Укрупненный алгоритм обратного распространения ошибки. Обучение сети - обратное распространение. Обратное распространение ошибки от выходных нейронов

Прудников Иван Алексеевич
МИРЭА(МТУ)

Тема нейронных сетей была уже ни раз освещена во многих журналах, однако сегодня я бы хотел познакомить читателей с алгоритмом обучения многослойной нейронной сети методом обратного распространения ошибки и привести реализацию данного метода.

Сразу хочу оговориться, что не являюсь экспертом в области нейронных сетей, поэтому жду от читателей конструктивной критики, замечаний и дополнений.

Теоретическая часть

Данный материал предполагает знакомство с основами нейронных сетей, однако я считаю возможным ввести читателя в курс темы без излишних мытарств по теории нейронных сетей. Итак, для тех, кто впервые слышит словосочетание «нейронная сеть», предлагаю воспринимать нейронную сеть в качестве взвешенного направленного графа, узлы (нейроны) которого расположены слоями. Кроме того, узел одного слоя имеет связи со всеми узлами предыдущего слоя. В нашем случае у такого графа будут иметься входной и выходной слои, узлы которых выполняют роль входов и выходов соответственно. Каждый узел (нейрон) обладает активационной функцией - функцией, ответственной за вычисление сигнала на выходе узла (нейрона). Также существует понятие смещения, представляющего из себя узел, на выходе которого всегда появляется единица. В данной статье мы будем рассматривать процесс обучения нейронной сети, предполагающий наличие «учителя», то есть процесс обучения, при котором обучение происходит путем предоставления сети последовательности обучающих примеров с правильными откликами.
Как и в случае с большинством нейронных сетей, наша цель состоит в обучении сети таким образом, чтобы достичь баланса между способностью сети давать верный отклик на входные данные, использовавшиеся в процессе обучения (запоминания), и способностью выдавать правильные результаты в ответ на входные данные, схожие, но неидентичные тем, что были использованы при обучении (принцип обобщения). Обучение сети методом обратного распространения ошибки включает в себя три этапа: подачу на вход данных, с последующим распространением данных в направлении выходов, вычисление и обратное распространение соответствующей ошибки и корректировку весов. После обучения предполагается лишь подача на вход сети данных и распространение их в направлении выходов. При этом, если обучение сети может являться довольно длительным процессом, то непосредственное вычисление результатов обученной сетью происходит очень быстро. Кроме того, существуют многочисленные вариации метода обратного распространения ошибки, разработанные с целью увеличения скорости протекания процесса обучения.
Также стоит отметить, что однослойная нейронная сеть существенно ограничена в том, обучению каким шаблонам входных данных она подлежит, в то время, как многослойная сеть (с одним или более скрытым слоем) не имеет такого недостатка. Далее будет дано описание стандартной нейронной сети с обратным распространением ошибки.

Архитектура

На рисунке 1 показана многослойная нейронная сеть с одним слоем скрытых нейронов (элементы Z).

Нейроны, представляющие собой выходы сети (обозначены Y), и скрытые нейроны могут иметь смещение(как показано на изображении). Смещение, соответствующий выходу Y k обозначен w ok , скрытому элементу Z j - V oj . Эти смещения служат в качестве весов на связях, исходящих от нейронов, на выходе которых всегда появляется 1 (на рисунке 1 они показаны, но обычно явно не отображаются, подразумеваясь). Кроме того, на рисунке 1 стрелками показано перемещение информации в ходе фазы распространения данных от входов к выходам. В процессе обучения сигналы распространяются в обратном направлении.

Описание алгоритма

Алгоритм, представленный далее, применим к нейронной сети с одним скрытым слоем, что является допустимой и адекватной ситуацией для большинства приложений. Как уже было сказано ранее, обучение сети включает в себя три стадии: подача на входы сети обучающих данных, обратное распространение ошибки и корректировка весов. В ходе первого этапа каждый входной нейрон X i получает сигнал и широковещательно транслирует его каждому из скрытых нейронов Z 1 ,Z 2 ...,Z p . Каждый скрытый нейрон затем вычисляет результат его активационной функции (сетевой функции) и рассылает свой сигнал Z j всем выходным нейронам. Каждый выходной нейрон Y k , в свою очередь, вычисляет результат своей активационной функции Y k , который представляет собой ничто иное, как выходной сигнал данного нейрона для соответствующих входных данных. В процессе обучения, каждый нейрон на выходе сети сравнивает вычисленное значение Y k с предоставленным учителем t k (целевым значением), определяя соответствующее значение ошибки для данного входного шаблона. На основании этой ошибки вычисляется σ k (k = 1,2,...m). σ k используется при распространении ошибки от Y k до всех элементов сети предыдущего слоя (скрытых нейронов, связанных с Y k), а также позже при изменении весов связей между выходными нейронами и скрытыми. Аналогичным образом вычисляется σj (j = 1,2,...p) для каждого скрытого нейрона Z j . Несмотря на то, что распространять ошибку до входного слоя необходимости нет, σj используется для изменения весов связей между нейронами скрытого слоя и входными нейронами. После того как все σ были определены, происходит одновременная корректировка весов всех связей.

