Определение генеральной совокупности и выборки. Генеральная и выборочная совокупности. Метод выборки. Виды плана построения групп из выборок

Совокупность однородных объектов часто исследуют относительно какого-либо признака, характеризующего их, измеренного количественно либо качественно.

К примеру, если имеется партия деталей, то количественным признаком может быть размер детали по ГОСТу, а качественным - стандартность детали.

В случае необходимости их проверки на соответствие стандартам иногда прибегают к сплошному обследованию, но на практике это применяется крайне редко. К примеру, если генеральная совокупность содержит огромное количество изучаемых объектов, то практически невозможно проводить сплошное обследование. В таком случае из всей совокупности отбирают определенное число объектов (элементов) и их исследуют. Таким образом, имеется генеральная и выборочная совокупность.

Генеральной называют совокупность всех объектов, которые подвергаются обследованию или изучению. Генеральная совокупность, как правило, содержит в себе конечное число элементов, но если оно слишком велико, то с целью упрощения математических вычислений допускается, что вся совокупность состоит из бесчисленного числа объектов.

Выборкой или выборочной совокупностью называется часть отобранных элементов из всей совокупности. Выборка может быть повторной либо бесповторной. В первом случае её возвращают в генеральную совокупность, во втором - нет. В практической деятельности чаще используют бесповторный случайный отбор.

Генеральная совокупность и выборка должны быть связаны между собой репрезентативностью. Говоря по другому, для того, чтобы по характеристикам выборочной совокупности можно было уверенно определять признаки всей совокупности, надо, чтобы элементы выборки максимально точно их представляли. Иными словами, выборка должна быть представительной (репрезентативной).

Выборка будет более или менее репрезентативной, если она производится случайно из очень большого числа всей совокупности. Это можно утверждать на основе так называемого закона больших чисел. При этом все элементы имеют равную вероятность попасть в выборку.

Имеются различные варианты отбора. Все эти способы в принципе можно разделить на два варианта:

  • Вариант 1. Отбираются элементы, когда генеральная совокупность не делится на части. К этому варианту можно отнести простой случайный повторный и бесповторный отборы.
  • Вариант 2. Генеральная совокупность разделяется на части и производится отбор элементов. Сюда можно отнести типический, механический и серийный отборы.

Простой случайный - отбор, при котором элементы извлекаются по одному из всей совокупности случайным образом.

Типический - это отбор, при котором элементы отбираются не из всей совокупности, а из всех её «типических» частей.

Механический - это такой отбор, когда всю совокупность разделяют на количество групп, равное числу элементов, которое должно быть в выборке, и, соответственно, из каждой группы выбирается один элемент. К примеру, если надо отобрать 25% деталей, изготовленных станком, то выбирают каждую четвёртую деталь, а если требуется отобрать 4% деталей, то выбирают каждую двадцать пятую деталь и так далее. При этом необходимо сказать, что иногда механический отбор может не обеспечивать достаточной

Серийный - это такой отбор, при котором элементы отбирают из всей совокупности «сериями», подвергаемыми сплошному исследованию, а не по одному. К примеру, когда детали изготавливаются большим числом станков-автоматов, то сплошное обследование проводится только в отношении продукции нескольких станков. Серийный отбор используют, если исследуемый признак имеет незначительную вариативность в разных сериях.

С целью уменьшения погрешности применяют оценки генеральной совокупности с помощью выборочной. Причем выборочный контроль может быть как одноступенчатым, так и многоступенчатым, что повышает надежность обследования.

Генеральная совокупность – совокупность элементов, удовлетворяющих неким заданным условиям; именуется также изучаемой совокупностью. Генеральная совокупность (Universe) - все множество объектов (субъектов) исследования, из которого выбираются (могут выбираться) объекты (субъекты) для обследования (опроса).

ВЫБОРКА или выборочная совокупность (Sample) - это множество объектов (субъектов), отобранных специальным образом для обследования (опроса). Любые данные, полученные на основании выборочного обследования (опроса), имеют вероятностный характер. На практике это означает, что в ходе исследования определяется не конкретное значение, а интервал, в котором определяемое значение находится.

Характеристики выборки:

Качественная характеристика выборки – что именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки:

Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

Существует необходимость в сборе первичной информации.

Объём выборки - число случаев, включённых в выборочную совокупность.

Зависимые и независимые выборки.

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми .

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми.

Типы выборки.

Выборки делятся на два типа:

Вероятностные;

Не вероятностные;

Репрезентативная выборка - выборочная совокупность, в которой основные характеристики совпадают с характеристиками генеральной совокупности. Только для этого типа выборки результаты обследования части единиц (объектов) можно распространять на всю генеральную совокупность. Необходимое условие для построения репрезентативной выборки - наличие информации о генеральной совокупности, т.е. либо полный список единиц (субъектов) генеральной совокупности, либо информация о структуре по характеристикам, существенно влияющим на отношение к предмету исследования.

17. Дискретный вариационный ряд, ранжирование, частота, частность.

