Описание гелия. Стабильность и химическая активность. Молекула и атом гелия

ОПРЕДЕЛЕНИЕ

Гелий - второй элемент Периодической таблицы. Обозначение - Hе от латинского «helium». Расположен в первом периоде, VIIIА группе. Относится к группе инертных (благородных) газов. Заряд ядра равен 2.

Гелий встречается на Земле в основном в атмосфере, однако некоторые его количества выделяются в определенных местах из недр Земли вместе с природными газами. Воды многих минеральных источников тоже выделяют гелий.

Гелий представляет собой бесцветный, трудносжижаемый газ (температура кипения -268,9 o С), затвердевающий только под избыточным давлением (схема строения атома представлена на рис. 1). Обладает сильной способностью проникать через стекло и металлическую фольгу. Плохо растворяется в воде, лучше - в бензоле, этаноле, толуоле.

Рис. 1. Строение атома гелия.

Атомная и молекулярная масса гелия

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

ОПРЕДЕЛЕНИЕ

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Поскольку в свободном состоянии гелий существует в виде одноатомных молекул He, значения его атомной и молекулярной масс совпадают. Они равны 4,003.

Изотопы гелия

Гелий - наиболее распространенный после водорода элемент космоса - состоит из двух стабильных изотопов: 4 He и 3 He. Их массовые числа равны 4 и 3. Ядро атома гелия 4 He содержит два протона и два нейтрона, а атома 3 He - такое же число протонов и один нейтрон.

Спектральный анализ показывает присутствие его в атмосфере Солнца, звезд, в метеоритах. Накапливание ядер 4 He во Вселенной обусловлено термоядерной реакцией, служащей источником солнечной и звездной энергии.

Ионы гелия

В обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы He 2 + . В обычных условиях эти ионы неустойчивы; захватывая недостающий электрон, они распадаются на два нейтральных атома.

Молекула и атом гелия

В свободном состоянии гелий существует в виде одноатомных молекул He.

Примеры решения задач

ПРИМЕР 1

Задание Углеводород содержит 92,3 % углерода (с). Выведите молекулярную (эмпирическую) формулу углеводорода (С х Н у), если плотность его паров по гелию (Не) равна 6,5.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов углерода в молекуле через «х», число атомов водорода через «у». Найдем процентное содержание водорода в составе углеводорода:

ω (Н) = 100% — ω (С) =100% — 92,3% = 7,7%.

Найдем соответствующие относительные атомные массы элементов углерода и водорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(С) = 12 а.е.м.; Ar(Н) = 1 а.е.м.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = m(Сa)/Ar(С) : m(Н)/Ar(Р);

x:y = 92,3/12: 7,7/1;

x:y:z = 7,7: 7,7 = 1: 1.

Значит простейшая формула углеводорода СН.

M(CH) = Ar(C) + Ar(H) = 12 + 1 =13 / моль.

Значение молярной массы органического вещества можно определить при помощи его плотности по гелию:

M substance = M(Не) × D(Не) ;

M substance = 4 × 6,5 = 26 г/моль.

Чтобы найти истинную формулу углеводорода найдем отношение полученных молярных масс:

M substance / M(CH) = 26 / 13 = 2.

Значит индексы атомов углерода и водорода должны быть в 2 раза выше, т.е. молекулярная (эмпирическая) формула углеводорода имеет вид C 2 H 2 .Это ацетилен.

Ответ C 2 H 2 .Это ацетилен.

ПРИМЕР 2

Задание В баллоне вместимостью 60 л при 20 o С и 40 атм находится гелий. Определите объем израсходованного гелия при н.у., если после 8 часов работы давление в баллоне понизилось до 32 атм, а температура возросла до 22 o С.
Решение Сначала переведем градусы в Кельвины:

T 1 = 273 + 20 = 293 К;

T 2 = 273 + 22 = 295 К.

По объединенному газовому закону:

PV / T = P 0 V 0 / T 0 ;

V 0 = PVT 0 / P 0 T.

Для исходного состояния гелия в баллоне приведенный объем составил:

V 0 initial = P 1 ×V 1 ×T 0 / P 0 ×T 1 .

Для конечного состояния гелия в баллоне приведенный объем составил:

V 0 final = P 2 ×V 2 ×T 0 / P 0 ×T 2 .

Выразим объем израсходованного гелия при н.у.:

V x = V 0 initial — V 0 final ;

V x = - ;

V x = (T 0 / P 0) × [(P 1 ×V 1 / T 1) - (P 2 ×V 2 / T 2)].

Так как вместимость баллона постоянна, то V 1 = V 2 = V, тогда:

V x = (T 0 ×V / P 0) × [(P 1 / T 1) - (P 2 / T 2)];

V x = (273× 60 / 1) × [(40 / 293) - (32 / 295)] = 459 л.