Обозначения:

В алгоритме обучения сети используются следующие обозначения:

X Входной вектор обучающих данных X = (X 1 , X 2 ,...,X i ,...,X n).
t Вектор целевых выходных значений, предоставляемых учителем t = (t 1 , t 2 ,...,t k ,...,t m)
σ k Составляющая корректировки весов связей w jk , соответствующая ошибке выходного нейрона Y k ; также, информация об ошибке нейрона Y k , которая распространяется тем нейронам скрытого слоя, которые связаны с Y k .
σ j Составляющая корректировки весов связей v ij , соответствующая распространяемой от выходного слоя к скрытому нейрону Z j информации об ошибке.
a Скорость обучения.
X i Нейрон на входе с индексом i. Для входных нейронов входной и выходной сигналы одинаковы - X i .
v oj Смещение скрытого нейрона j.
Z j Скрытый нейрон j; Суммарное значение подаваемое на вход скрытого элемента Z j обозначается Z_in j: Z_in j = v oj +∑x i *v ij
Сигнал на выходе Z j (результат применения к Z_in j активационной функции) обозначается Z j: Z j = f (Z_in j)
w ok Смещение нейрона на выходе.
Y k Нейрон на выходе под индексом k; Суммарное значение подаваемое на вход выходного элемента Y k обозначается Y_in k: Y_in k = w ok + ∑ Z j *w jk . Сигнал на выходе Y k (результат применения к Y_in k активационной функции) обозначается Y k:

Функция активации

Функция активация в алгоритме обратного распространения ошибки должна обладать несколькими важными характеристиками: непрерывностью, дифференцируемостью и являться монотонно неубывающей. Более того, ради эффективности вычислений, желательно, чтобы ее производная легко находилась. Зачастую, активационная функция также является функцией с насыщением. Одной из наиболее часто используемых активационных функций является бинарная сигмоидальная функция с областью значений в (0, 1) и определенная как:

Другой широко распространенной активационной функцией является биполярный сигмоид с областью значений (-1, 1) и определенный как:


Алгоритм обучения

Алгоритм обучения выглядит следующим образом:

Инициализация весов (веса всех связей инициализируются случайными небольшими значениями).

До тех пор пока условие прекращения работы алгоритма неверно, выполняются шаги 2 - 9.

Для каждой пары { данные, целевое значение } выполняются шаги 3 - 8.

Распространение данных от входов к выходам:

Шаг 3.
Каждый входной нейрон (X i , i = 1,2,...,n) отправляет полученный сигнал X i всем нейронам в следующем слое (скрытом).

Каждый скрытый нейрон (Z j , j = 1,2,...,p) суммирует взвешенные входящие сигналы: z_in j = v oj + ∑ x i *v ij и применяет активационную функцию: z j = f (z_in j) После чего посылает результат всем элементам следующего слоя (выходного).

Каждый выходной нейрон (Y k , k = 1,2,...m) суммирует взвешенные входящие сигналы: Y_in k = w ok + ∑ Z j *w jk и применяет активационную функцию, вычисляя выходной сигнал: Y k = f (Y_in k).

Обратное распространение ошибки:

Каждый выходной нейрон (Y k , k = 1,2,...m) получает целевое значение - то выходное значение, которое является правильным для данного входного сигнала, и вычисляет ошибку: σ k = (t k - y k)*f " (y_in k), так же вычисляет величину, на которую изменится вес связи w jk: Δw jk = a * σ k * z j . Помимо этого, вычисляет величину корректировки смещения: Δw ok = a*σ k и посылает σ k нейронам в предыдущем слое.

Каждый скрытый нейрон (z j , j = 1,2,...p) суммирует входящие ошибки (от нейронов в последующем слое) σ_in j = ∑ σ k * w jk и вычисляет величину ошибки, умножая полученное значение на производную активационной функции: σ j = σ_in j * f " (z_in j), так же вычисляет величину, на которую изменится вес связи vij: Δv ij = a * σ j * x i . Помимо этого, вычисляет величину корректировки смещения: v oj = a * σ j

Шаг 8. Изменение весов.

Каждый выходной нейрон (y k , k = 1,2,...,m) изменяет веса своих связей с элементом смещения и скрытыми нейронами: w jk (new) = w jk (old) + Δw jk
Каждый скрытый нейрон (z j , j = 1,2,...p) изменяет веса своих связей с элементом смещения и выходными нейронами: v ij (new) = v ij (old) + Δv ij

Проверка условия прекращения работы алгоритма.
Условием прекращения работы алгоритма может быть как достижение суммарной квадратичной ошибкой результата на выходе сети предустановленного заранее минимума в ходе процесса обучения, так и выполнения определенного количества итераций алгоритма. В основе алгоритма лежит метод под названием градиентный спуск. В зависимости от знака, градиент функции (в данном случае значение функции - это ошибка, а параметры - это веса связей в сети) дает направление, в котором значения функции возрастают (или убывают) наиболее стремительно.

Алгоритм обратного распространения ошибки (Back propagation algorithm)

Синонимы: Алгоритм BackProp, Алгоритм Back Propagation, BackProp

Loginom: Нейросеть (классификация) (обработчик), Нейросеть (регрессия) (обработчик)

Алгоритм обратного распространения ошибки - популярный алгоритм обучения плоскослоистых нейронных сетей прямого распространения (многослойных персептронов). Относится к методам обучения с учителем , поэтому требует, чтобы в обучающих примерах были заданы целевые значения. Также является одним из наиболее известных алгоритмов машинного обучения.

