Школьная энциклопедия. Развитие современного научного понимания. Приборы наблюдения за Солнцем

В настоящее время Солнце активно изучается автоматическими аппаратами и солнечными обсерваториями. Но некоторые наблюдения за Солнцем можно проводить любителям и с Земли.

Что известно о Солнце?

Благодаря наземным и космическим исследованиям и знаниям, накопленным многими поколениями астрономов, мы знаем о Солнце уже очень много. Расстояние от Земли до Солнца – 149,6 миллионов километров. Средний диаметр видимой поверхности Солнца - 1392 тысячи километров, что в 109 раз превышает диаметр Земли. Масса Солнца составляет 1.98*10^30 килограммов, что в 332982 раза больше массы Земли. Таким образом, средняя плотность Солнца лишь немногим больше плотности воды и составляет 1,4 г. на кубический сантиметр. Ускорение силы тяжести на экваторе почти в 28 раз больше земного, что составляет 274 метра/секунду в квадрате. Следовательно, вторая космическая скорость на поверхности равна 617 км/сек. Ось вращения Солнца наклонена к оси эклиптики на 7,25 градуса, причем Солнце не вращается, как целое. Экваториальные области делают один оборот вокруг оси за 25,05 суток, а газу в районе полюсов на один оборот требуется 34,3 суток.

Наблюдения Солнца

Солнце изучают не только при помощи космических аппаратов. Некоторые наблюдения можно проводить в солнечный день и с Земли. На многих обсерваториях имеются специальные солнечные телескопы. Солнце очень яркое, поэтому такие телескопы делают достаточно длиннофокусными. Конструкция таких телескопов обычно состоит из зеркала гелиостата, которое направляет солнечный свет в неподвижный вертикальный или наклонный тоннель, в глубине которого расположены различные телескопы. Наиболее часто такие телескопы используют для получения подробного солнечного спектра.

С Земли Солнце мы видим как раскаленный шар. Что находится под этой оболочкой, мы увидеть не можем. Поэтому о внутреннем строении Солнца приходится судить лишь по математическим моделям. Согласно им, в центре Солнца находится горячее и компактное ядро. Радиус этого ядра равен примерно четверти всего радиуса Солнца. Объем этого ядра составляет примерно 1/64 всего объема Солнца, но в нем сосредоточен половина массы Солнца. Плотность вещества здесь превышает плотность воды в 150 раз, а температура доходит до 14-15 миллиона градусов. Здесь происходит процесс непрерывного преобразования водорода в гелий. Вещество ядра вращается вокруг своей оси с достаточно большой скоростью. За пределами ядра плотность вещества и температура падают, и термоядерные реакции проходить уже не могут. Таким образом, внешние слои служат лишь хранилищем вещества и областью прохождения света и частиц: нейтрино, образующиеся в результате ядерных реакций, со скоростью света беспрепятственно пролетают сквозь солнечное вещество и уходят в межпланетное и межзвездное пространство. Фотоны (кванты света) почти сразу же поглощаются ядрами водорода или гелия. Фотоны, непрерывно поглощаясь и излучаясь, путешествуют внутри Солнца. Чтобы энергия, выделившаяся в результате ядерных реакций, достигла поверхности Солнца, требуется около 170 тысяч лет. А вот на поверхности Солнца уже образуются фотоны самых различных энергий, причем часть из них приходится на видимый диапазон.

Между ядром и зоной конвективного переноса расположена зона лучистого переноса. В этой зоне и происходит тот процесс переизлучения фотонов, о котором было сказано ранее.
Внешнюю часть конвективной зоны окружает тонкий слой Солнечной атмосферы, который называется фотосферой. Именно здесь рождается окончательно тот солнечный свет, который мы видим. Это тонкий слой. Его толщина всего несколько сотен километров, с Земли мы видим резкий край солнечного диска. Поверхность Солнца является с точки зрения физики абсолютно черным телом, так как фотосфера Солнца поглощает весь падающий на нее свет. Но все нагретые тела излучают свет тем больше и с тем большей энергией, чем выше их температура. Температура фотосферы составляет 5778 Кельвинов (или 5505 градусов Цельсия).

Солнечные пятна

В фотосфере и находятся широко известные солнечные пятна - области на поверхности фотосферы с температурой примерно на 2000 градусов ниже, чем в областях, лишенных пятен. Пятна являются углублением в фотосфере Солнца с глубиной около 700 километров. Можно увидеть, что при приближении к краю диска Солнца солнечное пятно не только сужается, но становится несимметричной форма полутени. При хорошей стабильности атмосферы можно также заметить внутреннюю структуру тени, на темном дне которой появляются яркие точки с диаметром до 100 километров. Время жизни таких точек очень мало, не более минуты. Структура полутени заметна лучше и состоит она из серии радиальных волокон, идущих от тени к краю пятна. Пятна – самые заметные детали на Солнце. Даже в небольшой телескоп можно увидеть причудливой формы темную тень, окруженную менее плотной полутенью. Часто пятна образуют группы. Если проследить за отдельным пятном на протяжении нескольких дней, можно заметить, как оно перемещается по диску из-за вращения Солнца вокруг оси, при этом пятна меняют свою форму и размеры. Мелкие пятна могут исчезнуть за несколько дней. Интересно увидеть эффект Вильсона, наблюдая за пятном, приближающимся к краю диска. Эффект Ви́льсона - изменение видимой формы солнечного пятна в зависимости от его положения на диске Солнца. Состоит в том, что, если пятно находится вблизи лимба Солнца, ближайшая к лимбу сторона полутени пятна кажется толще, чем удалённая от неё. Эффект вызван тем, что солнечная плазма в солнечном пятне несколько холоднее и разреженнее, а следовательно - прозрачнее, чем в окружающей фотосфере. Таким образом, в пятне видимый свет исходит с большей глубины, поэтому можно считать, что солнечное пятно имеет форму блюдцеобразного понижения в солнечной атмосфере глубиной около 500-700 километров ниже уровня фотосферы. Если плоскость такого пятна не перпендикулярна оси зрения наблюдателя, то его дальний край выглядит шире, чем передний.

