Что такое параллельное проецирование. Проецирование. Центральное и параллельное. Методы проецирования: центральное и параллельное проецирование

Параллельное проецирование можно рассматривать как частный случай центрального проецирования.

Если центр проекций при центральном аппарате проецирования перенести в бесконечность, то проецирующие лучи можно считать параллельными. Отсюда аппарат параллельного проецирования состоит из плоскости проекций П и направления Р. При центральном проецировании проецирующие лучи выходят из одной точки, а при параллельном проецировании — параллельны между собой.

В зависимости от направления проецирующих лучей параллельное проецирование может быть косоугольным, когда проецирующие лучи наклонены к плоскости проекций, и прямоугольным (ортогональным), когда проецирующие лучи перпендикулярны к плоскости проекций.

Рассмотрим пример косоугольного параллельного проецирования.

Построим параллельную проекцию А1В1 отрезка АВ, на плоскость П1, при заданном направлении проецирования Р не П1. Для этого необходимо провести проецирующие прямые через точки А и В, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1 и В1 точек А и В. Соединив параллельные проекции А1 и В1 мы получим параллельную проекцию А1В1 отрезка АВ.

Аналогично можно построить параллельную проекцию А1В1С1D1 четырёхугольника ABCD на плоскость П1, при заданном направлении проецирования Р не перпендикулярных П1.

Для этого необходимо провести проецирующие прямые через точки А, В, C, D, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1, В1, С1, D1 точек A, B, C, D. Соединив параллельные проекции А1, В1, С1, D1 мы получим параллельную проекцию А1В1С1D1 четырёхугольника ABCD.

Свойства проекций при параллельном проецировании:

Первые шесть свойств центрального проецирования справедливы и для параллельного проецирования. Перечислим ещё несколько свойств присущих параллельному проецированию:

1. Проекции параллельных прямых параллельны.

Из рисунка видно, что прямые АА 1 , ВВ 1 , СС 1 и DD 1 образуют две параллельные плоскости a и b . Эти две плоскости пересекаются с П 1 . Следовательно, линии пересечения их А 1 В 1 и С 1 D 1 будут параллельны.

2. Если точка делит длину отрезка в отношении m:n , то проекция этой точки делит длину проекции отрезка в том же отношении.

Пусть точка С принадлежит отрезку АВ , причем |АС| : |СВ| = 2: 1 . Построим параллельную проекцию А 1 В 1 отрезка АВ . Точка С 1 А 1 В 1 . Проведём АC’ || А 1 C 1 и CB’ || C 1 B 1 , получим два подобных треугольника АCC’ и CBB’ . Из их подобия следует пропорциональность сторон: |АC| : |СВ| = |AC’| : |CB’| , но |CB’| = |С1В1| , а |AC’| = |А 1 C 1 | , отсюда |АC| : |СВ| = |А 1 С 1 | : |C 1 B 1 | .

3. Плоская фигура, параллельная плоскости проекций, проецируется без искажения.

Возьмём треугольник АВС и спроецируем его на две параллельные плоскости проекций П 1 ‘ и П 1 . Так как длины отрезков равны |А 1 А 1 ‘| = |В 1 В 1 ‘| = |С 1 С 1 ‘| и отрезки параллельны, то четырёхугольники А 1 А 1 ‘ В 1 В 1 ‘, В 1 В 1 ‘ С 1 С 1 ‘, С 1 С 1 ‘А 1 А 1 ‘ являются параллелограммами. Следовательно, противоположные стороны их равны по длине |А 1 В 1 | = |А 1 ‘ В 1 ‘|, |В 1 С 1 | = |В 1 ‘ С 1 ‘|, |А 1 С 1 | = |А 1 ‘ С 1 ‘| , а значит, треугольники равны.

Аналогично, тоже самое можно доказать и для любой другой плоской фигуры. Параллельное проецирование, в отличие от центрального, обладает меньшей наглядностью, но обеспечивает простоту построения и большую взаимосвязь с оригиналом.