В основе идеи алгоритма лежит использование выходной ошибки нейронной сети:

для вычисления величин коррекции весов нейронов в её скрытых слоях, где - число выходных нейронов сети, - целевое значение, - фактическое выходное значение. Алгоритм является итеративным и использует принцип обучения «по шагам» (обучение в режиме on-line), когда веса нейронов сети корректируются после подачи на её вход одного обучающего примера.

На каждой итерации происходит два прохода сети – прямой и обратный. На прямом входной вектор распространяется от входов сети к её выходам и формирует некоторый выходной вектор, соответствующий текущему (фактическому) состоянию весов. Затем вычисляется ошибка нейронной сети, как разность между фактическим и целевым значениями. На обратном проходе эта ошибка распространяется от выхода сети к её входам, и производится коррекция весов нейронов в соответствии с правилом:

где - вес i-й связи j-го нейрона, - параметр скорости обучения, который позволяет дополнительно управлять величиной шага коррекции с целью более точной настройки на минимум ошибки и подбирается экспериментально в процессе обучения (изменяется в интервале от 0 до 1).

Учитывая, что выходная сумма j-го нейрона равна

можно показать, что

Из последнего выражения следует, что дифференциал активационной функции нейронов сети должен существовать и не быть равным нулю в любой точке, т.е. активационная функция должна быть дефференцируема на всей числовой оси. Поэтому для применения метода обратного распространения используют сигмоидальные активационные функции, такие как логистическая или гиперболический тангенс.

Таким образом, алгоритм использует так называемый стохастический градиентный спуск, «продвигаясь» в многомерном пространстве весов в направлении антиградиента с целью достичь минимума функции ошибки.

На практике, обучение продолжают не до точной настройки сети на минимум функции ошибки, а до тех пор, пока не будет достигнуто достаточно точное его приближение. Это позволит с одной стороны, уменьшить число итераций обучения, а с другой – избежать переобучения сети.

В настоящее время разработано множество модификаций алгоритма обратного распространения. Например, используется обучение не «по шагам», когда выходная ошибка вычисляется, а веса корректируются на каждом примере, а «по эпохам» в режиме off-line , когда изменение весов производится после подачи на вход сети всех примеров обучающего множества, а ошибка усредняется по всем примерам.

Обучение «по эпохам» является более устойчивым к выбросам и аномальным значениям целевой переменной за счёт усреднения ошибки по многим примерам. Но при этом повышается вероятность «застревания» алгоритма в локальных минимумах. Вероятность этого для обучения «по шагам» меньше, поскольку использование отдельных примеров создаёт «шум», который «выталкивает» алгоритм из ям градиентного рельефа.

К преимуществам алгоритма обратного распространения ошибки относятся простота реализации и устойчивость к аномалиям и выбросам в данных. К недостаткам можно отнести:

  • неопределённо долгий процесс обучения:
  • возможность «паралича сети», когда при больших значениях рабочая точка активационной функции оказывается в области насыщения сигмоиды и производная в выражении (1) становится близкой к 0, а коррекции весов практически не происходит и процесс обучения «замирает»;
  • уязвимость алгоритма к попаданию в локальные минимумы функции ошибки.

Впервые алгоритм был описан в 1974 г.

Обратное распространение ошибки - стандартный способ обучения нейронной сети, хотя существуют и другие методы (о них в одной из следующих глав). Принцип работы примерно такой:

1. Входной набор данных, на котором сеть должна быть обучена, подается на входной слой сети, и сеть функционирует в нормальном режиме (т.е. вычисляет выходные данные).

2. Полученные данные сравниваются с известными выходными данными для рассматриваемого входного набора. Разница между полученными и известными (опытными) данными - вектор ошибки.


3. Вектор ошибки используется для модифицирования весовых коэффициентов выходного слоя с тем, чтобы при повторной подаче того же набора входных данных вектор ошибки уменьшался.

4. Затем таким же образом модифицируются весовые коэффициенты скрытого слоя, на этот раз сравниваются выходные сигналы нейронов скрытого слоя и входные сигналы нейронов выходного слоя, целью данного сравнения является формирование вектора ошибки для скрытого слоя.

5. Наконец, если в сети существует входной слой (именно слой, а не ряд входных значений), то проводятся аналогичные действия и с ним.

Следует заметить, что ошибка может быть распространена на любой желаемый уровень (т.е. в нейронной сети может быть неограниченное количество скрытых слоев, для которых мы рассчитываем вектор ошибки по одной и той же схеме). Метод обратного распространения ошибки напоминает мне волны прибоя, - входные сигналы движутся в сторону выходного слоя (т.е. берега), а ошибки - в обратном направлении (как и морская волна вынуждена в конечном счете отступить от суши).

Сеть обучается путем предъявления каждого входного набора данных и последующего распространения ошибки. Этот цикл повторяется много раз. Например, если вы распознаете цифры от 0 до 9, то сначала обрабатывается символ "0", символ "1" и так далее до "9", затем весь цикл повторяется много раз. Не следует поступать иначе, а именно, обучать сеть по отдельности сначала символу "0" (n-ое количество раз), потом "1", потом "2" и т.д., т.к. сеть вырабатывает очень "четкие" весовые коэффициенты для последнего входного набора (то есть для "9"), "забывая" предыдущие. Например, к тысячному повтору обучения символу "1" теряются весовые коэффициенты для распознавания символа "0". Повторяя весь цикл для всего словарного набора входных данных, мы предполагаем, что каждый символ оказывает равноправное влияние на значения весовых коэффициентов.