На картинке: эффект Вильсона на примере обычного блюдца. Синий цвет соответствует полутени пятна, белый - его тени.

Кроме пятен, в фотосфере можно наблюдать факелы . Факелами называются яркие области вблизи солнечных пятен. Несколько сложнее увидеть факелы, окружающие пятна. Они имеют вид ярких точек и волокон различной формы. Легче всего увидеть факелы на краю диска Солнца, поскольку диск Солнца к краю становится менее ярким. А вот чтобы увидеть грануляцию, требуется объективный солнечный фильтр и объектив с диаметром не менее 70 мм. Если повезет увидеть факельное поле, то желательно отметить его местоположение на диске и оценить его яркость и характеристику. Яркость факелов можно оценить баллом от 0 до 4, где балл 0 обозначает слабый, едва заметный факел, балл 1 - слабый, но вполне заметный факел, балл 2 - факел средней яркости, балл 3 - яркий факел и балл 4 - очень яркий факел. Структура факелов может быть трех видов: I - однородное факельное поле или несколько однородных участков; II - факельное поле, имеющее волокнистую структуру; III - факельное поле с точечной структурой.

Хромосфера

Над фотосферой расположен слой толщиной в несколько тысяч километров, в котором температура с удалением от Солнца повышается от 5500 градусов до нескольких десятков тысяч градусов, причем достаточно неравномерно. Участок с температурами выше 10000 градусов невелик, он называется хромосферой . Яркость излучения хромосферы мала, увидеть ее можно только во время солнечного затмения, когда яркий диск Солнца закрыт диском Луны, а также в специальные солнечные телескопы. Чтобы увидеть структуру хромосферы, необходимо, чтобы полуширина пропускания фильтра составляла доли нанометров.

Образования в хромосфере

В хромосфере наблюдается целый ряд специфических образований. Во-первых, это хромосферная сетка . Она состоит из многочисленных темных линий, покрывающих всю поверхность Солнца и обрамляющая гранулы. В области солнечных пятен часто наблюдаются светлые пятна неясно выраженных очертаний - флоккулы .

Время от времени на светлой поверхности солнечного диска видно как будто трещины – фибриллы, или волокна. Но самые эффектные явления наблюдаются на краю диска. Это многокилометровые фонтаны, достигающие иногда высоты в 40 тысяч километров, они называются спикулами . Они напоминают огненную траву на краю диска Солнца. Как правило, спикулы живут недолго: от 2 до 10 минут. Но старые спикулы разрушаются, а взамен им вырастают новые. Самые большие спикулы развиваются до часа и более.

Внешняя часть атмосферы Солнца

Самая внешняя часть атмосферы Солнца состоит из огромных вытянутых протуберанцев и энергетических выбросов . Несмотря на то, что температура солнечной короны составляет несколько миллионов градусов, а иногда в некоторых областях доходит до десятков миллионов градусов, вещество здесь крайне разрежено и яркость короны невелика.

Хорошо корона видна только в моменты полных солнечных затмений в виде многочисленных светлых языков, расходящихся далеко от Солнца. Видимые размеры короны меняются в зависимости от активности Солнца. В моменты минимума она имеет небольшие размеры и достаточно равномерна. Иногда наблюдатели отмечали даже почти полное отсутствие короны. Чем ближе к максимуму Солнца, тем она ярче, крупнее и «растрепаннее».

Солнечная корона неоднородна : высокая температура чередуется с участками со сравнительно низкой температурой порядка 600 тысяч градусов. В таких участках заряженные частицы беспрепятственно покидают Солнце и превращаются в солнечный ветер.

Особенности наблюдения Солнца

Для наблюдения Солнца не требуется особо большого телескопа. Наблюдать Солнце нужно грамотно, иначе можно получить серьезные травмы глаза. В инструкции к любому телескопу обычно большими буквами написано, что ни в коем случае нельзя смотреть на Солнце без специального солнечного фильтра.
Солнечные фильтры бывают разными. Некоторые телескопы комплектуются специальным солнечным фильтром, который надевается на окуляр или вкручивается в него. Но пользоваться таким фильтром бывает очень опасно, т.к. зеркала (или линзы) телескопа собирают довольно много света, весь этот свет попадает в небольшую область, поэтому фильтр запросто может перегреться и лопнуть, повредив глаз. Рекомендуется использовать специальную объективную диафрагму с объективными фильтрами.