Вариационным рядом (статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Наблюдаемые значения случайной величины х1, х2, …, хk называются вариантами, а изменение этих значений называются варьированием.

Выборка (выборочная совокупность) – совокупность наблюдений, отобранных случайным образом из генеральной совокупности.

Число наблюдений в совокупности называется ее объемом.

N – объем генеральной совокупности.

n – объем выборки(сумма всех частот ряда).

Частотой варианты хi называется число ni (i=1,…,k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i=1,…,k) называется отношение ее частоты ni к объему выборки n.
wi =ni /n

Ранжирование опытных данных - операция, заключающаяся в том, что результаты наблюдений над случайной величиной, т. е. наблюдаемые значения случайной величины, располагают в порядке неубывания.

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов хi с соответствующими им частотами или частностями.

Генеральная совокупность (в англ. - population ) - совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность - это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, мужчины 30-50 лет, использующие бритву определённой марки не реже раза в неделю, и имеющие доход не ниже $100 на одного члена семьи.

Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

 Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.

 Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

 Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

 Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

17. Основные способы формирования выборки

Формирование выборки прежде всего основывается на знании контура выборки, под которым понимается список всех единиц совокупности, из которого выбираются единицы выборки. Например, если в качестве совокупности рассматривать все автосервисные мастерские города Москвы, то надо иметь список таких мастерских, рассматриваемый как контур, в пределах которого формируется выборка.

Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Очевидно, что не существует полно официального списка всех автосервисных мастерских г. Москвы. Исследователь должен информировать заказчика работы о размерах ошибки контура выборки.

При формировании выборки используются вероятностные (случайные) и невероятностные (неслучайные) методы.

Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. К сожалению, в большинстве маркетинговых исследований из-за невозможности точного определения размера совокупности не представляется возможным точно рассчитать вероятности. Поэтому термин «известная вероятность» скорее основан на использовании определенных методов формирования выборки, чем на знании точных размеров совокупности.

Вероятностные методы включают в себя:

Простой случайный отбор;

Систематический отбор;

Кластерный отбор;

Стратифицированный отбор.

Невероятностные методы:

Отбор на основе принципа удобства;

Отбор на основе суждений;

Формирование выборки в процессе опроса;

Формирование выборки на основе квот.

Смысл метода отбора на основе принципа удобства заключается в том, что формирование выборки осуществляется самым удобным с позиций исследователя образом, например с позиций минимальных затрат времени и усилий, с позиций доступности респондентов. Выбор места исследования и состава выборки производится субъективным образом, например, опрос покупателей осуществляется в магазине, ближайшем к месту жительства исследователя. Очевидно, что многие представители совокупности не принимают участия в опросе.

Формирование выборки на основе суждения основано на использовании мнения квалифицированных специалистов, экспертов относительно состава выборки. На основе такого подхода часто формируется состав фокус-группы.

Формирование выборки в процессе опроса основано на расширении числа опрашиваемых исходя из предложений респондентов, которые уже приняли участие в обследовании. Первоначально исследователь формирует выборку намного меньшую, чем требуется для исследования, затем она по мере проведения расширяется.

Формирование выборки на основе квот (квотный отбор) предполагает предварительное, исходя из целей исследования, определение численности групп респондентов, отвечающих определенным требованиям (признакам). Например, в целях исследования было принято решение, что в универмаге должно быть опрошено пятьдесят мужчин и пятьдесят женщин. Интервьюер проводит опрос, пока не выберет установленную квоту.

Необходимость проводить выборочные исследования, может быть вызвана различными причинами:

    часто полное исследование изучаемого явления слишком дорого стоящее и длительное;

    иногда возможность использовать полученную информацию при полном исследовании может исчерпаться раньше, чем завершится процесс его подготовки;

    в некоторых случаях в результате проверки качества изделия происходит уничтожение исследуемого объекта.

Пример:

    предположим, совокупность — это все учащиеся школы (600 человек из 20 классов, по 30 человек в каждом классе). Предмет изучения — отношение к курению.

Генеральная совокупность — это набор объектов, о которых необходимо получить информацию.

Генеральная совокупность состоит из всех объектов, которые имеют качества, свойства, интересующие исследователя. Иногда генеральная совокупность — это все взрослое население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объекты исследования. Например, женщины 10-89 лет, использующие крем для рук определённой марки не реже одного раза в неделю, и имеющие доход не ниже 5 тысяч рублей на одного члена семьи.

Выборка — это небольшой набор объектов, извлеченных из генеральной совокупности.

Выборочная совокупность — это необходимый для исследования минимум результатов (случаев, испытуемых, объектов, событий, образцов) отобранных с помощью определённой процедуры из генеральной совокупности.

Примеры:

    выявление реакции клиентов фирмы на нововведения, все клиенты фирмы представляют собой генеральную совокупность. Те клиенты, которых обзвонили, образуют выборку.

    При аудиторской проверке фирм с большим числом сделок приходится довольствоваться изучением отобранного числа сделок. Все сделки фирмы образуют генеральную совокупность, отобранные — выборку.