Запомните
Обозначим через переменную NUM_HID количество нейронов в скрытом слое (нумерация начинается с индекса 1). NUM_OUT - количество нейронов в выходном слое.

Обратное распространение и формулы.
А теперь, настройтесь! Я собираюсь привести ниже множество математических выкладок.

    Во-первых, инициализируем пороговые значения и весовые коэффициенты небольшими случайными величинами (не более 0.4)

    Теперь прогоним сеть в режиме прямого функционирования - процедура run_network (см. прошлую главу)

    Вычислим ошибки для выходного слоя. При этом мы используем следующую формулу для каждого i-ого значения выходного слоя (т.е. проходим по всем узлам выходного слоя):

    E i = (t i - a i).a i .(1 - a i)

    Здесь E i - ошибка для i-ого узла выходного слоя, a i - активность данного узла, t i - требуемая активность для него же (т.е. требуемое выходное значение).

    Вот код на паскале:

    procedure calculate_output_layer_errors; var i : byte; {for loop variable} begin for i: = 1 to NUM_OUT do with ol[ i] do E: = (desired_output[ i] - a) * a * (1 - a) end ;

    Здесь видно, почему я ввел переменную для ошибки непосредственно в описание нейрона. Благодаря этому становится ненужным создание отдельного массива для значений ошибки.

    Сейчас мы можем использовать значения ошибок выходного слоя для определения ошибок в скрытом слое. Формула практически та же, но теперь не определены желаемые выходные значения. - Мы вычисляем взвешенную сумму значений ошибок выходного слоя:

    E i = a i . (1 - a i) . S j E j .w ij

    Смысл переменных по сравнению с прошлой формулой изменился незначительно. индекс i используется для нейронов скрытого слоя (а не выходного), E i , следовательно, значение ошибки для нейрона скрытого слоя, и a i - сигнал на выходе нейрона. Индекс j относится к нейронам выходного слоя: wij - вес (весовой коэффициент) связи между i-ым скрытым нейроном и j-ым выходным нейроном, а E j - значение ошибки для выходного нейрона j. Суммирование проводится для всех весов связей между отдельно взятым i-ым нейроном и всеми нейронами выходного слоя.

    И вновь турбо паскаль. Обратите внимание, что сумма включает в себя взвешенные связи только между рассматриваемым в данный момент нейроном скрытого слоя и всеми нейронами выходного слоя.

    procedure calculate_hidden_layer_errors; var i,j : byte; sum : real ; begin for i: = 1 to NUM_HID do {обсчитываем весь скрытый слой} with hl[ i] do begin sum: = 0; {sum error values from O/P layer} for j: = 1 to NUM_OUT do sum: = sum + ol[ j] .E * ol[ j] .w[ i] {только веса, относящиеся к нейрону i} E: = a * (1 - a) * sum {no other w value} end ; end ;
  • Полученные значения ошибок для выходного слоя мы используем для изменения весовых коэффициентов между скрытым и выходным слоями.Мы должны вычислить все значения ошибок до модификации весовых коэффициентов, так как в формуле присутствуют и старые значения весов. Если же мы вычислим сначала весовые коэффициенты, а уже затем - значения ошибок, то процесс обучения застопорится.

    Применяем уравнение:

    new w ij = old w ij + h.d j .x i

    где w ij - вес связи между нейроном i скрытого слоя и нейроном j выходного, d j - приращение ошибки для выходного нейрона j и x i - сигнал на выходе скрытого нейрона i, h - константа. Эта константа используется для того, чтобы обучение не проводилось слишком быстро, то есть весовые коэффициенты не изменялись слишком сильно за один шаг обучения (что является причиной прыжков сходимости при обучении сети).

    А как насчет пороговых уровней нейронов? Они также инициализируются небольшими случайными числами и нуждаются в обучении. Пороговые уровни трактуются так же, как и весовые коэффициенты, за исключением того, что входные значения для них всегда равны -1 (знак минуса - т.к. уровни вычитаеются во время функционирования сети):

    new threshold = old threshold + h.d j .(-1)

    или (в более удобном виде):

    new threshold = old threshold - h.d j

    Данная процедура обучает весовые коэффициенты и пороговые уровни:

    В этом коде я использовал j для индексирования узлов выходного слоя, чтобы привести в соответствие с уравнением (т.е. E соответствует d j ). Таким же образом hl[i].out соответствует x i , а w[i] - w ij .

  • Наконец, мы должны модифицировать веса скрытого слоя. В реальности, если имеются дополнительные слои, приведенный код также работает.

    procedure update_hidden_weights; const LEARNING_RATE = 0.025; {нет никаких причин, чтобы это значение не отличалось от использованного для выходных узлов} var i,j : byte; begin for j : = 1 to NUM_HID do {обходим все скрытые узлы} with hl[ j] do begin {обрабатываем все связи от входного слоя к этому узлу} for i : = 1 to NUM_INP do w[ i] : = w[ i] + LEARNING_RATE * E * test_pat[ i] ; {модифицируем пороговый уровень этого узла} threshold : = threshold - LEARNING_RATE * E end end ;

Все то же самое на JAVA
Ниже приведена реализация нейронной сети, обучаемой методом обратного распространения ошибки на JAVA:

Если вам нужен исходный текст, то кликните . Конечно же, изменяйте его как хотите.

Если вам нуже скомпилированный код, который вы конечно же можете включить в свою веб-страницу, то кликните .

