а не Co 3 O 4). Для введения переходных металлов испытаны и другие реагенты: карбонаты кобальта и марганца, ацетат никеля, а также оксалаты марганца и железа (+2), осажденные из водных растворов. Для проведения данной части экспериментов брали растворимые соли: сульфат железа (+2) и хлорид марганца (+2), растворяли их в горячей дистиллированной воде и приливали к ним горячий раствор оксалата аммония. После охлаждения осадки отфильтровывали на воронке Бюхнера, промывали дистиллированной водой до удаления сульфат- или хлорид-ионов и высушивали при комнатной температуре несколько дней.

Нет уверенности в том, что эти карбонаты, оксалаты и ацетат точно соответствуют идеальным формулам: при хранении возможны потеря или приобретение воды, гидролиз, окисление. Поэтому потребовалось провести их анализ. Для этого по три параллельных пробы каждого из исходных веществ прокаливали до постоянной массы и взвешивали в виде оксидов. Температуру прокаливания выбирали на основе литературных данных о стабильности весовых форм: для получения Fe 2 O 3 , NiO – 900 °С, для получения Co 3 O 4 и Mn 2 O 3 - 750 °С .

2.2. Проведение синтезов

При нагревании фторида лития с дигидрофосфатом аммония возможно улетучивание фтороводорода. Поэтому проведение синтеза в одну стадию вряд ли возможно. Сначала нужно получить LiMPO 4 , и лишь после полного удаления воды можно добавлять фторид лития.

Таким образом, можно выделить две стадии.

(1) 2NH 4 H 2 PO 4 +Li 2 CO 3 + 2MO ® 2 LiMPO 4 + 2NH 3 + CO 2 + 2H 2 O.

Здесь MO – это либо оксид (NiO, CoO), либо соединение, разлагающееся до оксида.

(2) LiMPO 4 + LiF ® Li 2 MPO 4 F

Навески веществ смешивали и растирали в яшмовой ступке до полной однородной массы, затем прессовали таблетки, выдерживали при температуре 150-170 °C 2 часа для удаления большей части летучих компонентов (если сразу нагреть до более высоких температур, то происходит оплавление и однородность таблетки нарушается). Затем температуру постепенно повышали, периодически перетирая смесь, до получения практически чистых LiMPO 4 . Обжиги проводили либо в муфельной печи, либо в инертной атмосфере в трубчатой печи.

Ввиду отсутствия инертных газов в баллонах, пришлось получать азот нагреванием водного раствора хлорида аммония и нитрита бария. Колба, в которой происходила основная реакция по получению азота (экзотермическая реакция, небольшое нагревание), соединялась с двумя промывалками с сернокислым раствором бихромата калия для улавливания возможных примесей аммиака и оксида азота, далее шла накаливаемая трубка с пористыми медными гранулами для очистки от кислорода и оксидов азота, потом с силикагелем для грубой осушки и две промывалки с концентрированной серной кислотой для более полного улавливания водяных паров. Эти промывалки соединялись с трубкой, в которой находились смеси веществ в спрессованном виде в никелевых лодочках. Вначале через установку пропускали трехкратный объем азота для удаления воздуха и лишь потом начинали нагревание. После завершения обжига образцы охлаждали в токе азота, дабы не допустить окисления воздухом.

Продукты проверяли рентгенофазовым анализом и переходили ко второй стадии экспериментов, для этого полученные таблетки перетирали с рассчитанной навеской фторида лития и, спрессовав, продолжали обжиг либо в муфельной печи, либо в инертной атмосфере в трубчатой печи по уже рассмотренной технологии. Чтобы обеспечить более полное связывание фосфата, фторид лития вводили в пятипроцентном избытке. Этот избыток составляет лишь 0,7 масс. % смеси и менее существенен, чем примесь не прореагировавшего фосфата.