Ответ 459 л.

В таблице представлены теплофизические свойства гелия He в газообразном состоянии в зависимости от температуры и давления. Теплофизические свойства и плотность гелия в таблице даны при температуре от 0 до 1000°С и давлении от 1 до 100 атмосфер.

Следует отметить, что такие свойства гелия, как температуропроводность и кинематическая вязкость существенно зависят от температуры, увеличивая свои значения на порядок при нагревании на 1000 градусов. При увеличении давления эти свойства гелия уменьшают свои значения, при этом существенно возрастает плотность гелия.

При нормальных условиях плотность гелия равна 0,173 кг/м 3 (при температуре 0°С и нормальном атмосферном давлении). С увеличением давления гелия, его плотность увеличивается пропорционально, например при 10 атм. плотность гелия составит уже величину 1,719 кг/м 3 (при этой же температуре). При дальнейшем сжатии этого газа до 100 атм. плотность гелия станет равной 16,45 кг/м 3 . Таким образом, имеет место почти стократное увеличении плотности гелия относительно первоначального значения (при атмосферном давлении).

Как известно, самой низкой плотностью обладает такой газ, как , а гелий занимает второе место среди газов по величине плотности.
Гелий считается наиболее оптимальным газом для заполнения аэростатов, применяемых в воздухоплавании, поскольку в отличие от водорода, он не создает с воздухом взрывоопасную смесь.

Так как плотность гелия значительно меньше воздуха, то при одинаковых температурах шары и аэростаты, наполненные гелием, имеют хорошую подъемную силу. Достаточно малая плотность гелия позволяет создавать беспилотные высотные аэростаты для погодных и научных исследований.

На какую высоту может подняться шар с гелием? по мере набора высоты начинает снижаться и на высотах около 33…36 км сравняется с плотностью гелия, находящегося в аэростате, и его подъем прекратится.

В таблице даны следующие свойства гелия:

  • плотность гелия γ , кг/м 3 ;
  • удельная теплоемкость С р , кДж/(кг·град);
  • коэффициент теплопроводности λ , Вт/(м·град);
  • динамическая вязкость μ , ;
  • температуропроводность a , м 2 /с;
  • кинематическая вязкость ν , м 2 /с;
  • число Прандтля Pr .

Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100.

Теплопроводность гелия при при нормальном атмосферном давлении.

Значения теплопроводности гелия при нормальном атмосферном давлении в зависимости от температуры приведены в таблице.
Теплопроводность (в размерности Вт/(м·град)) указана для газообразного гелия в диапазоне температуры от -203 до 1727 °С.

Примечание: Будьте внимательны! Теплопроводность гелия в таблице указана в степени 10 3 . Не забудьте разделить на 1000. По данным таблицы теплопроводности видно, что ее значения увеличиваются с ростом температуры гелия.

Теплопроводность гелия при высоких температурах.

В таблице указаны значения теплопроводности гелия при нормальном атмосферном давлении и при высоких температурах.
Теплопроводность гелия в газообразном состоянии приведена в диапазоне температур 2500…6000 К.

Примечание: Будьте внимательны! Теплопроводность гелия в таблице указана в степени 10 3 . Не забудьте разделить на 1000. Значение коэффициента теплопроводности гелия увеличивается с ростом его температуры и достигает при 6000 К величины 1,2 Вт/(м·град).

Теплопроводность жидкого гелия при низких температурах.

Приведены значения теплопроводности жидкого гелия при нормальном атмосферном давлении и экстремально низких температурах.
Теплопроводность гелия в жидком состоянии дана в таблице для температуры 2,3…4,2 К (-270,7…-268,8°С).

Примечание: Будьте внимательны! Теплопроводность гелия в таблице указана в степени 10 3 . Не забудьте разделить на 1000. Теплопроводность гелия увеличивается с ростом его температуры и в жидком состоянии при низких температурах.

Теплопроводность гелия в зависимости от давления и температуры.

В таблице даны значения теплопроводности гелия в зависимости от давления и температуры.
Теплопроводность (размерность Вт/(м·град)) указана для газообразного гелия в диапазоне температуры от 0 до 1227 °С и давлении от 1 до 300 атм.

Примечание: Будьте внимательны! Теплопроводность гелия в таблице указана в степени 10 3 . Не забудьте разделить на 1000. Теплопроводность гелия имеет слабую тенденцию к росту при увеличении давления газа.

Теплоемкость жидкого гелия в зависимости от температуры.

В таблице представлены значения удельной (массовой) теплоемкости жидкого гелия в состоянии насыщения в зависимости от температуры.