Наиболее популярной среди любителей стала пленка Astrosolar от компании Baader. Эта пленка представляет собой очень тонкую фольгу. Пленка выпускается в двух вариантах с разной оптической плотностью. Для визуальных наблюдений она имеет оптическую плотность 5, что означает пропускание 1/100000 доли света. Фотографическая пленка менее плотная и при ее оптической плотности 3,8 через нее проходит 1/6300 падающего света. Изготовить такой фильтр просто, главное - обеспечить его надежную фиксацию.

Способ изготовления фильтра из пленки

На внешнюю часть трубы накручивается полоска картона вокруг трубы и закрепляется клеем или скотчем. Образуется картонное кольцо, которое надо надеть на трубу. Поверх этого кольца накручивается еще одно кольцо из картона. Теперь рассоединяем кольца и укладываем сверху на внутреннее кольцо пленку. Затем фиксируем пленку внешним кольцом.

Пленочный фильтр легкий и не может разбиться. Но есть у фильтра и недостатки. Волнистость фильтра хоть и крайне несущественно, но все-таки ухудшает качество изображения. Пленка частично разрушается. Поэтому ряд фирм производит стеклянные фильтры.

Некоторые любители изготавливают солнечные телескопы, которым фильтры не требуются. В таких телескопах системы Ньютона зеркала не покрываются отражающим алюминиевым слоем. Стекло отражает лишь 4% падающего на него света, а два зеркала отразят лишь 1/625 часть всего излучения Солнца. Солнце получается достаточно ярким, но наблюдать Солнце с такими зеркалами уже вполне безопасно для зрения. Для повышения удобства наблюдений можно применить более-менее плотный нейтральный фильтр.

Можно ли наблюдать Солнце без фильтра?

Если атмосфера у самого горизонта из-за плотной дымки сильно снижает яркость Солнца, то на него можно безболезненно смотреть невооруженным глазом и даже через телескоп. В таких условиях изображение Солнца достаточно качественное, на нем можно рассмотреть пятна и грануляцию. Но и здесь нужно проявлять крайнюю осторожность, т.к. количество инфракрасного излучения высоко.

Наблюдать Солнце без фильтра можно и сквозь плотные облака. Но и здесь следует быть внимательным, т.к. плотность облаков может очень быстро измениться, и тогда можно повредить зрение.

Можно также наблюдать Солнце на солнечном экране. Изготовить экран очень просто: на определенном расстоянии от окуляра смотрящего на Солнце телескопа поместить лист белой бумаги, чтобы увидеть светлое пятно. Перемещая фокусер, можно добиться изображения резко очерченного солнечного диска. При этом основные детали в структуре солнечных пятен будут видны. Вид Солнца в этом случае легко сфотографировать любым цифровым фотоаппаратом или сделать зарисовку карандашом.

Солнечный телескоп Coronado

Возможности любителей астрономии увеличились с выпуском солнечного телескопа Coronado PST. Это маленький телескоп с длиной трубы меньше полуметра и весом чуть больше килограмма. Корпус его сделан из алюминия. Установить телескоп можно как на любой фотоштатив. Благодаря его конструкции, мы можем наблюдать Солнце в красной линии (H -альфа) и видеть многочисленные образования на Солнце, а также протуберанцы . Поскольку, в зависимости от различных условий, полоса фильтра может уходить в ту или иную сторону, имеется специальное кольцо, с помощью которого можно подстроить частоту эталона так, чтобы протуберанцы были видны наиболее отчетливо.

Чтобы было удобно наводить телескоп на Солнце, в Coronado установлен оригинальный искатель.

Солнце, как и планеты, рекомендуется снимать на веб-камеру или планетную камеру. Наблюдать Солнце очень интересно - происходящие на поверхности процессы очень динамичны, изменчивы и красивы. К тому же для наблюдения Солнца не надо никуда ехать – оно всегда доступно.

Солнечное затмение – одно из самых красивых и загадочных явлений природы. Оно происходит достаточно редко (в год на Земле может происходить от двух до пяти затмений), поэтому тем более важно не пропустить его. Что же такое - солнечное затмение?

– это астрономическое явление, когда Луна полностью или частично закрывает Солнце от наблюдателя на Земле. Солнечное затмение бывает только в период новолуния, когда сама Луна при этом не видна.

Какие бывают солнечные затмения? Астрономы различают три основных типа затмений. Полным солнечное затмение можно назвать только в том случае, если хотя бы в какой-либо точке земного шара можно наблюдать, как Луна полностью закрывает Солнце от наблюдателя. Такие затмения случаются не очень часто – в среднем лишь каждое четвёртое затмение является полным. Гораздо чаще бывает затмение частное – в этом случае какая-то часть Солнца остаётся видна, где бы вы ни находились. Самым редким является кольцеобразное затмение – в этом случае Луна находится так далеко от Земли, что проходит по диску Солнца, но не в состоянии закрыть его полностью, тогда образуется яркое кольцо вокруг тёмного силуэта Луны.

На территории России следующее полное солнечное затмение состоится 20 апреля 2061 года , зона видимости – Урал.