Изображение объектов трехмерного пространства на плоскости получают методом проецирования.

Проецирование - это процесс, в результате которого получают изображения, представляющие собой проекции на плоскости.

Аппарат проецирования включает в себя изображаемые объекты - точки А, В, проецирующие лучи i и плоскость проекций П", на которой получается изображение объектов в соответствии с рисунком 1.2.

Построить проекции предметов на чертеже можно двумя способами: центральным и параллельным.

Наименование способа проецирования Сущность способа
Центральное проецирование Все лучи, проецирующие предмет, исходят из одной точки Р, называемой центром проекций (рисунок 1.3). Полученные проекции А", В", С" называются центральными проекциями точек А, В, С.
Параллельное проецирование Все проецирующие лучи проходят параллельно наперед заданному направлению S , а значит и друг другу (рисунок 1.4). Это можно уподобить случаю центрального способа проецирования, когда центр проекций S удален в бесконечность и все проецирующие лучи становятся параллельными. При построении проекций А", В", С" этим способом они называются параллельными проекциями точек А, В, С.
Рисунок 1.3 Рисунок 1.4

Свойства проецирования

Проекции, полученные при центральном и параллельном проецировании, обладают рядом свойств:

1) Проекция точки есть точка. При заданном центре Р (или направлении S) проецированию любой точки А пространства соответствует иа плоскости проекций п" единственная точка А". При этом проекция точки В, лежащей в плоскости проекций, совпадает с самой точкой в соответствии с рисунком 1.2.
2) Проекция прямой есть прямая. Проекция прямой определена, если известны проекции хотя бы двух ее точек (рисунок 1.5). Если в пространстве прямая параллельна плоскости проекции П", то ее проекция параллельна самой прямой (рисунок 1.6). При этом при центральном проецировании проекции отрезков пропорциональны самим отрезкам, а при параллельном - равны им. При параллельном проецировании сохраняется отношение величин отрезков прямой и их проекций (рисунок 1.7).

Рисунок 1.5

Рисунок 1.6 Рисунок 1.7

Если плоскость параллельна плоскости проекций, то проекции ее плоских фигур при центральном проецировании подобны самим фигурам (рисунок 1.9, а), а при параллельном - равны им (рисунок 1.9, б).

Рисунок 1.9

1.5 Инварианты параллельного проецирования (прямоугольное проецирование)

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рисунок 1.10). Объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = AB cos a..

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.

Обратимость чертежа. Проецирование на одну плоскость проекций дает изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А (рисунок 1.8) не определяет положение самой точки в пространстве, так как не известно, на какое расстояние она удалена от плоскости проекций п". Любая точка проецирующего луча, проходящего через точку А, будет иметь своей проекцией точку А". Наличие одной проекции создает неопределенность изображения. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображение дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексные чертежи) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрические чертежи).

Рисунок 1.12
Внимание, вопрос! Подумайте, проанализируйте предложенные чертежи и докажите справедливость перечисленных инвариантов центрального и параллельного проецирования (рисунок 1.12).
Запомните! 1 Рассмотренные свойства (инварианты) параллельного проецирования сохраняются при любом направлении проецирования. 2 Метрические характеристики геометрических фигур при параллельном проецировании в общем случае не сохраняются (происходит искажение линейных и угловых величин).

Контрольные вопросы

1 Какие геометрические элементы включают в себя аппарат проецирования?

2 Какие способы проецирования вы знаете?

3 Какие проецирующие поверхности могут создавать проецирующие лучи?

4 Перечислите основные свойства проекций.

5 Чему равна проекция угла, плоскость которого параллельна плоскости проекций при центральном проецировании?

6 В какие геометрические образы вырождаются проекции прямых и плоскостей поверхностей, занимающих проецирующее положение?

7 Как читается теорема о проецировании прямого угла?