Как известно, гелий в жидком состоянии может находиться только при очень низкой температуре, приближающейся к абсолютному нулю.
Теплоемкость жидкого гелия (размерность кДж/(кг·град)) приведена в диапазоне температуры от 1,8 до 5,05 К.

Источники:
1.
2. .
3. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.

Гелий, как правило, образующийся при радиоактивном распаде урана-238 и урана-235, был найден в атмосфере Солнца на 13 лет раньше, чем на Земле. Этот газ обладает самыми низкими значениями критических величин, наинизшей температура кипения, наименьшей теплотой испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее нет вообще. Второго такого вещества в природе не найти...

Гелий – элемент необычный, и история его несколько загадочна и непонятна. Он был найден в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Как образуется гелий

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада . Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм.

Большинство минералов с течением времени подвергается процессам выветривания, перекристаллизации и т. д., и гелий из них уходит. Высвободившиеся из кристаллических структур гелиевые пузырьки частично растворяются в подземных водах. Другая часть гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. В качестве ловушек здесь выступают пласты рыхлых пород, пустоты которых заполняют газом. Ложем для таких газовых коллекторов обычно служат вода или нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Синтез гелия - начало жизни

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам, 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только один процент. Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе. Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Природные газы являются практически единственным источником сырья для промышленного получения гелия. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5–10%) гелиеносность метано-азотных месторождений - явление крайне редкое. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой ожижения. После того, как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%. Жидкий гелий получают путем сжижения газообразного гелия.

Свойства гелия

Газообразный гелий – инертный газ без цвета, запаха и вкуса. Жидкий гелий – бесцветная жидкость без запаха с температурой кипения при нормальном атмосферном давлении 101,3 кПа (760 мм.рт.ст.) 4,215 К (минус 268,9°С) и плотностью 124,9 кг/м 3 .

Гелий не токсичен, не горюч, не взрывоопасен, однако при высоких концентрациях в воздухе вызывает состояние кислородной недостаточности и удушье. Жидкий гелий – низкокипящая жидкость, которая может вызвать обморожение кожи и поражение слизистой оболочки глаз.

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию (78,61 эВ). Отсюда следует феноменальная химическая пассивность гелия.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики - меньше, чем в любом другом веществе. По этой причине гелий обладает самыми низкими значениями критических величин, наинизшей температура кипения, наименьшей теплотой испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него не действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость, наоборот, мала.

Гелий, дирижабли, водолазы и ядерная энергетика…

Впервые гелий применили в Германии. В 1915 году они немцы стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Еще одна сфера применения гелия обусловлена тем, что многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды, и нет для этих целей более подходящего газа, чем гелий.

В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

В научных исследованиях и в технике широко применяется жидкий гелий . Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тысяч эрстед) при ничтожных затратах энергии. При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками . Сверхпроводниковые реле-криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Гелиокислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов. Как известно, растворимость газов в жидкостях, при прочих равных данных, прямо пропорциональна давлению. У водолазов, работающих под большим давлением, в крови растворено азота гораздо больше в сравнении с нормальными условиями, существующими на поверхности воды. При подъеме с глубины, когда давление приближается к нормальному, растворимость азота понижается, и его избыток начинает выделяться. Если подъем совершается быстро, выделение избытка растворенных газов происходит столь бурно, что кровь и богатые водой ткани организма, насыщенные газом, вспениваются от массы пузырьков азота - подобно шампанскому при открывании бутылки.

Образование пузырьков азота в кровеносных сосудах нарушает работу сердца, появление их в мозгу нарушает его функции, а все это вместе ведет к тяжелым расстройствам жизнедеятельности организма и в итоге - к смерти. Для того, чтобы предупредить развитие описанных явлений, известных под именем «кессонной болезни», подъем водолазов, т. е. переход от повышенного давления к нормальному, производится весьма медленно.

При этом избыток растворенных газов выделяется постепенно и никаких болезненных расстройств не происходит. С применением искусственного воздуха, в котором азот заменяется менее растворимым гелием, возможность вредных расстройств устраняется почти полностью. Это позволяет увеличивать глубину опускания водолазов (до 100 и более метров) и удлинять время пребывания под водой.

«Гелиевый» воздух имеет плотность в три раза меньше плотности обычного воздуха. Поэтому дышать таким воздухом легче, чем обычным (уменьшается работа дыхательных мышц). Это обстоятельство имеет важное значение при заболевании органов дыхания. Поэтому «гелиевый» воздух применяется также в медицине при лечении астмы, удуший и других болезней.