Как наблюдать солнечное затмение? Солнечное затмение являет собой явление необычайной красоты. Небо темнеет, а Солнце как будто исчезает в пасти небесного чудовища. Во время полных затмений вокруг Солнца появляется корона из ярких лучей, а на небе даже могут проявиться яркие звёзды и планеты. Неудивительно, что наши предки испытывали в такие дни благоговейный ужас перед силами природы. Наблюдать солнечное затмение надо через специальные очки, чтобы не повредить глаза.

Наблюдать затмение можно и через бинокль или телескоп, ведь тогда можно рассмотреть это чудо природы во всех деталях. Однако особое внимание нужно уделить защите глаз от солнечного света. Для этого рекомендуется использовать специальные светофильтры, покрытые тонким слоем металла. Также можно применить один-два слоя качественной чёрно-белой фотоплёнки, покрытой серебром.

Полное солнечное затмение можно наблюдать и через оптические приборы даже без затемняющих экранов, но при малейших признаках окончания затмения нужно немедленно прекратить наблюдение. Даже тоненькая полоска Солнца, показавшаяся из-за Луны и многократно усиленная через бинокль, может нанести непоправимый вред сетчатке глаза, а потому даже во время полных затмений специалисты настоятельно рекомендуют использовать затемняющие светофильтры.

Мероприятия:

1. Чтение: Ю. Марцинкявичюс «Солнце отдыхает».
2. Наблюдение за солнцем на прогулке.
3. Подвижная игра: «Солнышко и дождик».

Стихотворение «Солнце отдыхает»

Раньше всех на свете солнце встало,
А как встало - принялось за дело:
Обошло всю землю
И устало.
Отдыхать за лесом темным село.
Если вдруг найдешь его в лесу ты,
Там, где на траве туман и сырость,
Не буди,
У солнца сон - минуты,
Не шуми,
Весь день оно трудилось.
(Ю. Марцинкявичюс)

Подвижная игра «Солнышко и дождик»

Цель: учить детей ходить и бегать врассыпную, не наталкиваясь друг на друга, приучать их действовать по сигналу.

Ход игры:

Дети сидят на скамейках. Воспитатель говорит: «Солнышко» Дети ходят и бегают по всей площадке. После слов «Дождик. Скорей домой!» они бегут на свои места.

Наблюдение за солнцем на прогулке

Цель: обратить внимание детей на солнце, что на него трудно смотреть, такое оно яркое, так много даёт света; обратить внимание на явление: «свет - тень»; формировать представление о том, что когда светит солнце - на улице тепло; поддерживать радостное настроение.

Ход наблюдения:

Перед прогулкой в солнечный день предложить детям посмотреть в окно. Вспомнить с детьми стихотворение.

Смотрит солнышко в окошко,
Смотрит в нашу комнату.
Мы захлопаем в ладошки,
Очень рады солнышку.

Выйдя на участок, обратить внимание детей на теплую погоду: от солнышко - тепло. Солнце огромное, раскаленное. Обогревает всю землю, посылая ей лучи.

Вынести на прогулку маленькое зеркало и сказать, что солнце послало свой лучик детям, чтобы они. Поиграли с ним. Навести луч на стену. Солнечные зайчики играют на стене. Поманить их пальчиком, пусть бегут к тебе. Вот он, светленький кружок, вот, вот, левее, левее. Убежал на потолок. По команде «Ловите зайчика!» дети пытаются поймать его. Предложить детям с закрытыми глазами постоять в тени, потом на солнце, почувствовать разницу, рассказать о своих ощущениях.

Введение

Солнце играет исключительную роль в жизни Земли. Солнце не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

Всего одна пятисот миллионная часть энергии Солнца достигает нашей планеты. Но даже этих «крох» с солнечного «стола» достаточно, чтобы питать и поддерживать все живое на Земле. Но это еще не все. Если эти «крохи» эффективно использовать, то можно с лихвой удовлетворить энергетические потребности современного общества.

В большинстве книг по астрономии говорится, что Солнце - обычная звезда, «типичный представитель населения космоса». Но на самом ли деле Солнце во всех отношениях обыкновенное небесное тело? По словам астронома Гильермо Гонсалеса, наше Солнце уникально.

Каковы же некоторые особенности нашего Солнца, благодаря которым оно способно поддерживать жизнь?

Немного из истории

Солнце - самое знакомое каждому небесное тело. Солнце всегда привлекало к себе внимание людей, но и сегодня ученым приходится признавать, что Солнце таит в себе немало загадок.