Сеть, как она здесь представлена, имеет фиксированное количество входов (6) и фиксированное количество выходов (5). Скрытые узлы в середине изображены синими кружками.

Обучающие наборы представлены по левую сторону. Для того, чтобы изменить входные наборы, желаемые выходные наборы, кликните на столбец из шести входных квадратов или на столбец из пяти выходных квадратов. Каждый клик мышью затемняет квадрат (белый - 0, светлосерый - 0.3, темносерый - 0.7, черный - 1).

Эта комбинация, например, обозначает, что для входного набора установлены данные (1, 0, 0, 0.3, 0, 0.7), а для выходного набора - (0, 0, 0.7, 0.7, 0). Кликните на символ + или - (около словосочетания "Training patterns") для изменения количества наборов.

Для того, чтобы обучить сеть, кликните на кнопку "Train". Для тестирования сети введите значение компонента входного набора в слот наверху, а затем кликните на компонент входного набора (на одно из тех текстовых значений в рамке слева на структурной схеме сети). Запустите сеть - кнопка "Run"

Итак, сегодня мы продолжим обсуждать тему нейронных сетей на нашем сайте, и, как я и обещал в первой статье (), речь пойдет об обучении сетей . Тема эта очень важна, поскольку одним из основных свойств нейронных сетей является именно то, что она не только действует в соответствии с каким-то четко заданным алгоритмом, а еще и совершенствуется (обучается) на основе прошлого опыта. И в этой статье мы рассмотрим некоторые формы обучения, а также небольшой практический пример.

Давайте для начала разберемся, в чем же вообще состоит цель обучения. А все просто – в корректировке весовых коэффициентов связей сети. Одним из самых типичных способов является управляемое обучение . Для его проведения нам необходимо иметь набор входных данных, а также соответствующие им выходные данные. Устанавливаем весовые коэффициенты равными некоторым малым величинам. А дальше процесс протекает следующим образом…

Мы подаем на вход сети данные, после чего сеть вычисляет выходное значение. Мы сравниваем это значение с имеющимся у нас (напоминаю, что для обучения используется готовый набор входных данных, для которых выходной сигнал известен) и в соответствии с разностью между этими значениями корректируем весовые коэффициенты нейронной сети. И эта операция повторяется по кругу много раз. В итоге мы получаем обученную сеть с новыми значениями весовых коэффициентов.

Вроде бы все понятно, кроме того, как именно и по какому алгоритму необходимо изменять значение каждого конкретного весового коэффициента. И в сегодняшней статье для коррекции весов в качестве наглядного примера мы рассмотрим правило Видроу-Хоффа , которое также называют дельта-правилом .

Дельта правило (правило Видроу-Хоффа).

Определим ошибку :

Здесь у нас – это ожидаемый (истинный) вывод сети, а – это реальный вывод (активность) выходного элемента. Помимо выходного элемента ошибки можно определить и для всех элементов скрытого слоя нейронной сети, об этом мы поговорим чуть позже.

Дельта-правило заключается в следующем – изменение величины весового коэффициента должно быть равно:

Где – норма обучения. Это число мы сами задаем перед началом обучения. – это сигнал, приходящий к элементу k от элемента j . А – ошибка элемента k .

Таким образом, в процессе обучения на вход сети мы подаем образец за образцом, и в результате получаем новые значения весовых коэффициентов. Обычно обучение заканчивается когда для всех вводимых образцов величина ошибки станет меньше определенной величины. После этого сеть подвергается тестированию при помощи новых данных, которые не участвовали в обучении. И по результатам этого тестирования уже можно сделать выводы, хорошо или нет справляется сеть со своими задачами.

С корректировкой весов все понятно, осталось определить, каким именно образом и по какому алгоритму будут происходить расчеты при обучении сети. Давайте рассмотрим обучение по алгоритму обратного распространения ошибок.

Алгоритм обратного распространения ошибок.

Этот алгоритм определяет два “потока” в сети. Входные сигналы двигаются в прямом направлении, в результате чего мы получаем выходной сигнал, из которого мы получаем значение ошибки. Величина ошибки двигается в обратном направлении, в результате происходит корректировка весовых коэффициентов связей сети. В конце статьи мы рассмотрим пример, наглядно демонстрирующий эти процессы.

Итак, для корректировки весовых значений мы будем использовать дельта-правило, которое мы уже обсудили. Вот только необходимо определить универсальное правило для вычисления ошибки каждого элемента сети после, собственно, прохождения через элемент (при обратном распространении ошибок).

Я, пожалуй, не буду приводить математические выводы и расчеты (несмотря на мою любовь к математике 🙂), чтобы не перегружать статью, ограничимся только итоговыми результатами:

Функция – это функция активности элемента. Давайте использовать логистическую функцию, для нее:

Подставляем в предыдущую формулу и получаем величину ошибки:

В этой формуле:

Наверняка сейчас еще все это кажется не совсем понятным, но не переживайте, при рассмотрении практического примера все встанет на свои места 😉

Собственно, давайте к нему и перейдем.

Перед обучением сети необходимо задать начальные значения весов – обычно они инициализируются небольшими по величине случайными значениями, к примеру из интервала (-0.5, 0.5). Но для нашего примера возьмем для удобства целые числа.

Рассмотрим нейронную сеть и вручную проведем расчеты для прямого и обратного “потоков” в сети.