Еще не вечный, но уже безвредный

В Лос-Аламосской национальной лаборатории имени Э. Ферми (штат Нью-Мексико) разработан новый двигатель , который может серьезно изменить представления об автомобиле как одном из главных источников загрязнения. При сопоставимом с двигателем внутреннего сгорания коэффициенте полезного действия (30–40%) он лишен основных его недостатков: движущихся частей, нуждающихся в смазке для уменьшения трения и износа, и вредных для окружающей среды выбросов продуктов неполного сгорания топлива.

По сути, речь идет об усовершенствовании хорошо известного двигателя внешнего сгорания, предложенного шотландским священником Р. Стирлингом еще в 1816 г. Этот двигатель не получил широкого распространения на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости. Но термоакустический преобразователь энергии, предложенный американскими учеными, в котором рабочим телом служит сжатый гелий, выгодно отличается от своего предшественника отсутствием громоздких теплообменников, препятствовавших его использованию в легковых автомобилях, и в недалеком будущем способен стать экологически приемлемой альтернативой не только двигателя внутреннего сгорания, но и преобразователя солнечной энергии, холодильника, кондиционера. Масштабы его применения пока даже трудно представить.

Перестал быть лабораторной редкостью, когда его научились добывать в достаточно больших количествах, этим бесцветным, не имеющим вкуса и запаха газом, по легкости уступающим только водороду, заинтересовались представители очень многих направлений техники.

Не горит, химически он абсолютно инертен. Это означает, что может быть самым подходящим газом для создания неагрессивной нейтральной атмосферы. В инертной атмосфере гелия можно вести многие металлургические и сварочные процессы, в ней металл будет защищен от доступа воздуха, следовательно, от окисления и образования шлаковых включений, а также от нежелательных соединений с находящимися в воздухе азотом и углекислым газом. Особенно важным это оказалось при производстве такого металла, как , легкого, жаропрочного и коррозионно-стойкого. Недаром считается одним из важнейших конструкционных материалов в ракетной, авиа- и судостроительной технике.

В цветной металлургии гелий может найти применение. Если продувать расплавленный металл струей газа, можно извлечь растворенные в металле газы и таким образом вывести некоторые шлаки. Применяемый для этой цели был опасен для здоровья рабочих. Замена хлора азотом - газом, не опасным для человека, привела к тому, что при продувании его через возникали с металлом - нитриды, впоследствии разрушающие отлитые из металла изделия. Самым безопасным и удобным оказался гелий. В современной технике применяют более дешевый газ - .

Инертная среда, создаваемая гелием, нужна и при производстве полупроводниковых веществ, главным образом германия и кремния, при получении которых требуется особая чистота , так как любое инородное включение, любая, даже микроскопически малая, примесь неизбежно ухудшают свойства полупроводниковых кристаллов.

Как взрывобезопасный газ, гелий нашел применение не только в воздухоплавании, но и в медицине: его добавляют в атмосферу операционных, благо он совершенно безвреден для дыхания. Гелий используется также как гаситель пламени в элеваторах и хранилищах огнеопасных веществ, например бензина.

Аномально высокая текучесть гелия (об этом мы будем говорить ниже) сделала его индикатором утечек в атомных реакторах, в системах высокого или низкого давления; другое физическое свойство гелия - высокая теплопроводность - перспективным материалом для атомной техники. Гелий представляется удобной средой для извлечения и отвода тепловой энергии; образующейся в атомном реакторе, он используется как циркулирующая охлаждающая среда. Такое же применение он нашел и в ракетной технике. На способность гелия оставаться в газообразном состоянии при таких температурах, когда другие переходят в жидкое и твердое состояние, обратили внимание при разработке ракетных двигателей на жидком топливе. По мере расхода топлива гелий под высоким давлением заполняет образующийся вакуум и тем самым сохраняет жесткость конструкции.

В конце 30-х годов, когда были-открыты уникальные свойства жидкого гелия, одна из смелых и опережающих свое время идей, касающихся его практического применения, была высказана профессором Л. Г. Лойцянским.

Предполагалось использовать для изучения аэродинамических свойств моделей самолетов. Дело в том, что при испытании крыльев и фюзеляжей аэропланов на обтекаемость приходилось применять аэродинамические трубы, где испытывались аэропланы в натуральную величину. Ври уменьшении размеров испытуемого объекта нужно было уменьшить и так называемую кинематическую вязкость жидкости, в которой проводились испытания. Но оказалось, что это невозможно; кинематическая вязкость почти всех текучих сред мало отличалась от воздуха. Исключение составлял . Но, пожалуй, одно из главных применений гелия связано с возможностью получения самых низких температур, которыми располагает современная техника.

Статья на тему Гелий применение в промышленности

Введение

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна. По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия. Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество. Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.


Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·1014 м3; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.


Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.