Современному представлению о Солнце предшествовал трудный многовековой путь человека от незнания к знанию, от явления к сущности, от обожествления Солнца к практическому использованию его энергии. Было время, когда люди ничего не знали о размерах Солнца и его температуре, состоянии вещества Солнца и т. д. Не зная о расстоянии до Солнца, древние принимали видимые размеры за действительные. Гераклит, например, полагал, что «Солнце имеет ширину в ступню человеческую», Анаксагор весьма неуверенно допускал, что Солнце может быть большим, чем оно, кажется, и сравнивал его с Пелопоннесским полуостровом. Совершенно неясной оставалась картина физической природы Солнца. Пифагорейцы, например, его относили к планетам и наделяли хрустальной сферой. Один из учеников Пифагора -- Филолай (V в. до н. э.), допускавший мысль о движении Земли, считал, что Солнце не имеет никакого отношения к «центральному огню», вокруг которого оно, по его мнению, само вращается вместе с Землей, Луной и пятью планетами (и вымышленным небесным телом -- «противоземлей») и который остается невидимым для жителей Земли. Следует отметить, что подобные выдуманные представления о движении Земли нельзя смешивать с первыми научными догадками о движении Земли, принадлежащими, по-видимому, Аристарху Самосскому (III в. до н. э.), который впервые дал метод определения сравнительных расстояний до Солнца и Луны. Несмотря на неудовлетворительность полученных результатов (было найдено, что Солнце находится в 19--20 раз дальше от Земли, чем Луна), мировоззренческое и научное значение их очень велико, так как впервые был научно поставлен и отчасти решен вопрос об определении расстояния до Солнца. Без принципиально правильного разрешения этого вопроса не могло быть и речи о выяснении истинных размеров Солнца. Во II в. до н. э. Гиппарх находит, что параллакс Солнца (т. е. угол, под которым с расстояния Солнца виден радиус Земли) равен 3, что соответствует расстоянию до него в 1200 земных радиусов, и это считалось верным, почти восемнадцать веков -- до работ Кеплера, Гевелия, Галлея, Гюйгенса. Последнему (XVII в.) принадлежит наиболее точное определение расстояния до Солнца (160 млн. км). В дальнейшем исследователи отказываются от непосредственного определения параллакса Солнца и применяют косвенные методы. Так, например, довольно точное значение горизонтального параллакса получали из наблюдений Марса в противостоянии или Венеры во время ее прохождения по диску Солнца.

В XX в. успешные измерения солнечного параллакса выполнялись при наблюдениях астероидов. Была достигнута значительная точность в определении параллакса Солнца (р =8",790±0",001). Солнечный параллакс измеряли и разнообразными другими методами, из которых наиболее точными оказались радиолокационные наблюдения Меркурия и Венеры, выполненные советскими и американскими учеными в начале 60-хгодов.

К началу XVII в. относятся знаменитые телескопические наблюдения Галилеем солнечных пятен, его борьба за доказательство того, что пятна находятся на поверхности Солнца. Было открыто вращение Солнца, накоплены данные о ядрах и полутени пятен, обнаружены пятнообразовательные зоны на Солнце. Тем не менее, пятна еще долгое время принимали за вершины гор или продукты вулканических извержений. Более полувека признавалась фантастическая теория Вильяма Гершеля, предложенная им в 1795 г., которая основывалась на подтвердившихся впоследствии представлениях А. Вилсона о том, что пятна -- это углубления в солнечной поверхности. Согласно теории Гершеля, внутреннее ядро Солнца -- холодное, твердое, темное тело, окруженное двумя слоями: облачный внешний слой -- это фотосфера, а внутренний -- играет роль защитного экрана (защищающего ядро от действия огнедышащей фотосферы). Тень пятна -- это просвет холодного ядра Солнца сквозь облачные слои, а полутень -- просветы облачного внутреннего слоя. Гершель сделал следующий общий вывод из своей теории: «С этой новой точки зрения Солнце представляется мне необычно величественной, огромной и яркой планетой; очевидно, это первое или, точнее говоря, единственное первичное тело нашей системы... всего вероятнее, что оно обитаемо, подобно остальным планетам, существами, органы которых приноровлены к особенным условиям, господствующим на этом громадном шаре». Как не похожи эти наивные представления о Солнце на гениальные мысли Ломоносова о природе нашего дневного светила.

Сейчас ученые изучают природу Солнца, выясняют его влияние на Землю, работают над проблемой практического применения неиссякаемой солнечной энергии. Важно и то, что Солнце -- ближайшая к нам звезда, единственная звезда в Солнечной, системе. Поэтому, изучая Солнце, мы узнаем о многих явлениях и процессах, присущих звездам и недоступных детальному наблюдению из-за огромной удаленности звезд.

Солнце, как небесное тело

Солнце -- центральное тело Солнечной системы -- представляет собой очень горячий плазменный шар. Солнце -- ближайшая к Земле звезда. Свет от него доходит до нас за 8? мин.

Мощность излучения Солнца очень велика: она равна 3,8*10 20 МВт. На Землю попадает ничтожная часть солнечной энергии, составляющая около половины миллиардной доли. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоемы, дает энергию ветрам и водопадам, обеспечивает жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти и других полезных ископаемых.

Видимый с Земли диаметр Солнца составляет около 0,5°, расстояние до него в 107 раз превышает его диаметр. Следовательно, диаметр Солнца равен 1 392 000 км, что в 109 раз больше земного диаметра.

Если сравнить несколько последовательных фотографий Солнца, то можно заметить, как меняется положение деталей, например пятен на диске. Это происходит из-за вращения Солнца. Солнце вращается не как твердое тело. Пятна, находящиеся вблизи экватора Солнца, опережают пятна, расположенные в средних широтах. Следовательно, скорости вращения разных слоев Солнца различны: точки экваториальной области Солнца имеют не только наибольшие линейные, но и наибольшие угловые скорости. Период вращения экваториальных областей Солнца 25 земных суток, а полярных -- более 30.