На вход мы должны подать образец, пусть это будет (0.2, 0.5) . Ожидаемый выход сети – 0.4 . Норма обучения пусть будет равна 0.85 . Давайте проведем все расчеты поэтапно. Кстати, совсем забыл, в качестве функции активности мы будем использовать логистическую функцию:

Итак, приступаем…

Вычислим комбинированный ввод элементов 2 , 3 и 4 :

Активность этих элементов равна:

Комбинированный ввод пятого элемента:

Активность пятого элемента и в то же время вывод нейронной сети равен:

С прямым “потоком” разобрались, теперь перейдем к обратному “потоку”. Все расчеты будем производить в соответствии с формулами, которые мы уже обсудили. Итак, вычислим ошибку выходного элемента:

Тогда ошибки для элементов 2 , 3 и 4 равны соответственно:

Здесь значения -0.014, -0.028 и -0.056 получаются в результате прохода ошибки выходного элемента –0.014 по взвешенным связям в направлении к элементам 2 , 3 и 4 соответственно.

И, наконец-то, рассчитываем величину, на которую необходимо изменить значения весовых коэффициентов. Например, величина корректировки для связи между элементами 0 и 2 равна произведению величины сигнала, приходящего в элементу 2 от элемента 0 , ошибки элемента 2 и нормы обучения (все по дельта-правилу, которое мы обсудили в начале статьи):

Аналогичным образом производим расчеты и для остальных элементов:

Теперь новые весовые коэффициенты будут равны сумме предыдущего значения и величины поправки.

На этом обратный проход по сети закончен, цель достигнута 😉 Именно так и протекает процесс обучения по алгоритму обратного распространения ошибок. Мы рассмотрели этот процесс для одного набора данных, а чтобы получить полностью обученную сеть таких наборов должно быть, конечно же, намного больше, но алгоритм при этом остается неизменным, просто повторяется по кругу много раз для разных данных)

По просьбе читателей блога я решил добавить краткий пример обучения сети с двумя скрытыми слоями:

Итак, добавляем в нашу сеть два новых элемента (X и Y), которые теперь будут выполнять роль входных. На вход также подаем образец (0.2, 0.5) . Рассмотрим алгоритм в данном случае:

1. Прямой проход сети. Здесь все точно также как и для сети с одним скрытым слоем. Результатом будет значение .

2. Вычисляем ошибку выходного элемента:

3. Теперь нам нужно вычислить ошибки элементов 2, 3 и 4.

В многослойных нейронных сетях оптимальные выходные значения нейронов всех слоев, кроме последнего, как правило, неизвестны трех- или более слойный персептрон уже невозможно обучить, руководствуясь только величинами ошибок на выходах сети

Один из вариантов решения этой проблемы - разработка наборов выходных сигналов, соответствующих входным, для каждого слоя нейронной сети, что, конечно, является очень трудоемкой операцией и не всегда осуществимо Второй вариант - динамическая подстройка весовых коэффициентов синапсов, в ходе которой выбираются, как правило, наиболее слабые связи и изменяются на малую величину в ту или иную сторону, а сохраняются только те изменения, которые повлекли уменьшение ошибки на выходе всей сети Очевидно, что данный метод, несмотря на

кажущуюся простоту, требует громоздких рутинных вычислений И, наконец, третий, более приемлемый вариант - распространение сигналов ошибки от выходов нейронной сети к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы Этот алгоритм обучения получил название процедуры обратного распространения ошибки (error back propagation) Именно он рассматривается ниже

Алгоритм обратного распространения ошибки - это итеративный градиентный алгоритм обучения, который используется с целью минимизации среднеквадратичного отклонения текущих от требуемых выходов многослойных нейронных сетей с последовательными связями

Согласно методу наименьших квадратов, минимизируемой целевой функцией ошибки нейронной сети является величина

где - реальное выходное состояние нейрона у выходного слоя нейронной сети при подаче на ее входы образа, требуемое выходное состояние этого нейрона

Суммирование ведется по всем нейронам выходного слоя и по всем обрабатываемым сетью образам Минимизация методом градиентного спуска обеспечивает подстройку весовых коэффициентов следующим образом

где - весовой коэффициент синаптической связи, соединяющей нейрон слоя нейроном слоя - коэффициент скорости обучения,

В соответствии с правилом дифференцирования сложной функции

где - взвешенная сумма входных сигналов нейрона аргумент активационной функции Так как производная активационной функции должна быть определена на всей оси абсцисс, то функция единичного скачка и прочие активационные функции с неоднородностями не подходят для рассматриваемых нейронных сетей В них применяются такие гладкие функции, как гиперболический тангенс или классический сигмоид с экспонентой (см табл 1 1) Например, в случае гиперболического тангенса

Третий множитель равен выходу нейрона предыдущего слоя

Что касается первого множителя в (1.11), он легко раскладывается следующим образом:

Здесь суммирование по выполняется среди нейронов слоя Введя новую переменную:

получим рекурсивную формулу для расчетов величин слоя из величин более старшего слоя

Для выходного слоя:

Теперь можно записать (1.10) в раскрытом виде:

Иногда для придания процессу коррекции весов некоторой инерционности, сглаживающей резкие скачки при перемещении по поверхности целевой функции, (1.17) дополняется значением изменения веса на предыдущей итерации.

где коэффициент инерционности; номер текущей итерации.

Таким образом, полный алгоритм обучения нейронной сети с помощью процедуры обратного распространения строится следующим образом.