    генеральную совокупность образуют все призывники определенного года.

    все лампы, изготовленные за определенное время на некотором предприятии, образуют генеральную совокупность. Те лампы, которые отобраны для контроля, — выбору.

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной. Выборка будет репрезентативной при обследовании большой группы людей, если внутри этой группы есть представители разных подгрупп, только так можно сделать верные выводы. .

Репрезентати́вность — соответствие характеристик выборки характеристикам популяции или генеральной совокупности в целом. Репрезентативность определяет, насколько возможно обобщать результаты исследования с привлечением определённой выборки на всю генеральную совокупность, из которой она была собрана.

Также репрезентативность можно определить, как свойство выборочной совокупности представлять параметры генеральной совокупности, значимые с точки зрения задач исследования.

Пример: выборка, состоящая из 60 учеников старших классов, гораздо хуже представляет совокупность, чем выборка из тех же 60 человек, в которую войдут по 3 ученика из каждого класса. Главной причиной тому — неравное возрастное распределение в классах. Следовательно, в первом случае репрезентативность выборки низкая, а во втором случае репрезентативность высокая (при прочих равных условиях).

Задача 1. В городе, насчитывающем 253 000 жителей, имеющих право голосовать, исследуйте политические симпатии будущих избирателей.

Решение

    Выборку можно построить, опрашивая каждого 15-о покупателя, выходящего из крупного торгового центра. Такая выборка будет отражать мнение посетителей торгового центра, но вряд ли будет представлять точку зрения всех жителей города.

    Другой метод построения выборки — провести опрос по телефону каждого 100-го жителя города, взяв номера из телефонного справочника. Такая систематическая выборка даст информацию о точке зрения группы людей, имеющих телефон, находящихся дома и отвечающих на телефонные звони. Но она не отражает мнения всех жителей города.

    Еще один метод построить выборку может заключаться в том, чтобы опросить участников митинга, организованного несколькими политическими партиями. Такая выборкка даст информацию о жителях, активно участвующих в политической жизни города.

Итак, нужны такие способы образования выборки, которые представляли бы всю генеральную совокупность, т. е. выборка должна быть репрезентативной (представительной).

Задача 2. Определить, является ли репрезентативной выборка:

1) число автомобильных аварий в июне, если необходимо составить статистический отчет по авариям в городе за год;

2) городские жители при подсчете числа автомобилей на душу населения в стране;

3) люди в возрасте от 40 до 50 лет при выяснении рейтинга молодежной телепрограммы.

Решение

1) Выборка не является репрезентативной. Летом нет снега и наледи на дорогах, а это одна из основных причин аварий.

2) Выборка не является репрезентативной. Понятно, что в городе машин намного больше, чем в сельских районах. Это необходимо учитывать.

3) Выборка не является репрезентативной. Люди в возрасте от 40 до 50 лет едва ли проявят интерес к программе, ориентированной на молодежную аудиторию. При использовании такой выборки рейтинг может сильно упасть, но это не отразит реального положения вещей. Для формирования выборочной совокупности применяются различные способы отбора. Статистические данные должны быть представлены так, чтобы ими можно было пользоваться.

Параметры генеральной совокупности и выборки

N - генеральная совокупность, которая подразделяется на страты N 1 , N 2 и так далее.

Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными.

N - объем выборки.

В основе статистических выводов проведенного исследования лежит распределение случайной величины Х, наблюдаемые же значения х 1 , х 2 , х 3 называются реализациями случайной величины x.

Распределение случайной величины X в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением

Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение о виде распределения может быть как статистически верным, так и ошибочным.

Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное.

Важнейшими параметрами распределений являются математическое ожидание а и дисперсия σ 2 - мера разброса данных.

Стандартное отклонение σ - степень отклонения данных наблюдений или множеств от среднего значения.

Задача 3. Михаил вместе со своими друзьями решил измерить рост своих собак (по холке). Найдите: среднее значение; отклонение роста.

Решение

    Математическое ожидание или среднее значение можно найти по формуле:


    Теперь посчитаем отклонение роста каждой собаки от среднего или математического ожидания, то есть посчитаем дисперсию.


Стандартное отклонение это всего лишь квадратный корень из дисперсии.

σ \ = 147,32

Таким образом, зная стандартное отклонение мы знаем, что значит «нормальный рост», и что является очень высокой и очень маленькой собакой.

Ответ: 394, 21,704; 147,32.

Задача 4. Наблюдение в контрольной лаборатории за сроком годности 50 электроламп одинаковой мощности, взятых наудачу из большой партии выпущенных заводом ламп этой же мощности, привело к следующим данным о нарушении установленного гарантийного срока горения:

Отклонение в Ч

10 мального распределения, которое отражает отклонение фактического срока горения лампочек от гарантийного.

Решение.

Среднее отклонение

Таким образом, искомое нормальное распределение характеризуется следующими значениями параметров: а = 0,4; σ 2 = 318; σ = 17,8.

Отсюда плотность вероятности:

Соответствующая этой плотности функция распределения будет выглядеть:

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.