Солнце представляет собой сферически симметричное тело, находящееся в равновесии. Всюду на одинаковых расстояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру. Плотность и давление быстро нарастают вглубь, где газ сильнее сжат давлением вышележащих слоев. Следовательно, температура также растет по мере приближения к центру. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоев, постепенно переходящих друг в друга.

В центре Солнца температура составляет 15 млн. градусов, а давление превышает сотни миллиардов атмосфер. Газ сжат здесь до плотности около 1,5*105 кг/м 3 . Почти вся энергия Солнца генерируется в центральной области с радиусом примерно в? солнечного. Через слои, окружающие центральную часть, эта энергия передается наружу. На протяжении последней трети радиуса находится конвективная зона. Причина возникновения перемешивания (конвекции) в наружных слоях Солнца та же, что и в кипящем чайнике: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество вынужденно приходит в движение и начинает само переносить тепло.

Все рассмотренные выше слои Солнца фактически не наблюдаемы. Об их существовании известно либо из теоретических расчетов, либо на основании косвенных данных. Над конвективной зоной располагаются непосредственно наблюдаемые слои Солнца, называемые его атмосферой. Они лучше изучены, так как об их свойствах можно судить из наблюдений.

Солнечная атмосфера также состоит из нескольких различных слоев. Самый глубокий и тонкий из них -- фотосфера, непосредственно наблюдаемая в видимом непрерывном спектре. Фотосфера -- «светящаяся сфера» Солнца -- самый нижний слой его атмосферы, излучающий львиную долю поступающей от Солнца энергии. Толщина фотосферы около 300 км. Чем глубже слои фотосферы, тем они горячее. Во внешних, более холодных слоях фотосферы на фоне непрерывного спектра образуются фраунгоферовы линии поглощения.

Исследование фраунгоферовых линий позволяет определить химический состав атмосферы Солнца. На Солнце обнаружено более 70 химических элементов. Никаких «неземных» элементов Солнце не содержит. Самые распространенные элементы на Солнце -- водород (около 70% всей массы Солнца) и гелий (29%).

Во время наибольшего спокойствия земной атмосферы в телескоп можно наблюдать характерную зернистую структуру фотосферы. Чередование маленьких светлых пятнышек -- гранул -- размером около 1000 км, окруженных темными промежутками, создает впечатление ячеистой структуры -- грануляции. Возникновение грануляции связано с происходящей под фотосферой конвекцией. Отдельные гранулы на несколько сотен градусов горячее окружающего их газа, и в течение нескольких минут их распределение по диску Солнца меняется. Спектральные изменения свидетельствуют о движении газа в гранулах, похожих на конвективные: в гранулах газ поднимается, а между ними -- опускается.

Эти движения газов порождают в солнечной атмосфере акустические волны, подобные звуковым волнам в воздухе.

Распространяясь в верхние слои солнечной атмосферы, волны, возникшие в конвективной зоне и в фотосфере, передают им часть механической энергии конвективных движений и производят нагревание газов последующих слоев атмосферы Солнца -- хромосферы и короны. В результате верхние слои фотосферы с температурой около 4500 К оказываются самыми «холодными» на Солнце. Как вглубь, так и вверх от них температура газов быстро растет.

Расположенный над фотосферой слой, называемый хромосферой, во время полных солнечных затмений в те минуты, когда Луна полностью закрывает фотосферу, виден как розовое кольцо, окружающее темный диск. На краю хромосферы наблюдаются выступающие как бы язычки пламени -- хромосферные спикулы, представляющие собою вытянутые столбики из уплотненного газа. Тогда же можно наблюдать и спектр хромосферы, так называемый спектр вспышки. Он состоит из ярких эмиссионных линий водорода, гелия, ионизованного кальция и других элементов, которые внезапно вспыхивают во время полной фазы затмения. Выделяя излучение Солнца в этих линиях, можно получить в них его изображение. В приложении приведена фотография участка Солнца, полученная в лучах водорода (красная спектральная линия с длиной волн 656,3 нм). Для излучения в этой длине волны хромосферы непрозрачна, а потому излучение глубже расположенной фотосферы на снимке отсутствует.

Хромосфера отличается от фотосферы значительно более неправильной неоднородной структурой. Заметно два типа неоднородностей -- яркие и темные. По своим размерам они превышают фотосферные гранулы. В целом распределение неоднородностей образует так называемую хромосферную сетку, особенно хорошо заметную в линии ионизованного кальция. Как и грануляция, она является следствием движений газов в подфотосферной конвективной зоне, только происходящих в более крупных масштабах. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов.

Самая внешняя и очень разреженная часть солнечной атмосферы -- корона, прослеживающаяся от солнечного лимба до расстояний в десятки солнечных радиусов. Она имеет температуру около миллиона градусов. Корону можно видеть только во время полного солнечного затмения либо с помощью коронографа.

Вся солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 мин.

В возникновении явлений, происходящих на Солнце, большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс сопровождается возникновением целого комплекса явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся факелы и пятна в фотосфере, флоккулы в хромосфере, протуберанцы в короне. Наиболее замечательным явлением, охватывающим все слои солнечной атмосферы и зарождающимся в хромосфере, являются солнечные вспышки.

В ходе наблюдений ученые выяснили, что Солнце -- мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны).