8 Как вы понимаете термин «обратимый чертеж? Чем достигается обратимость чертежа?
ЛЕКЦИЯ №2

Введение

Все разделы начертательной геометрии пользуются одним методом – методом проецирования, поэтому чертежи, применяемые не только в начертательной геометрии, называются проекционные чертежи .

Метод проецирования заключается в том, что любая из точек множества точек пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Для этого представим некоторую заданную поверхность (рис.1) и точку А в пространстве. При проведении луча S через точку А в направлении поверхности последний пересечет ее в точке А 1 . Точку А называют проецируемой точкой . Плоскость α, на которой получают проекцию, называют плоскость проекций . Точка пересечения луча с плоскостью называется проекцией точки А . Прямая А А 1 (луч), называется проецирующим лучом .


Рис.1.

Центральный (конический или полярный) метод проецирования основан на том, что при проецировании на плоскость ряда точек (А , B , C и т.д.) все проецирующие лучи проходят через одну точку, называемую центром проецирования , или полюсом .

Представим в пространстве треугольник АВС и проецирующие лучи, проходящие через данный полюс S и через точки АВС треугольника, проведенные до пересечения с плоскостью α. Треугольник А 1 B 1 C 1 будет центральной проекцией треугольника АВС (рис.2).

Метод центрального проецирования не удовлетворяет целому ряду условий, необходимых для технического чертежа, а именно: не дает однотипности изображения, полной ясности всех геометрических форм, не обладает удобоизмеримостью, не имеет простоты изображения.

Метод параллельного (косоугольного) проецирования заключается в том, что все проецирующие лучи, проходящие через точки треугольника АВС , будут параллельны между собой (рис.3). Этот метод вытекает из метода центрального проецирования, при этом полюс должен быть удален на бесконечно большое расстояние от плоскости, на которую проецируется предмет.

Ортогональный (прямоугольный) метод проецирования – метод, когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций (рис.4). Данный метод – частный случай параллельного проецирования.

Таким образом, любая точка пространства может быть спроецирована на плоскости проекций: на горизонтальную П 1 , фронтальную П 2 и профильную П 3 . Горизонтальная проекция точки обозначается А 1 или А ′, фронтальная А 2 или А ″, профильная А 3 или А ′″ (рис.5).

Параллельное проецирование

Наглядность - ценное свойство центрально проекционных изображений. Однако на практике большое значение имеют и другие качества проекционных чертежей, в частности, простота построения и обратимость. В этом отношении центрально проекционные чертежи не являются наиболее удобными. Поэтому большим распространением пользуется способ параллельного проециро­вания для построения изображений пространственных фигур.

Задаём некоторую плоскость П′ , являющуюся плоскостью проекций, и направление проецирования s , не параллельное плоскости проекций П′ в соответствии с рисунком 1.2.2. Для проецирования какой-либо точки А пространства проводим через неё про­ецирующую прямую АА′ , параллельную направлению проецирования s . Точка пересечения А′ проецирующей прямой с плоскостью П′ являетсяпараллельной проекцией точки А на плоскость П′ .


Рисунок 1.2.3 – Параллельная проекция параллельных в пространстве

Построив для прямых АВ и CD проецирующие плоскости AА¢В¢B и CС¢D¢D , заметим, что эти плоскости параллельны, как плоскости, имеющие уг­лы с соответственно параллельными сторонами (AB||CD ; BВ¢ ||DD¢ ). Поэтому проецирующие плоскости пересекают плоскость проекций П" по двум парал­лельным между собой прямым.

2) Отношение отрезков, лежащих на параллельных прямых, со­храняется в параллельной проекции .