2.3. Рентгенография

Рентгенофазовый анализ производился на дифрактометре ДРОН – 2.0 в медном Кa - излучении. Данное излучение не очень подходит для соединений, в которых присутствуют железо и особенно кобальт, так как оно сильно поглощается атомами этих элементов и возбуждает их собственное рентгеновское излучение. В результате дифракционные максимумы ослабляются, и резко возрастает фон. Поэтому снижается чувствительность фазового анализа, уменьшается число наблюдаемых отражений и ухудшается точность их измерения из-за сильных флуктуаций интенсивности. Чтобы преодолеть эти затруднения, следовало бы использовать рентгеновскую трубку с другим анодом, например, кобальтовым (но тогда бы возникли те же проблемы с соединениями марганца) или установить монохроматор на дифрагированном пучке. Но у нас не было такой возможности, поэтому для уменьшения статистических ошибок съемку кобальтового соединения приходилось повторять по несколько раз.

При фазовом анализе применялась база порошковых дифракционных данных PDF-2.

Работа добавлена на сайт сайт: 2015-07-05

">24. "> ">Признаки обратимых и необратимых реакций. Критерии равновесия. Константа равновесия. Принцип Ле-Шателье.

;color:#000000;background:#ffffff">1. Реакцию называют ;color:#000000;background:#ffffff">обратимой ;color:#000000;background:#ffffff">, если её направление зависит от концентраций веществ — участников реакции. Например N ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> + 3H ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> = 2NH ;vertical-align:sub;color:#000000;background:#ffffff">3 ;color:#000000;background:#ffffff"> при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении равновесия химического, система содержит как исходные вещества, так и продукты реакции.

;color:#000000;background:#ffffff">Необратимые реакции ;color:#000000;background:#ffffff"> — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например ;background:#ffffff">, ;color:#000000;background:#ffffff">горение ;background:#ffffff"> ;color:#000000;background:#ffffff">углеводородов ;background:#ffffff">, ;color:#000000;background:#ffffff">образование ;color:#000000;background:#ffffff">малодиссоциирующих ;background:#ffffff"> ;color:#000000;background:#ffffff">соединений, выпадение осадка, образование газообразных веществ.

">Химическое равновесие "> - состояние системы, в котором скорость прямой реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">1 ">) равна скорости обратной реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">2 ">). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

">Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">1 ">) и обратной (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">2 ">) реакций.

" xml:lang="en-US" lang="en-US">K = K ;vertical-align:sub" xml:lang="en-US" lang="en-US">1/ " xml:lang="en-US" lang="en-US">K ;vertical-align:sub" xml:lang="en-US" lang="en-US">2 " xml:lang="en-US" lang="en-US">= ([C] ;vertical-align:super" xml:lang="en-US" lang="en-US">c " xml:lang="en-US" lang="en-US"> [D] ;vertical-align:super" xml:lang="en-US" lang="en-US">d " xml:lang="en-US" lang="en-US">) / ([A] ;vertical-align:super" xml:lang="en-US" lang="en-US">a " xml:lang="en-US" lang="en-US"> [B] ;vertical-align:super" xml:lang="en-US" lang="en-US">b " xml:lang="en-US" lang="en-US">)

"> Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

">Смещение химического равновесия.

">1. Иземенение концентрации реаг. В-в

  1. ">Увеличение конц исх в-в сдвигает вправо
  2. ">Увеличение продуктов сместит равновесие влево

">2. Давление (только для газов)

  1. ">Увеличение давл. Смещает равновесие в сторону в-в занимающих меньший объём.
  2. ">Уменьшение давл смещает равновесие в сторону в-в занимающих больший объём

">3. Температура.