ШАГ 1. Подать на входы сети один из возможных образов и в режиме обычного функционирования нейронной сети, когда сигналы распространяются от входов к выходам, рассчитать значения последних. Напомним, что:

где - число нейронов в слое с учетом нейрона с постоянным выходным состоянием задающего смещение; вход нейрона у слоя

где - сигмоид,

где компонента вектора входного образа.

ШАГ 4. Скорректировать все веса в нейронной сети:

ШАГ 5. Если ошибка сети существенна, перейти на шаг 1. В противном случае - конец.

Сети на шаге 1 попеременно в случайном порядке предъявляются все тренировочные образы, чтобы сеть, образно говоря, не забывала одни по мере запоминания других.

Из выражения (1.17) следует, что когда выходное значение стремится к нулю, эффективность обучения заметно снижается. При двоичных входных векторах в среднем половина весовых коэффициентов не будет корректироваться, поэтому область возможных значений выходов нейронов желательно сдвинуть в пределы что достигается простыми модификациями логистических функций. Например, сигмоид с экспонентой преобразуется к виду:

Рассмотрим вопрос о емкости нейронной сети, т. е. числа образов, предъявляемых на ее входы, которые она способна научиться распознавать. Для сетей с числом слоев больше двух, этот вопрос остается открытым. Для сетей с двумя слоями, детерминистская емкость сети оценивается следующим образом:

где - число подстраиваемых весов, - число нейронов в выходном слое.

Данное выражение получено с учетом некоторых ограничений. Во-первых, число входов и нейронов в скрытом слое должно удовлетворять неравенству Во-вторых, Однако приведенная оценка выполнена для сетей с пороговыми активационными функциями нейронов, а емкость сетей с гладкими активационными функциями, например (1.23), обычно больше. Кроме того, термин детерминистский означает, что полученная оценка емкости подходит для всех входных образов, которые могут быть представлены входами. В действительности распределение входных образов, как правило, обладает некоторой регулярностью, что позволяет нейронной сети проводить обобщение и, таким образом, увеличивать реальную емкость. Так как распределение образов, в общем случае, заранее не известно, можно говорить о реальной емкости только предположительно, но обычно она раза в два превышает детерминистскую емкость.

Вопрос о емкости нейронной сети тесно связан с вопросом о требуемой мощности выходного слоя сети, выполняющего окончательную классификацию образов. Например, для разделения множества входных образов по двум классам достаточно одного выходного нейрона. При этом каждый логический уровень будет обозначать отдельный класс. На двух выходных нейронах с пороговой функцией активации можно закодировать уже четыре класса. Для повышения достоверности классификации желательно ввести избыточность путем выделения каждому классу одного нейрона в выходном слое или, что еще лучше, нескольких, каждый из которых обучается определять принадлежность образа к классу со своей степенью достоверности, например: высокой, средней и низкой. Такие нейронные сети позволяют проводить классификацию входных образов, объединенных в нечеткие (размытые или пересекающиеся) множества. Это свойство приближает подобные сети к реальным условиям функционирования биологических нейронных сетей.

Рассматриваемая нейронная сеть имеет несколько «узких мест». Во-первых, в процессе большие положительные или отрицательные значения весов могут сместить рабочую точку на сигмоидах нейронов в область насыщения. Малые величины производной от логистической функции приведут в соответствии с (1.15) и (1.16) к остановке обучения, что парализует сеть. Во-вторых, применение метода градиентного спуска не гарантирует нахождения глобального минимума целевой функции. Это тесно связано вопросом выбора скорости обучения. Приращения весов и, следовательно, скорость обучения для нахождения экстремума должны быть бесконечно малыми, однако в этом случае обучение будет

происходить неприемлемо медленно. С другой стороны, слишком большие коррекции весов могут привести к постоянной неустойчивости процесса обучения. Поэтому в качестве коэффициента скорости обучения 1] обычно выбирается число меньше 1 (например, 0,1), которое постепенно уменьшается в процессе обучения. Кроме того, для исключения случайных попаданий сети в локальные минимумы иногда, после стабилизации значений весовых коэффициентов, 7 кратковременно значительно увеличивают, чтобы начать градиентный спуск из новой точки. Если повторение этой процедуры несколько раз приведет сеть в одно и то же состояние, можно предположить, что найден глобальный минимум.

Существует другой метод исключения локальных минимумов и паралича сети, заключающийся в применении стохастических нейронных сетей.

Дадим изложенному геометрическую интерпретацию.

В алгоритме обратного распространения вычисляется вектор градиента поверхности ошибок. Этот вектор указывает направление кратчайшего спуска по поверхности из текущей точки, движение по которому приводит к уменьшению ошибки. Последовательность уменьшающихся шагов приведет к минимуму того или иного типа. Трудность здесь представляет вопрос подбора длины шагов.

При большой величине шага сходимость будет более быстрой, но имеется опасность перепрыгнуть через решение или в случае сложной формы поверхности ошибок уйти в неправильном направлении, например, продвигаясь по узкому оврагу с крутыми склонами, прыгая с одной его стороны на другую. Напротив, при небольшом шаге и верном направлении потребуется очень много итераций. На практике величина шага берется пропорциональной крутизне склона, так что алгоритм замедляет ход вблизи минимума. Правильный выбор скорости обучения зависит от конкретной задачи и обычно делается опытным путем. Эта константа может также зависеть от времени, уменьшаясь по мере продвижения алгоритма.