Пусть АВ и CD – отрезки, лежащие на параллельных прямых. Построим их проекции на плоскость П¢ при направлении проецирования s (рисунок 1.2.3). Про­ведём в проецирующих плоскостях отрезки А¢В1 и С¢D1 , соответственно парал­лельные и равные отрезкам АВ и СD . Треугольники А¢B¢B1 и С¢D¢D1 являются подобными, т.к. их соответственные стороны параллельны. Отсюда


Отсюда следует, что отношение, в котором точка В делит отрезок АС. со­храняется в проекции для точки В′, делящей отрезок А"С′.


Рисунок 1.2.4 – Деление отрезка в заданном соотношении при параллельном проецировании

  • Косоугольная
    • Аксонометрическая
    • При любом виде проекции отрезок прямой переходит в отрезок прямой (в вырожденном случае - когда отрезок лежит на проекционном луче - в точку); прямая может перейти в прямую или в луч.
    • Это свойство заметно упрощает приложение проекции в изобразительных целях, особенно в техническом черчении, когда объект содержит много прямолинейных элементов. В последнем случае достаточно спроецировать концы отрезков и соединить их на чертеже прямыми.
    • Эллипс или окружность переходят в эллипс (в вырожденном случае - в отрезок или окружность).

    Проекция из произвольного пространства на его подпространство [ | ]

    Проекция в этом смысле (упомянутая во введении в пункте 2) - широко применяется в линейной алгебре (подробнее, см.: Проекция (линейная алгебра)), но на практике не только в достаточно абстрактных контекстах, но и при работе с векторами любой природы, размерности и степени абстракции, и даже в элементарной геометрии, а также - очень широко - при использовании прямолинейных координат (как прямоугольных или аффинных).

    Отдельно следует упомянуть проекцию точки на прямую и проекцию вектора на прямую (на направление).

    Ортогональная проекция на прямую и на направление [ | ]

    Чаще всего используется ортогональная проекция.

    Термин проекция в этом смысле употребляется и в отношении самой операции проецирования, и в отношении её результата (при операции проецирования на прямую образы точки, вектора, множества точек называются проекцией точки, вектора, множества точек на эту прямую).

    Элементарное описание ортогональной проекции точки на прямую сводится к тому, что из точки на прямую следует опустить перпендикуляр, и его пересечение с прямой даст образ точки (проекцию точки на эту прямую). Это определение работает и на плоскости, и в трёхмерном пространстве, и в пространстве любой размерности.

    Элементарное определение проекции вектора на прямую легче всего дать, представив вектор направленным отрезком. Тогда на прямую можно спроецировать его начало и его конец, и направленный отрезок от проекции начала к проекции конца исходного вектора даст его проекцию на прямую.

    Проекцией вектора на некоторое направление обычно называют число, совпадающее по абсолютной величине с длиной проекции этого вектора на прямую, определяющую это направление; знак же числа выбирается так, что оно считается положительным, когда направление этой проекции совпадает с данным направлением, и отрицательным, когда направление противоположно.

    Неортогональная проекция на прямую и на направление [ | ]

    Неортогональная проекция используется реже, к тому же даже при использовании, особенно в элементарных контекстах, этот термин не всегда используется.

    Проще всего неортогональную проекцию на прямую можно задать, задав саму эту прямую и плоскость (в двумерном случае - вместо плоскости другую прямую, в случае n -мерного пространства - гиперплоскость размерности (n -1)), пересекающую прямую. Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию.

    В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением). Поэтому собственно для неортогональной проекции надо потребовать, чтобы эта ортогональность отсутствовала.

    Для неортогональной проекции вектора на прямую и на направление определения получаются, исходя из приведённого определения проекции точки, прямо аналогично тому, как это было описано в параграфе об ортогональной проекции.

    • Надо, правда, иметь в виду, что по умолчанию под проекцией вектора на прямую или на направление понимается всё же ортогональная проекция.

    Тем не менее понятие неортогонального проецирования может быть полезным (по крайней мере, если не бояться терминологической путаницы) для введения косоугольных координат и работы с ними (через них может быть в принципе довольно легко определено понятие координат точки и координат вектора в этом случае).