Радиоизлучение Солнца имеет две составляющие -- постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц -- корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы -- солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы -- солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями солнечной короны -- коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связаны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество интересных геофизических явлений.

Приборы наблюдения за Солнцем

Для наблюдений Солнца используются специальные инструменты, называемые солнечными телескопами. Мощность излучения, приходящего от Солнца, в сотни миллиардов раз больше, чем от самых ярких звезд, поэтому в солнечных телескопах используют объективы с диаметрами не более метра, но и в этом случае большое количество света позволяет использовать сильное увеличение и работать, таким образом, с изображениями Солнца диаметром до 1 м. Для этого телескоп должен быть длиннофокусным. У крупнейших солнечных телескопов фокусное расстояние объективов достигает сотни метров. Такие длинные инструменты невозможно монтировать на параллактических установках, и обычно их делают неподвижными. Чтобы направить лучи Солнца в неподвижно расположенный солнечный телескоп, пользуются системой двух зеркал, одно из которых неподвижно, а второе, называемое целостатом, вращается так, чтобы скомпенсировать видимое суточное перемещение Солнца по небу. Сам телескоп располагают либо вертикально (башенный солнечный телескоп), либо горизонтально (горизонтальный солнечный телескоп). Удобство неподвижного расположения телескопа заключается еще и в том, что можно использовать большие приборы для анализа солнечного излучения (спектрографы, увеличительные камеры, различного типа светофильтры).

Помимо башенных и горизонтальных телескопов для наблюдений Солнца могут быть использованы обычные небольшие телескопы с диаметром объектива не более 20-40 см. Они должны быть снабжены специальными увеличительными системами, светофильтрами и камерами с затворами, обеспечивающими короткие экспозиции.

Для наблюдения солнечной короны применяют коронограф, позволяющий выделять слабое излучение короны на фоне яркого околосолнечного ореола, вызванного рассеянием фотосферного света в земной атмосфере. По своей сути это обычный рефрактор, в котором рассеянный свет сильно ослабляется благодаря тщательному подбору высококачественных сортов стекла, высокому классу их обработки, специальной оптической схеме, устраняющей большую часть рассеянного света, и применению узкополосных светофильтров.

Для изучения солнечного спектра помимо обычных спектрографов широко используются специальные приборы -- спектрогелиографы и спектрогелиоскопы, позволяющие получить монохроматическое изображение Солнца в любой длине волны.

Приборы наблюдения за Солнцем

Для наблюдений Солнца используются специальные инструменты, называемые солнечными телескопами. Мощность излучения, приходящего от Солнца, в сотни миллиардов раз больше, чем от самых ярких звезд, поэтому в солнечных телескопах используют объективы с диаметрами не более метра, но и в этом случае большое количество света позволяет использовать сильное увеличение и работать, таким образом, с изображениями Солнца диаметром до 1 м. Для этого телескоп должен быть длиннофокусным. У крупнейших солнечных телескопов фокусное расстояние объективов достигает сотни метров. Такие длинные инструменты невозможно монтировать на параллактических установках, и обычно их делают неподвижными. Чтобы направить лучи Солнца в неподвижно расположенный солнечный телескоп, пользуются системой двух зеркал, одно из которых неподвижно, а второе, называемое целостатом, вращается так, чтобы скомпенсировать видимое суточное перемещение Солнца по небу. Сам телескоп располагают либо вертикально (башенный солнечный телескоп), либо горизонтально (горизонтальный солнечный телескоп). Удобство неподвижного расположения телескопа заключается еще и в том, что можно использовать большие приборы для анализа солнечного излучения (спектрографы, увеличительные камеры, различного типа светофильтры).

Помимо башенных и горизонтальных телескопов для наблюдений Солнца могут быть использованы обычные небольшие телескопы с диаметром объектива не более 20-40 см. Они должны быть снабжены специальными увеличительными системами, светофильтрами и камерами с затворами, обеспечивающими короткие экспозиции.

Для наблюдения солнечной короны применяют коронограф, позволяющий выделять слабое излучение короны на фоне яркого околосолнечного ореола, вызванного рассеянием фотосферного света в земной атмосфере. По своей сути это обычный рефрактор, в котором рассеянный свет сильно ослабляется благодаря тщательному подбору высококачественных сортов стекла, высокому классу их обработки, специальной оптической схеме, устраняющей большую часть рассеянного света, и применению узкополосных светофильтров.

Для изучения солнечного спектра помимо обычных спектрографов широко используются специальные приборы -- спектрогелиографы и спектрогелиоскопы, позволяющие получить монохроматическое изображение Солнца в любой длине волны.

Солнечное излучение и влияние его на Землю

Из общего количества энергии, излучаемой Солнцем в межпланетное пространство, границ земной атмосферы достигает лишь 1/2000000000 часть. Примерно треть солнечного излучения, падающего на Землю, отражается ею и рассеивается в межпланетном пространстве. Много солнечной энергии идет на нагревание земной атмосферы, океанов и суши. Но и остающаяся Доля обеспечивает существование жизни на Земле.