  1. ">Для экзотермических р-ий повыш. Т смещает влево
  2. ">Для эндотермических повышение Т смещает вправо.
  3. ">Катализаторы не оказывают влияние на хим. Равновесие, а лишь ускоряет его наступление

">Принцип Ле-Шателье ">если на систему находящуюся в состоянии динамического равновесия, оказать какое-либо воздействие, то преимущественно получается та реакция которая препятствует этому воздействию

" xml:lang="en-US" lang="en-US">N2+O2↔NO+ ∆H

" xml:lang="en-US" lang="en-US">→ t◦→

" xml:lang="en-US" lang="en-US">↓← ↓ t◦←

" xml:lang="en-US" lang="en-US"> ← p-

Для образования активного комплекса нужно преодолеть некоторый энергетический барьер, затратив энергию Е А. Эта энергия и есть энергия активации – некоторая избыточная энергия, по сравнению со средней при данной температуре энергией, которой должны обладать молекулы для того, чтобы их столкновения были эффективными.

В общем случае для химической реакции А + В = С +Д переход от исходных веществ А и В к продуктам реакции С и Д через состояние активного комплекса А + В = А¼В = С + D схематически можно представить в виде энергетических диаграмм (рис. 6.2).

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO = CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Влияние катализатора

Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом.

Вещества, изменяющие скорость химической реакции, называются катализаторами (вещества, изменяющие скорость химических процессов в живых организмах – ферменты). Катализатор в реакциях не расходуется и в состав конечных продуктов не входит.

Химические реакции, протекающие в присутствии катализатора, называются каталитическими. Различают положительный катализ – в присутствии катализатора скорость химической реакции возрастает - и отрицательный катализ (ингибирование) – в присутствии катализатора (ингибитора) скорость химической реакции замедляется.

1. Окисление сернистого ангидрида в присутствии платинового катализатора:

2SO 2 + O 2 = 2SO 3 – положительный катализ.

2. Замедление процесса образования хлороводорода в присутствии кислорода:

H 2 + Cl 2 = 2HCl – отрицательный катализ.

Различают: а) гомогенный катализ – реагирующие вещества и катализатор образуют однофазную систему; б) гетерогенный катализ – реагирующие вещества и катализатор образуют систему из разных фаз.

Механизм действия катализатора. Механизм действия положительных катализаторов сводится к уменьшению энергии активации реакции. При этом образуется активный комплекс с более низким уровнем энергии и скорость химической реакции сильно возрастает. На рис. 6.3 представлена энергетическая диаграмма химической реакции, протекающей в отсутствие (1) и в присутствии (2) катализатора.

Если медленно протекающую реакцию А + В = АВ вести в присутствии катализатора К, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение: А + К = АК.

Энергия активации этого процесса мала. Промежуточное соединение АК – реакционноспособно, оно реагирует с другим исходным веществом, при этом катализатор высвобождается и выходит из зоны реакции:



АК +В = АВ + К.

Суммируя оба процесса, получаем уравнение быстро протекающей реакции: А + В + (К) = АВ + (К).

Пример. Окисление сернистого ангидрида с участием катализатора NO: 2SO 2 + O 2 = 2SO 3 – медленная реакция;

При введении катализатора – NO – образуется промежуточное соединение: 2NO + O 2 = 2NO 2 .

В гетерогенном катализе ускоряющее действие связано с адсорбцией. Адсорбция – явление поглощения газов, паров, растворенных веществ поверхностью твердого тела. Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых происходит адсорбция реагирующих веществ, что увеличивает их концентрацию.

Некоторые вещества снижают или полностью уничтожают активность твердого катализатора – каталитические яды (к ним относятся соединения свинца, мышьяка, ртути, цианистые соединения). Особенно чувствительны к каталитическим ядам платиновые катализаторы.

Есть и такие вещества, которые усиливают действие катализатора, хотя сами катализаторами не являются. Эти вещества называются промоторами.


ХИМИЧЕСКОЕ РАВНОВЕСИЕ


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-03-24

В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.

За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:

  1. Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
  2. Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
  3. Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
  4. Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
  5. Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).

Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:

  1. С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
  2. Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.

Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:

  1. Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
  2. Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый

Типы химических реакций в органической химии можно разделить на четыре группы:

  1. Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
  2. Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
  3. Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
  4. Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.

Известны и другие виды химических реакций:

  1. По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
  2. По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
  3. По условиям взаимодействия: в присутствии катализаторов (каталитические), под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
  4. По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.