Обычно этот алгоритм видоизменяется таким образом, чтобы включать слагаемое импульса (или инерции). Это способствует продвижению в фиксированном направлении, поэтому, если было сделано несколько шагов в одном и том же направлении, то алгоритм увеличивает скорость, что иногда позволяет избежать локального минимума, а также быстрее проходить плоские участки.

На каждом шаге алгоритма на вход сети поочередно подаются все обучающие примеры, реальные выходные значения сети сравниваются с требуемыми значениями, и вычисляется ошибка. Значение ошибки, а также градиента поверхности ошибок

используется для корректировки весов, после чего все действия повторяются. Процесс обучения прекращается либо когда пройдено определенное количество эпох, либо когда ошибка достигнет некоторого определенного малого уровня, либо когда ошибка перестанет уменьшаться.

Рассмотрим проблемы обобщения и переобучения нейронной сети более подробно. Обобщение - это способность нейронной сети делать точный прогноз на данных, не принадлежащих исходному обучающему множеству. Переобучение же представляет собой чрезмерно точную подгонку, которая имеет место, если алгоритм обучения работает слишком долго, а сеть слишком сложна для такой задачи или для имеющегося объема данных.

Продемонстрируем проблемы обобщения и переобучения на примере аппроксимации некоторой зависимости не нейронной сетью, а посредством полиномов, при этом суть явления будет абсолютно та же.

Графики полиномов могут иметь различную форму, причем, чем выше степень и число членов, тем более сложной может быть эта форма. Для исходных данных можно подобрать полиномиальную кривую (модель) и получить, таким образом, объяснение имеющейся зависимости. Данные могут быть зашумлены, поэтому нельзя считать, что лучшая модель в точности проходит через все имеющиеся точки. Полином низкого порядка может лучше объяснять имеющуюся зависимость, однако, быть недостаточно гибким средством для аппроксимации данных, в то время как полином высокого порядка может оказаться чересчур гибким, но будет точно следовать данным, принимая при этом замысловатую форму, не имеющую никакого отношения к настоящей зависимости.

Нейронные сети сталкивается с такими же трудностями. Сети с большим числом весов моделируют более сложные функции и, следовательно, склонны к переобучению. Сети же с небольшим числом весов могут оказаться недостаточно гибкими, чтобы смоделировать имеющиеся зависимости. Например, сеть без скрытых слоев моделирует лишь обычную линейную функцию.

Как же выбрать правильную степень сложности сети? Почти всегда более сложная сеть дает меньшую ошибку, но это может свидетельствовать не о хорошем качестве модели, а о переобучении сети.

Выход состоит в использовании контрольной кросс-проверки. Для этого резервируется часть обучающей выборки, которая используется не для обучения сети по алгоритму обратного распространения ошибки, а для независимого контроля результата в ходе алгоритма. В начале работы ошибка сети на обучающем и

контрольном множествах будет одинаковой. По мере обучения сети ошибка обучения убывает, как и ошибка на контрольном множестве. Если же контрольная ошибка перестала убывать или даже стала расти, это указывает на то, что сеть начала слишком близко аппроксимировать данные (переобучилась) и обучение следует остановить. Если это случилось, то следует уменьшить число скрытых элементов и/или слоев, ибо сеть является слишком мощной для данной задачи. Если же обе ошибки (обучения и кросспроверки) не достигнут достаточного малого уровня, то переобучения, естественно не произошло, а сеть, напротив, является недостаточно мощной для моделирования имеющейся зависимости.

Описанные проблемы приводят к тому, что при практической работе с нейронными сетями приходится экспериментировать с большим числом различных сетей, порой обучая каждую из них по несколько раз и сравнивая полученные результаты. Главным показателем качества результата является здесь контрольная ошибка. При этом, в соответствии с общесистемным принципом, из двух сетей с приблизительно равными ошибками контроля имеет смысл выбрать ту, которая проще.

Необходимость многократных экспериментов приводит к тому, что контрольное множество начинает играть ключевую роль в выборе модели и становится частью процесса обучен-ия. Тем самым ослабляется его роль как независимого критерия качества модели. При большом числе экспериментов есть большая вероятность выбрать удачную сеть, дающую хороший результат на контрольном множестве. Однако для того чтобы придать окончательной модели должную надежность, часто (когда объем обучающих примеров это позволяет) поступают следующим образом: резервируют тестовое множество примеров. Итоговая модель тестируется на данных из этого множества, чтобы убедиться, что результаты, достигнутые на обучающем и контрольном множествах примеров, реальны, а не являются артефактами процесса обучения. Разумеется, для того чтобы хорошо играть свою роль, тестовое множество должно быть использовано только один раз: если его использовать повторно для корректировки процесса обучения, то оно фактически превратится в контрольное множество.

С целью ускорения процесса обучения сети предложены многочисленные модификации алгоритма обратного распространения ошибки, связанные с использованием различных функций ошибки, процедур определения направления и величин шага.

1) Функции ошибки:

Интегральные функции ошибки по всей совокупности обучающих примеров;

Функции ошибки целых и дробных степеней

2) Процедуры определения величины шага на каждой итерации

Дихотомия;

Инерционные соотношения (см выше);

3) Процедуры определения направления шага.

С использованием матрицы производных второго порядка (метод Ньютона);

С использованием направлений на нескольких шагах (партан метод).