В будущем люди обязательно научатся непосредственно превращать солнечную энергию в другие виды энергии. Уже применяются в народном хозяйстве простейшие гелиотехнические установки: различные типы солнечных теплиц, парников, опреснителей, водонагревателей, сушилок. Солнечные лучи, собранные в фокусе вогнутого зеркала, плавят самые тугоплавкие металлы. Ведутся работы по созданию солнечных электростанций, по использованию солнечной энергии для отопления домов и опреснения морской воды. Практическое применение находят полупроводниковые солнечные батареи, непосредственно превращающие энергию Солнца в электрическую энергию. Наряду с химическими источниками тока солнечные батареи используются, например, на искусственных спутниках Земли и космических ракетах. Все это лишь первые успехи гелиотехники.

Ультрафиолетовые и рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Это удалось доказать, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда является источником невидимого коротковолнового излучения, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское -- в десятки и даже сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется также ото дня ко дню, резко возрастая, когда в хромосфере Солнца происходят вспышки.

Коротковолновое излучение Солнца оказывает влияние на процессы, происходящие в атмосфере Земли. Так, например, ультрафиолетовые и рентгеновские лучи частично ионизуют слои воздуха, образуя слой земной атмосферы -- ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и от поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на Солнце явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. Во время наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению или даже к временному прекращению радиосвязи.

Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда выяснилось, что Солнце -- мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны) -- они и достигают Земли.

Радиоизлучение Солнца имеет две составляющие -- постоянную, почти не меняющуюся, и переменную, спорадическую (всплески, «шумовые бури»). Радиоизлучение «спокойного» Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время боль-ших хромосферных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу.

Ряд геофизических явлений (магнитные бури, т. е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) вызван солнечной активностью. Но эти явления происходят не ранее чем через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а изверженными корпускулами, которые с опозданием проникают в околоземное пространство.

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Непрерывно расширяющаяся корона создает солнечный ветер, охватывающий движущиеся вблизи Солнца планеты и кометы. Вспышки сопровождаются «порывами» солнечного ветра. Эксперименты на космических ракетах и искусственных спутниках Земли позволили непосредственно обнаружить солнечные корпускулы в межпланетном пространстве.

Во время вспышек в межпланетное пространство проникают не только корпускулы, но и магнитное поле -- все это определяет «обстановку» в околоземном космическом пространстве. Так, например, солнечный ветер деформирует геомагнитное поле, сжимает его и локализует в пространстве; корпускулы заполняют радиационный пояс. С проникновением корпускул в земную атмосферу связаны полярные сияния. После вспышек на Солнце на Земле происходят магнитные бури. Так, после вспышки 4 августа 1972 г. произошла сильная магнитная буря, нарушившая радиосвязь на коротких волнах, наблюдались полярные сияния и резкое снижение уровня космических лучей, которые шли к нам из глубин Галактики и которым преградили путь изверженные Солнцем плазменные потоки (эффект Форбуша).

Проблема «Солнце -- Земля», связывающая солнечную активность с ее воздействием на Землю, находится на стыке нескольких важнейших для человечества наук -- астрономии, геофизики, биологии, медицины.

Некоторые части этой комплексной проблемы исследуются уже несколько десятилетий, например ионосферные проявления солнечной активности. Здесь удалось не только накопить множество фактов, но и обнаружить закономерности, имеющие большое значение для осуществления бесперебойной радиосвязи (выбор рабочих частот радиосвязи и прогнозы условий радиосвязи).

Давно известно, что колебания магнитной стрелки во время магнитной бури особенно заметны в дневное время и имеют наибольшую амплитуду, иногда достигающую нескольких градусов, в периоды максимума солнечной активности. Хорошо известно и то, что магнитные бури обычно сопровождаются свечением верхних слоев атмосферы. Это полярные сияния -- одно из красивейших явлений природы. Необычайная игра красок, внезапная смена спокойного свечения стремительным перемещением дуг, полос и лучей, образующих то гигантские шатры, то величественные занавесы, издавна привлекала к себе людей. Полярные сияния, как правило, наблюдаются в полярных областях земного шара. Но иногда в годы максимумов солнечной активности их можно наблюдать и в средних широтах. В полярных сияниях преобладают два цвета: зеленый и красный. Окраска полярных сияний обусловлена излучением атомов кислорода. Существует связь между явлениями на Солнце и процессами в нижних слоях земной атмосферы. Солнечное излучение воздействует на тропосферу. Выяснение механизма этого воздействия необходимо для метеорологии.

В последнее время все большее внимание ученых привлекают разнообразные явления в биосфере, которые, как показывают наблюдения, связаны с солнечной активностью. Так, биологи отмечают, что в течение 11-летнего цикла солнечной активности происходят изменения в приросте лесонасаждений, условиях существования отдельных видов животных, птиц, насекомых. Врачи заметили, что в годы максимума солнечной активности заметно обостряются некоторые сердечно-сосудистые заболевания и нервные заболевания. Это, в частности, связывается с обнаруженным влиянием геомагнитного поля на различные коллоидные системы, включая кровь человека. Изучение подобных солнечно-земных связей только начинается.

Чтобы всесторонне исследовать явления, происходящие на Солнце, проводятся систематические наблюдения Солнца на многочисленных обсерваториях. Изучение воздействия Солнца на Землю требует объединения усилий ученых многих стран.